
Jason Chen
Alex Zelinsky
Department of Systems Engineering
Research School of Information Science and Engineering
The Australian National University
Canberra, Australia
Jason.Chen@anu.edu.au
Alex.Zelinsky@anu.edu.au

Programing by
Demonstration:
Coping with
Suboptimal
Teaching Actions

Abstract

The difficulty associated with programing existing robots is one of
the main impediments to them finding application in domestic envi-
ronments such as the home. A promising method for simplifying robot
programing is Programing by Demonstration (PbD). Here, an end
user can provide a demonstration of the task to be programed, with
a PbD “interface” interpreting the demonstration in order to deter-
mine low-level control details for the robot. A key aspect of the inter-
pretation process is to make it robust to the noise typically included
in a demonstration by the human. In this paper we present a method
to help identify and eliminate any noise present in the demonstration.
Our method involves two steps. The first step uses the demonstration
to build up a partial knowledge of the geometry present in the task.
Statistical regression analysis is used on demonstrated trajectories
to determine equations describing curved surfaces in configuration
space. The second step in our method uses the geometric information
obtained in the first step to determine if there are more optimal paths
than those demonstrated for completing the task. If there are, our
method proposes these as the appropriate control commands for the
robot. We show the validity of our approach by presenting successful
experiments on a realistic household-type task—changing rolls on a
paper roll holder.

KEY WORDS—Programing by Demonstration, teaching by
showing, hybrid dynamic systems, configuration space

1. Introduction

For over two decades now, the robotics research community
has been searching for a simpler, more natural method of robot
programing. Current methods of programing generally occur
at a very low level—usually by writing computer code. An
important potential domain for robot application is in domes-

The International Journal of Robotics Research
Vol. 22, No. 5, May 2003, pp. xxx-xxx,
©2003 Sage Publications

tic environments, especially the home. A simple and natural
method for robot programing is essential in such a domain
since end users will generally not possess knowledge of ei-
ther computers or robotics. A method of programing that holds
much promise in this regard is robot Programing by Demon-
stration (PbD). In PbD, the end user demonstrates the task
to be programed. A PbD interface interprets the demonstra-
tion and determines the control details required by the robot
to achieve the task. The method provides a simple and very
natural programing interface for humans; humans often trans-
fer skills between themselves by showing how something is
done.

PdD is an active research area and many approaches have
been presented. A number of authors have investigated using
neural networks to learn from the demonstration a skill map-
ping that will complete the task. For example, Asada (1990)
proposed a multi-layered neural network to learn non-linear
compliance strategies used by a human in a chamferless peg-
in-hole task. Pomerleau (1991) used a neural network to learn
road following skills in an automated car-driving system.
Kaiser and Dillman (1996) proposed a neural net approach
to learn peg-in-hole and door opening tasks. Other authors
in the PbD field have taken a more physics-based approach.
They assume some generic model of the skill in the task,
and then use the demonstration to fill in the missing “gaps”.
In some work, the model is quite specific to the task being
programed. For example, Atkeson and Schaal (1997) derive
a skill model relating angular velocity of a pendulum to the
horizontal acceleration of the hand at its pivot in a pendulum
swing-up and balance task. They use a human demonstration
to help find optimal values for the robot of unknown param-
eters in the model. In PbD, other authors assume a generic
model for skill relevant to a class of tasks. In many cases,
the task class of interest is assembly. For example, Asada
and Izumi (1989) propose the hybrid force–position con-
trol regime (Raibert and Craig 1981) as the skill model for

1

2 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May 2003

assembly. They use the demonstration in PbD to determine
the unknown parameters of a hybrid force–position controller
for a simple place-block-in-corner task. This type of approach
is based around a continuous-time description of skill in as-
sembly. An alternative approach is to model skill in an assem-
bly task as a set of discrete states. Skill transfer to the robot
can then be made as the sequence of task states used by the
human in the demonstration. A number of different regimes
for discretizing a task have been proposed. Hannaford and
Lee (1991) propose a hidden Markov model approach, Mc-
Carragher (1994) proposes a hybrid dynamic system (HDS)
as a means for discretizing assembly tasks, while Ikeutchi,
Kawade, and Suehiro (1993) suggest the notion of discretiza-
tion for assembly based on ten primitive contact formations.

The PbD research field is a rich and active one, and many
interesting results have been obtained; for a more comprehen-
sive review of the field, see Chen (2001). While PbD holds
much promise, a well-known weakness with the approach is
that the demonstration can often contain suboptimality. For
example, Kaiser, Friedrich, and Dillmann (1995) recognize
five sources of suboptimality that can exist in a demonstra-
tion: where the human demonstrates unnecessary, incorrect,
or unmotivated actions, where there is choice of scenario re-
garding when to apply an action, and where the actions are
demonstrated with the wrong intention (i.e., the user does not
know enough about the task). Delson and West (1996) identi-
fied that, in a pick-and-place task through a field of obstacles,
a human will naturally introduce “noise” into the demonstra-
tion by using different paths to traverse regions where the gap
between obstacles is large. Nechyba and Xu (1996) identified
that skill models obtained from human-produced training sets
can produce trajectories not characteristic of the source pro-
cess or, even worse, that are potentially unstable. Witvrouw
et al. (1996) found that a demonstration of a peg-in-hole task
could contain actions by the demonstrator that were subopti-
mal, erroneous, or even unintended. Suboptimal actions of this
type obscure the skillful set of actions required to complete
the task, and can be viewed as noise. Clearly, having the robot
directly copy the demonstration will not be optimal. The so-
lution is to identify and remove noise from the demonstration
before any programing of the robot takes place.

In this paper we present a new, two-step approach for cop-
ing with demonstration suboptimality in PbD. The two steps
are:

(i) determine the geometric properties of the task from
demonstration;

(ii) determine optimized robot control commands based on
the information obtained in (i).

Our methods for achieving both steps (i) and (ii) are new to
the literature. Regarding (i), a number of competing works
exist. Some approaches produce an “implicit” representation
of task geometry. For example, Koeppe and Hirzinger (2000)

train neural nets from demonstration to map sensor signals
to appropriate force and velocity control commands. These
nets implicitly describe the natural and artificial motion con-
straints existing in the task, and so do form a representation of
task geometry. However, since the representation is implicit,
it would be difficult to utilize this type of representation to
identify and remove noise from a demonstration. Other ap-
proaches derive representations of task geometry that are ex-
plicit, but only qualitative. Skubic and Volz (1996) propose
the automatic recognition of task object contact formations
from demonstration using fuzzy logic. Similar work is pro-
posed by Hovland and McCarragher (1997), and Witvrouw
et al. (1996). These works derive a description of task ge-
ometry as a particular set of contact formations between task
objects. However, since the description is only qualitative,
it is less rich than the one we propose in this paper. In our
approach, we derive an explicit and quantitative geometric
representation of the task. Such a representation provides a
rich source of information for building strategies to cope with
demonstration suboptimality. Our approach is to use statistical
regression analysis on demonstrated paths to derive the “con-
figuration space” (Latombe 1991) for the task. Configuration
space (C-space for short) can be viewed as a “geometric” rep-
resentation of a task that focuses on the constraints on motion
caused by one object in the task on another, rather than on the
dimensions of the objects themselves.

Regarding step (ii) of our approach, a number of alterna-
tive approaches also exist. The problem is one of identifying
and removing any noise in a demonstration in order to pro-
duce an optimized set of control commands for the robot. Tso
and Liu (1997) proposed one approach to this problem, where
their aim was to select the most consistent demonstration from
among a number of demonstrations of a task. They identified
that, although a human can execute varying motion across dif-
ferent demonstrations, all demonstrations will have in com-
mon a “core motion” required to complete the task. Their idea
was to use a hidden Markov model to select the most con-
sistent demonstration in the group. While this approach can
select the demonstration containing the least amount of noise,
it is not able to remove noise from a demonstration. This can
be a disadvantage, for example, if all demonstrations contain
noise.

Another type of approach is proposed by Kaiser and Dill-
mann (1996) and Witvrouw et al. (1996). In contrast to Tso
and Liu (1997), this work is able to remove noise from a
demonstration. The work uses thresholding, smoothing, and
loop-removal techniques to filter out any noise in a demonstra-
tion. For example, Kaiser and Dillmann (1996) propose two
types of noise removal methods for a peg-in-hole task. First,
they remove ineffective actions, i.e., actions that changed the
configuration of the peg by less than a pre-defined threshold.
Secondly, they remove actions that were later corrected, i.e.,
those that were partly or fully negated at following time-steps.
Removing actions that are negated at following time-steps is

Chen and Zelinsky / Programming by Demonstration 3

essentially the process of removing loops from the path de-
fined in C-space by the demonstration. Work by these authors
has been successful in removing obvious flaws in the demon-
stration, however it is limited to deriving paths that contain
only points existing in an original demonstrated path. As such,
less obvious flaws cannot be removed, e.g., corrected actions
that do not form explicit loops.

Delson and West (1996) propose a different approach. They
address the case where all demonstrated paths start and end at
the same point. They then identify an obstacle-free envelope
formed by the outermost lying paths. A noise-free path is con-
structed to lie completely within the demonstration envelope.
This approach can derive paths that contain segments that
were not explicitly demonstrated, and, as such, it is capable of
removing suboptimalities from demonstrated paths that work
in Kaiser and Dillmann (1996) and Witvrouw et al. (1996)
cannot. However, the approach assumes that the demonstra-
tor will always pass on the same side of any obstacle in the
workspace, and it is restricted to finding paths that lie within
the obstacle-free envelope. The latter can be a limitation, for
example, where only one demonstration is provided. In addi-
tion, the method is applicable for C-space of 2 or 3 dimensions.
It cannot easily be extended to higher dimensions.

Our approach to step (ii) uses the knowledge of C-space
gained in step (i) to make decisions about where a demon-
strated path contains noise. Note that our approach to (i) pro-
duces only a partial representation of C-space—it provides
a representation only in those regions of C-space that were
visited by the demonstration. As such, well-known path plan-
ning methods (Latombe 1991) cannot be applied to derive a
noise-free robot control command. With only a partial knowl-
edge of C-space available, our method for step (ii) is to use
the paths traced out in C-space by each demonstration to grow
regions in the space where noise removal by traditional path
planning techniques can by used. We use the simple and well-
known “roadmap” approach to path planning (Latombe et al.
1996) in these regions to determine optimized robot control
commands. Our method compares well to others. Like work
in Delson and West (1996) it can derive paths containing
segments that were not explicitly demonstrated. As such, it
can remove a greater range of suboptimalities than for work
in Kaiser and Dillmann (1996) and Witvrouw et al. (1996).
Compared to Delson and West (1996) our approach has the
following advantages: (a) it does not assume that all demon-
strations pass between the same start and end points; (b) it can
derive paths that lie outside the demonstration envelope; and
(c) it can be applied to find paths in C-space of any dimension.
A limitation of our approach compared to Delson and West
(1996) is that care needs to be applied when tuning the pa-
rameters of the method, otherwise a robot control command
that is non-obstacle-free may result.

Prior to presenting, in Sections 3 and 4, the details of our
solution for achieving steps (i) and (ii), we first formulate in
the next section a more precise statement of the problem to be

solved for each. To this end, we introduce two approaches to
modeling assembly tasks in PbD (note that our focus in this
paper is specifically on PbD for assembly type tasks, i.e., tasks
involving contact and constrained motion). The first modeling
approach we adopt is C-space. We have already introduced the
notion of C-space, however our aim in the next section will be
to present in more detail a number of C-space concepts impor-
tant for understanding work that follows. The second level of
our modeling approach for assembly is to use a HDS to model
the human skill in executing a task. It turns out that a HDS
model will allow us to simplify the problem involved in step
(ii) of our approach, since it allows the problem of removing
noise from an entire demonstrated path to be simplified into
one of independent noise removal from distinct segments of
that path.

2. Problem Formulation

C-space was first introduced by Lozano-Perez (1983) in the
early 1980s to simplify the modeling of tasks involving ob-
jects that both translate and rotate; for a more complete pre-
sentation on the concept of C-space than will be provided
here, see Latombe (1991). The idea with C-space is to repre-
sent the configuration of an object with n degrees of freedom
(DOF)—translational or rotational—in a physical workspace,
as a single point in an n-dimensional configuration space. To
help make our discussion more concrete, we introduce in Fig-
ure 1 the spindle-assembly task, the task adopted as the test
bed for our work in this paper. The task requires the inser-
tion of a compressible spindle between two, fixed supports,
and is based on the household task of changing rolls on a pa-
per roll holder. Four degrees of motion freedom exist for the
spindle in the task: the position and orientation of the spindle
body relative to the supports (y, z and θ), and the compres-
sion of the spindle head relative to the spindle body (δ). Then,
C-space for the spindle-assembly task will be of dimension
four, and a particular configuration of the spindle in the task
will correspond to a single point in that space. Configura-
tion space divides topologically into three distinct regions.
Taking the spindle-assembly task as an example, the first,
Cfree, contains all points for configurations where the spindle
is not in contact with the supports. The second region, Cobs ,
contains points for configurations where the spindle violates
(i.e., passes into) the supports. Finally, the third region, Ccon,
contains points lying exactly on the boundary between Cfree

andCobs .Ccon corresponds in the physical workspace to where
the spindle is exactly in contact with one or both supports. It
defines a surface (or hyper-surface) in C-space consisting of
interconnected patches of curved surface (or hyper-surface)
called C-surfaces. Recall step (i) of our approach in this paper:
to derive a representation of C-space for a task from demon-
stration. Then we note that finding a representation of C-space
really means finding the equations of C-surfaces in C-space.

4 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May 2003

(no contact)

(δ)

y

z

θ

axial compression only

START POSITION

GOAL POSITION

Fig. 1. The spindle-assembly task chosen for PbD.

Since we require some information about a C-surface before
its equation can be derived (i.e., in our case, that the demon-
stration visit the C-surface), the problem we must solve for
step (i) of our approach can be stated as: find the equation
of every C-surface that was visited during the demonstration.
We present a solution to this problem in Section 3.

Once a representation of C-space is found, recall that step
(ii) of our approach is to use this information to remove noise
from the demonstration. In C-space, the demonstration will
define a path through the space. Since an assembly task typ-
ically commences with task objects not in contact, the start
point of the path will lie somewhere in Cfree. The final config-
uration in assembly usually involves task objects in contact,
and so the end of the path will lie on one of the C-surfaces that
makes up Ccon. In between, the path will generally traverse a
number of intermediate C-surfaces. The problem of removing
noise from the entire path is difficult, but can be simplified by
breaking down the path into segments (where each segment
lies on a distinct C-surface), and then removing noise from
each segment independently. Denote as via-points the points
at which we segment the demonstrated path; that is, these
points will lie at a boundary between C-surfaces in C-space,
and will define the start and end points of a path segment. Call
these points “start” and “end” via-points respectively. Then
the problem to be solved for step (ii) in our approach is: find
a noise-free robot control command that will traverse a C-
surface between the start and end via-point on that surface. A
solution to this problem is presented in Section 4.

Our approach has been to simplify the noise removal prob-
lem by breaking an entire demonstrated path down into seg-
ments and removing noise from these segments in an indepen-
dent fashion. We note that an important and valid criticism of
this approach is that “noise” in a demonstration may not be
limited to existing only on individual C-surfaces. That is, it
may be that a particular C-surface was visited by the demon-
stration only because the the demonstration contained noise.
Clearly our approach here must be coupled with another, if

comprehensive noise removal is to occur. Just such work ex-
ists, and has been presented in Chen and McCarragher (2000).
A complete presentation of this work is beyond the scope of
this paper. However, due to the importance of this work to our
work here, we now provide a brief overview of it.

At the core of work in Chen and McCarragher (2000) is
the idea of using a HDS to model the skill required for as-
sembly tasks. In its most general form, a HDS involves a
continuous-time system interacting with a discrete-event sys-
tem (Brockett 1993). As applied in robotic assembly (Mc-
Carragher and Asada 1995), the continuous-time system rep-
resents the continuous-time dynamics of the spindle relative
to the supports, i.e., in state space form as (i) a differential
equation,

ẋ(t) = f (x(t),u(t)) (1)

describing the free-space dynamics of the spindle (where x(t)
is the continuous-time system state vector [y, z, θ, δ]T, and
u(t) is the control input vector), and (ii) a set of equations,
each of the general form,

g(x(t)) = 0 (2)

describing the constraints on the spindle’s motion caused by
any contact with the supports. In contrast, the discrete-event
part of the HDS captures the discrete nature of assembly
dynamics; to complete an assembly task, we must traverse
through a sequence of distinct contact formations until the fi-
nal “fully-assembled” contact formation is reached. In HDS
literature, each distinct contact formation in the task is denoted
as a discrete state. To help clarify the discussion, we introduce,
in Figure 2, a set of demonstrations of the spindle-assembly
task. Each of the six demonstrations in the figure is shown as a
sequence of distinct contact formations, starting with the no-
contact contact formation (labeled as discrete state number 2),
passing through a series of intermediate contact formations, to
finally reach the fully-assembled contact formation (labeled

Chen and Zelinsky / Programming by Demonstration 5

49

1

47

43

77

38

76

33

8

27

8

7

6

1

47

54

55

2

21

29

28

9

65

60

1

47

54

55

2

21

29

28

9

65

60

9

65

38

8

1

60

54

47

55

DEMO 6

2

20

24

21

22

2 2

7

75

5

6

8

4

74

5

75

2

21

24

21

11

30

38

8

47

54

21

27

8

66

61

56

78

79

48

47

1

1

DEMO 1 DEMO 2 DEMO 3 DEMO 4 DEMO 5

Fig. 2. The set of state sequences demonstrated by the human in the spindle-assembly task.

as state 1). One of the main advantages of the HDS modeling
approach is that it provides a two-level description of the skill
required for completing an assembly task. The continuous-
time system describes the low, time-based-control level of
demonstrator skill, while the discrete-event system can de-
scribe demonstrator skill at the “task level”. Note how the
paths of discrete states visited for the spindle-assembly task
in Figure 2 can each be interpreted as a task-level strategy
for completing the assembly. The idea in work in Chen and
McCarragher (2000) was that noise removal at the task level
could be realized by determining an optimal path of discrete
states that would complete the task. To recognize the relevance
of this work to our work here, an understanding of the rela-

tionship between HDS modeling and C-space is required. We
know that each discrete state in the HDS model corresponds
to a unique set of constraints on spindle motion. Recall our
description of the C-space modeling approach—how each C-
surface in C-space corresponds to a unique set of constraints
on spindle motion. That is, there exists a one-to-one corre-
spondence between C-surfaces in C-space and discrete states
in the HDS model. Each discrete state in the HDS that defines
contact (e.g., for the spindle-assembly task, all states shown
in Figure 2, except state 2) will correspond to a distinct C-
surface in C-space. The no-contact discrete state in the HDS
(i.e., state 2 in the spindle-assembly task) corresponds to Cfree

in C-space. Then for our work in this paper, the idea in Chen

6 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May 2003

and McCarragher (2000) of removing noise from the demon-
stration at the task level really means selecting a sequence of
C-surfaces over which a “noise-free” path through C-space
should pass. That is, paths derived by that work determine
which C-surfaces should be visited by the robot control com-
mand. Our focus in this paper is on removing noise from the
segments of path lying on each of these C-surfaces.

3. Constructing Configuration Space

Recall the problem to be solved in the first step of our ap-
proach: find the equation of every C-surface that was visited
during the demonstration. We note that C-surfaces in C-space
for a task with n DOF will range in their dimension from
“n−1” to zero.1 Our first step in this section is to identify that
any C-surface of dimension “n−2” and less can be described
as the intersection of a number of “n − 1”-dimensional C-
surfaces. Call a C-surface of dimension “n − 1” a primitive
C-surface, and denote the mth primitive C-surface visited in
the demonstration as c∗

m
. Then our problem in this section re-

ally is to find an equation that describes the form of each prim-
itive C-surface c∗

m
visited in the demonstration. C-surfaces of

dimension “n − 2” and less can then be specified as a set of
primitive C-surface equations.

Our approach is to derive equations for primitive C-
surfaces by using the well-known statistical “fitting” tech-
nique of regression analysis. It is often the case that an un-
known, or partially-known, process will generate data from
which a description of the process needs to be gained. Regres-
sion analysis is a method to achieve just this end. The idea is
to presume some generic model, and then to use the data gen-
erated by the process to identify the unknown parameters in
the model. In our case, we wish to identify the form of a par-
ticular primitive C-surface c∗

m
. A generic model for c∗

m
can be

derived; call it the “regression model”. The data to determine
the unknown parameters of that model must come from the
demonstration; specifically the data will consist of the set of
points defining the path traced out on c∗

m
by the demonstrator.

Call this set of points for c∗
m

the “data set” of c∗
m

. Then the two
elements of our approach that require further explanation for
each c∗

m
are (i) how we determine its data set, and (ii) how we

derive its regression model.

3.1. Determining a Data Set

The data set must be determined from our recording of the
demonstration. Recall Figure 2, the set of demonstrations pro-
vided for this paper of the spindle-assembly task. We show, in

1. A C-surface of dimension “n − 1” corresponds to configurations in the
spindle-assembly task where the spindle has lost one degree of motion free-
dom due to contact with the supports. A C-surface of dimension zero (i.e.,
a point in C-space) corresponds to a configuration where the spindle has no
motion freedom (e.g., the goal configuration in the spindle-assembly task, as
shown in Figure 1).

Figure 3, the apparatus used to record these demonstrations.
It includes a polehemus position sensor, used to record the
position and orientation of the spindle head and body relative
to the inertially fixed supports. Note how transmitters of the
polehemus sensor have been attached to the spindle head and
body, and the location of its inertially-fixed receiver (situated
at the top of the figure). Force sensors mounted beneath each
support were used to record the contact forces and moments
applied by the demonstrator through the spindle. Note that,
although we show sequences of distinct contact formations in
Figure 2, a continuous stream of data was recorded from both
the polehemus and force sensors for all demonstrations.

Only position data from each demonstration are used di-
rectly in the regression process. We denote as ci the ith C-
surface (of any dimension) to be visited in the demonstration
set.2 Our final requirement is to form a data set for each prim-
itive C-surface from the stream of position data. However, as
a means to this end, we first break up the data stream into
segments, where each segment lies on a distinct C-surface ci .
Since any ci can be visited more than once in the demon-
stration set, a number of “segments” may be derived for a
particular ci . We group these segments together to form a set
of data points pi for each ci .

Before moving on to how we form data sets for our primi-
tive C-surfaces from pi , we first address the valid question of
how segmentation of the position data stream was achieved.
The force data recorded from the demonstration form a crit-
ical part of the segmentation process. Recall how each ci in
C-space corresponds to a particular contact configuration in
the task. Work by Skubic and Volz (1996) has looked at au-
tomatically identifying from demonstration when changes in
contact configuration (i.e., ci) in a task occur. This work does
not require an a priori known task model, but is by no means
mature, and further work is required. However, the thrust of
their findings was that force and moment signatures could be
used to identify when contact configurations change. Then
our method for segmentation in this paper should be based on
force. Work in Skubic and Volz (1996) looked at identifying
the changes automatically; here we implement a force-based
approach manually. To give a more concrete idea of how the
segmentation process proceeded, we provide an example. Fig-
ure 2 shows that, in demonstration 1, the assembly process
moved into state 24 from state 21. That is, part of our stream
of position data contains points lying on the C-surfaces cor-
responding to states 24 and 21. The separation of these points
into those lying on the C-surface of state 24, and those ly-
ing on the C-surface of state 21, was achieved by noting the
time at which a spike in the z-direction force data occurred.
Of course, the force data contained many spikes, and, in gen-
eral, it was difficult to know which parts of the force data
corresponded to which state changes. To assist the human

2. Note the difference between our notation here of ci to denote a C-surface
of any dimension, and our previous notation of c∗m to denote a primitive
C-surface.

Chen and Zelinsky / Programming by Demonstration 7

Fig. 3. Apparatus used to capture human’s demonstration of the spindle-assembly task.

operator in the segmentation process, we made a time-
stamped video recording of each demonstration. We were then
able to coarsely determine from the video when a state change
occurred, and then use the force data to determine exactly
when it occurred.

With api for each ci determined, the next step is to combine
pi to form data sets for primitive C-surfaces. Where ci is a
primitive C-surface3 corresponding to c∗

m
, then all data points

in pi should be included in the data set of c∗
m

. Where ci is a
non-primitive C-surface (i.e., it is of dimension “n − 2” or
less), recall that non-primitive C-surfaces are defined by the
intersection of a number of primitive C-surfaces. Denote as
the primitive set, the set of primitive C-surfaces that intersect
to form a particular non-primitive C-surface ci . Then the pi
for this ci should be included in the data set of all primitive
C-surfaces that make up its primitive set.

3.2. Deriving a Regression Model

The regression model is an equation of known form, but is
one containing parameters that are initially unknown. In our
application, the regression model is an equation describing
the generic form of a primitive C-surface. It turns out that no
single regression model will generically describe the form of
all primitive C-surfaces in C-space. The number of regression
models will depend on the number of distinct contact types
that exist in a task. For example, Lozano Perez (1983) identi-
fied that in a planar, 3-DOF task involving polyhedral objects,
two distinct contact types exist: edge–vertex contacts (i.e., an
edge of the manipulated object in the task in contact with a
vertex of the environment), and vertex–edge contacts (a vertex
of the manipulated object in contact with an edge of the en-

3. ci is a C-surface of any dimension that was visited by the demonstration;
some of these will have dimension “n − 1”, i.e., they will be primitive C-
surfaces.

vironment). In this case, two regression models are required:
one for each contact type. McCarragher (1996) identified that
for a 6-DOF task involving polyhedral objects, three contact
types exist: surface–vertex, vertex–surface and edge–edge. In
this case three distinct regression models are required. The
spindle-assembly task is similar to the planar, 3-DOF task
analyzed by Lozano Perez (1983), in that it is planar and
involves polyhedral objects. However, the task analyzed by
Lozano Perez (1983) contained a manipulated object consist-
ing of a single, rigid body. In contrast, the spindle-assembly
task contains a manipulated object consisting of two rigid-
body objects with a single degree of freedom between them.
Then, a total of four distinct regression models are required
for the spindle-assembly task. It turns out that two of these are
identical to the regression models required for tasks analyzed
by Lozano Perez (1983). Assuming that we have a manipu-
lated object consisting of the spindle body alone, the first of
these two contact types is where a spindle-body vertex makes
contact with an edge of a support. We show in Figure 4(a)
how the primitive C-surface (it will be a primitive C-surface
since the single point contact results in the loss of one de-
gree of spindle-body motion freedom) of this contact type is
described by the vector equation:

(aA + bC − aB) · an = 0. (3)

Here we adopt the notation aA to mean vector A given with
respect to frame Fa , bC to mean vector C with respect to
frame Fb, etc. The second of these contact types is where an
edge of the spindle-body makes contact with a vertex of a
support. We show in Figure 4(b) how the primitive C-surface
corresponding to this contact type is described by the vector
equation:

(aA + bB − aC) · bn = 0. (4)

8 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May 2003

aB

na

Cb
Aa

Fa y

z
Fb z

y

Ca

aA
Bb

z

y

z

y

Fa

Fb

nb

(a) (b)

Fig. 4. Regression model derivation for contact type where the spindle body is in contact with the right support.

Both equations (3) and (4) can be expanded to give scalar
equations of the form

φ1(y, z, θ; b, c, d, e, f) = 0 (5)

where y, z, and θ are the position and orientation of the spindle
body, and b, c, d, e and f are the regression model’s unknown
parameters. Note that the parameters in eq. (5) have physical
meaning. That is, in Figures 4(a) and (b), pair (c, d) defines a
vector C that locates the position of the vertex in each contact,
pair (b,b) defines a vector B that locates the line in space of
the edge in each contact, and finally, pair (e,f) defines the
direction of a unit vector n that lies normal to the edge in each
contact. The fact that these parameters had physical meaning
meant their true values could be obtained by measurement;
something we use later to verify the accuracy of parameter
estimates obtained by regression analysis.

Equations (3) and (4) form the set of possible regression
models for the primitive C-surfaces that exist in a planar task
involving a single, rigid-body, manipulated object. For the
spindle-assembly task, two additional regression models are
required. These additional models correspond to contact types
where a spindle head edge is in contact with a vertex of a
support, and where a spindle head vertex is in contact with an
edge of a support. Both case give rise to a scalar equation of
the form

φ2(y, z, θ, δ; b, c, d, e, f) = 0; (6)

see Chen (2001) for the details of the analysis. Here the addi-
tional variable δ in eq. (6) compared to eq. (5) describes the
position of the spindle head relative to the spindle body.

3.3. Results

Once the model and data set for a c∗
m

are found, the mechan-
ics of regression are straightforward; details can be found in
Chen and Zelinsky (2001) or Chen (2001). Recall the set of

demonstrations that were provided of the spindle-assembly
task (shown in Figure 2). It turned out that fourteen distinct
primitive C-surfaces for the task were visited in this demon-
stration set. We show in Table 1 the regression results for each
of these primitive C-surfaces. Recall our notation of c∗

m
as the

mth distinct primitive C-surface visited in the demonstration.
Column 1 in the table indicates the primitive C-surface (i.e.,
c∗

1 to c∗
14) for which the results were obtained. Column 2 in the

table shows the underlying contact formation corresponding
to each c∗

m
. Columns 4–8 show two rows of parameter values

for each c∗
m

. The upper row shows the parameter estimates ob-
tained by regression analysis, where the hat on each symbol
b, c, d, e, f signifies that each value is an estimate. The lower
row shows a set of parameter values obtained by measure-
ment, i.e., the bottom row shows the true parameter values.
Note that the units for each parameter value shown is meters
(recall our description of the physical meaning of these pa-
rameters in Section 3.2). Finally, column 9 in the table lists
the states from which data in the data set were obtained (refer
to Figure 2 to see the contact configuration corresponding to
each one of these states). Recall in Section 3.1 our need to
form a data set for each primitive C-surface. Column 9 in the
table gives an indication of how much data were available for
the data set of each primitive C-surface.

The parameter estimates determined by regression can be
seen to range in their accuracy. In some cases the estimates
were excellent, e.g., c∗

13, c
∗
1 , c∗

12, c∗
14, c∗

9 , c∗
10. These parameter

estimates were generally within the range of millimeters from
true parameter values. In contrast, Table 1 shows that results
obtained for some c∗

m
were not particularly accurate, e.g., c∗

2 ,
c∗

3 , c∗
4 , c∗

7 . Clearly, the cause of these less accurate estimates
needed to be found. Two requirements existed for accurate
parameter estimates. The first was a sufficient amount of data,
i.e., that the system of equations formed by the data set in
the regression analysis is sufficiently overconstrained. In our
case, the position sensor was capable of data output at a rate
of 120 Hz, so sufficient data were generally available for all

Chen and Zelinsky / Programming by Demonstration 9

Table 1. Results of Regression Analysis For the Spindle-Assembly Task

��
�

�������

���	��
��

�� �� �� �� ��
� � � � �

���� �� ���	 ���� ���

��
�

����� ����� ����� ����� ������

����� ����� ����� � �

��� �������������� ��� �� ��� ��������

��� �� ��� ����������� ��� ��������

��
�

����� ����� ����� ����� �����

����� ����� ����� � �
��� �� ��� �� ��� ��������

��
�

������ ����� ����� ����� �����

����� ����� ����� � �
��� �����

��
�

����� ����� ����� ������ �����

����� ����� ����� �� �
��� �����

���
����� ����� ����� ����� �����

����� ����� ����� � �

��� ������� ��������� ����������

��� ���� ��� ����������

��
�

����� ����� ������ ����� �����

����� ����� ����� � �

��� ���� ��� ���� ��� ���� ��� ��

������� ��� ���������������� ��� ����

��
�

����� ������ ������ ������ �����

����� ����� ����� �� �
��� ����� ��� ����� ��� �����

��
�

����� ����� ����� ����� �����

����� ����� ����� � �
��� �����

��
	

����� ����� ����� ����� ������

������ ����� ����� � ��
��� ������ ��� ������

���

����� ����� ����� ������ ������

� ����� ����� �� �
��� ����

��
��

������ ����� ����� ������ ������

� ����� ����� �� �
��� �����������������

��
��

����� ������ ������ ����� ������

����� � ������ � ��
��� �� ��� ���� ��� ������� ��� ��

��
��

����� ����� ������ ����� ������

����� � ������ � ��

�������������������� ����� ����������

���������� ��� �������������������������

������� ��� ����������������������������

��
��

����� ������ ������ ������ �����

����� � ����� �� �

��� ���������� ��� ����������

��� ����� ��� ����������

c∗
m

. The second requirement for accurate parameter estimation
is a good range of data, i.e., that the demonstrator traces out
paths over a wide range on the C-surface. It turned out that
this was the reason for less accurate estimates in our case.

There were two reasons why a path of limited range may be
traced out on a c∗

m
in the demonstration. The first was because

the c∗
m

was only briefly visited, e.g., in the spindle-assembly
task—c∗

3 , c∗
4 . For example, c∗

4 was briefly visited; existing in
only two states (20 and 22) in demonstration 1. This has re-

sulted in the less accurate estimates shown for c∗
4 in the table.

What is required for this type of c∗
m

is a larger demonstration
set so that more paths on distinct parts of the C-surface be-
come available. That is, the demonstration must contain suf-
ficient information about a region in C-space if our method
is to determine an accurate representation of the region. The
second reason for limited path range on a c∗

m
was because the

geometry of the task limited the range of motion that could
be demonstrated, i.e., that a c∗

m
only exists over a small region

10 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May 2003

in C-space. For example, the final column in Table 1 shows
that c∗

6 was visited often in the demonstration. Then we would
expect a good range of paths on this primitive C-surface, and a
set of precise parameter estimates to match. However, there is
a difference between the parameter estimate values and their
true values for c∗

6 of up to 10 percent. In this case, the range
of motion that can be demonstrated is naturally limited by the
geometry of the task, i.e., the spindle cannot move very far
from an orientation aligned with the task’s z-axis since it is ly-
ing between the rebates in each support. Although parameter
estimates for this type of c∗

m
can, in some cases, differ by up

to 15 to 20 percent from the true values, these estimates still
do in fact provide an accurate description of the c∗

m
over the

limited range of motion allowed by the task. That is, for noise
removal purposes these parameter estimates provide a useful
description of the c∗

m
. Noise removal means deriving noise-

free paths that lie on a c∗
m

. Parameter estimates that describe
a c∗

m
well over the limited range allowed by the task are use-

ful because our derived noise-free path will move onto a new
C-surface before reaching regions on the c∗

m
described badly

by the parameter estimates. The majority of the c∗
m

with less
accurate parameter estimates in Table 1 do so for this reason,
e.g., c∗

2 , c∗
5 , c∗

6 , c∗
7 , c∗

8 , c∗
11. So many c∗

m
of this type exist for the

spindle-assembly task because only a very limited range of
spindle motion is possible when it is close to fully inserted.
Note how the c∗

m
just listed correspond to contact formations

occurring when the spindle is lying somewhere between the
rebate in each support.

To finalize this section, we draw two conclusions. First,
demonstration followed by regression analysis is a valid
method for generating a description of C-space. In the major-
ity of cases, a valid and useful representation of C-space will
be obtained. A less accurate representation can be obtained
for regions that were visited infrequently in the demonstra-
tion; these cases require further demonstrations that visit the
region more thoroughly. Secondly, in cases where motion is
limited in the demonstration due to task geometry, the param-
eter estimates obtained for a C-surface can be significantly
different to true values. However, they still constitute an ac-
curate C-space description of the C-surface over the limited
range that it exists, and are useful for path planning purposes.
With our description of C-space derived, we turn our attention
now to formulating noise-free, robot control commands.

4. Deriving Robot Control Commands

Recall from Section 2 the problem to be solved here. Each
ci will, in general, have a number of path segments from the
demonstration that traverse it. We denote as ûij the j th demon-
strated path segment existing on ci . In Section 2 we noted that
(a) ûij will have start and end points (we called these via-
points) lying on the boundary of ci , and (b) that ûij may not
define an efficient path due to the possible inclusion of noise

in the demonstration by the human. Then our problem in this
section is to derive an efficient, noise-free robot control com-
mand that passes between the start and end via-points of ûij .
We denote such a command, for ûij , as uij . We now commence
the presentation of our method with an overview.

4.1. Overview

Work in Section 3 did not derive a full knowledge of C-space,
and so not all boundaries on a particular ci are guaranteed to be
known. To help show what we mean, we present in Figure 5
an example two-dimensional (2D) C-surface where bound-
aries A, B and C were visited in the demonstration and are
known, while D is unknown. The figure shows that some por-
tion of a known boundary of ci may exist behind an unknown
boundary, e.g., C3 and B3, and hence does not really divide
an “obstacle-free” region on the C-surface from an “obstacle-
defining” one. We note that a boundary on a C-surface is
guaranteed to divide obstacle-defining and obstacle-free re-
gions along any segment traversed in the demonstration, e.g.,
segments 1, 3, and 5 in Figure 5. We call such segments,
boundary segments, and observe that if the C-surface is of
finite size (as is usually the case), then a point immediately
in front of the boundary segment will be obstacle-free, e.g.,
points Q1, Q2, and Q3. We use this observation as the ba-
sis for growing obstacle-free regions on the C-surface. We
grow a free region in front of each boundary segment of the
C-surface. If the region is grown very small, then we are guar-
anteed that it will be obstacle-free. However a small region
is of limited use for path planning purposes. Hence we grow
a region of useful size and accept that the region will only
likely be obstacle-free. We call such a region a likely-free re-
gion. Once a likely-free region is identified, we use a roadmap
type approach to path planning, similar to that presented in
Latombe et al. (1996). We randomly generate points within
the region, and use a simple path planner to create a connec-
tivity graph L that records which points have an obstacle-free
path between them. Besides points in likely-free regions, we
also know that points in demonstrated paths interior to known
boundaries are obstacle-free, e.g., points in segments 2 and
4. We call such segments interior segments. We use the same
simple path planner to create a graph D that records the con-
nectivity between points in different interior segments. Finally
we combine graphs L and D into a graph K that represents
the connectivity of all obstacle-free points on the C-surface.
We identify the nodes in K that represent the start and end
via-points of ûij . We search for the minimum cost path be-
tween these nodes to give the final noise-free path uij . Four
main steps are involved in our method:

• creating boundary segments;

• growing likely-free regions;

• creating interior segments;

Chen and Zelinsky / Programming by Demonstration 11

Q1

Q3
Q2

A

B

C

D

B1 B2
B3

C1

C2

C3

OBSTACLE
NON

FREE

2

4

3

1

5

path
demonstration FREE

OBSTACLE

Fig. 5. Demonstration segments identify regions on a C-surface that are likely to be obstacle-free.

• creating a connectivity graph K, and searching K for
our final noise-free path.

We present the details of each step in the following four
subsections.

4.2. Creating Boundary Segments

Three steps are required to create boundary segments for ci : (i)
finding boundary C-surfaces to ci ; (ii) identifying raw bound-
ary segments for the boundary C-surfaces found in (i); and
(iii) projecting points in raw boundary segments to create a
set of clean boundary segments. To achieve (i), recall that each
ci has associated with it a “primitive set”, the set of primitive
C-surfaces that intersect to define it. We denote the primi-
tive set for ci as �i. Then we choose a boundary C-surface
of ci as any other C-surface visited in the demonstration that
has a primitive set �bnd , where �bnd ⊃ �i . Step (ii) is then
straightforward. We select as a raw boundary segment, any
path demonstrated on a boundary C-surface. Step (iii) is re-
quired because points in raw boundary segments will not gen-
erally lie exactly on the C-surface of the boundary state. That
is, the regression analysis of the previous section derived pa-
rameters resulting in primitive C-surface equations that best fit
raw demonstration data. We create clean boundary segments
by solving a simple optimization problem: for each point in
the raw boundary segment, we find the point on the boundary
C-surface lying closest to it. From now on, we refer to clean
boundary segments simply as boundary segments.

We show as an example in Figure 6 the results of creating
boundary segments for the C-surface corresponding to state 8
of the spindle-assembly task. We have denoted this C-surface
as c5; it was the fifth distinct C-surface visited in the demon-

stration set. The figure shows points on the boundary surfaces
of c5, i.e., on C-surfaces corresponding to states 7, 33, 9, and 54
in the task. Note that we present boundary segment points in
the figure as spindle configurations in the physical workspace
rather than as single points in C-space. This is necessary due
to the difficulties involved with graphically presenting points
in a four-dimensional space. Note also that only a subset of
points in each boundary segment are presented for reasons of
clarity, where the subset was chosen to reflect the range of
points existing in the boundary segment. The main thing to
notice about the examples in Figure 6 is that points in each
boundary segment result in a precise contact between the spin-
dle and supports. That is, configurations shown in Figure 6 do
not see the spindle lose contact with, or pass into, the supports.
This is a consequence of the projection step in the process,
i.e., we ensured that points in the final boundary segments lay
exactly on the boundary C-surface to ci .

4.3. Growing Likely-Free Regions

We grow a likely-free region by generating a region of points
on our C-surface ci immediately in front of a boundary seg-
ment. Each point in the region is determined as follows. First,
a point R in the boundary segment is randomly selected. Next,
a distance value dst4 is randomly chosen using the uniform
probability distribution over the interval (0,md]. Parameter
md denotes a maximum distance value, and determines how
big the likely-free region is grown. A point in the likely-free
region is then determined by generating a point Q that (a) lies
a distance dst from R, and (b) lies exactly on our C-surface

4. Note that we use symbols in plain upright text to denote parameters of our
u(t) derivation method.

12 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May 2003

(a) (b)

(c) (d)

Fig. 6. Four examples of boundary segments for state 8 in: (a) state 7; (b) state 38; (c) state 9; (d) state 54.

ci . We know that, in addition to conditions (a) and (b), point
Q must also lie within known C-surface boundaries. We re-
fer to the region on ci lying within known boundaries as the
bounded region for ci . For example, we present in Figure 7 a
2D C-surface with six boundaries c1 to c6, each described by
equations φ1 = 0 to φ6 = 0, respectively. Here, the bounded
region consists of the union of regions labeled 1, 2, and 3.
Note how the bounded region defines a set of points on ci
that are obstacle-free, i.e., we wish to generate only Q lying
within the bounded region of ci . We now present the details
of how we ensure that only Q lying inside the bounded region
are generated.

Letφbnd = 0 be the equation of the C-surface cbnd , a bound-
ary C-surface to ci . That is, equationφbnd = 0 defines a known
boundary on our C-surface ci . Then we identify that any point
Q we generate will satisfy one of the following conditions:

−eps < φbnd |Q< eps (7)

φbnd |Q≤ −eps (8)

φbnd |Q≥ eps (9)

where |Q denotes the equation φbnd evaluated at point Q, and
where eps is a parameter of small value. If eq. (7) is satisfied,
then Q lies on, or very close to the boundary, while if eq. (8)
or eq. (9) are satisfied, Q lies to one side of the boundary.
We are never interested in Q that satisfy eq. (7). A Q lying
exactly on the boundary is not obstacle-free, and a Q lying very

close to the boundary may not be obstacle-free (recall that the
equations we derived for primitive C-surfaces in Section 3
are best estimates that contain some errors). Rather, we are
interested in generating Q that satisfy either eq. (8) or eq. (9),
where our choice between eqs. (8) and (9) will depend on
which side of the boundary is obstacle-free.

In general, there will be more than a single known bound-
ary to our C-surface ci . Let α denote generally the number of
known boundaries on ci . We denote the equations of bound-
aries 1 to α respectively as

φbnd 1 = 0, φbnd 2 = 0, . . . , φbnd α = 0. (10)

We note that a Q which satisfies one or more equations in
eq. (10) will lie on a boundary of the bounded region. We
have seen that we are not interested in such Q. Rather, we
want Q that lie on the obstacle-free side of all boundaries by
at least a distance eps. That is, we must form a set of inequal-
ities by casting each equation in eq. (10) to be an inequality of
the form (8) or (9). We call such a set of inequalities a bound-
ary inequality set. Then we note that a boundary inequality
set defines a region on our C-surface ci . For example, one
boundary inequality set for the boundary equations φ1 = 0 to
φ6 = 0 of our example in Figure 7 would be

φ1 ≥ eps, φ2 ≤ −eps, φ3 ≤ −eps,

φ4 ≥ eps, φ5 ≤ −eps, φ6 ≤ −eps. (11)

Then the region on the 2D C-surface in Figure 7 that is defined
by the boundary inequality set in eq. (11) is region 1. That is,
a point Q is guaranteed to lie in region 1 if it satisfies all in-
equalities in eq. (11). We note that, in general, the bounded

Chen and Zelinsky / Programming by Demonstration 13

< 0 > 0 > 0< 0 > 0< 0

> 0

< 0

< 0

> 0

< 0

> 0

φ = 05

φ = 06

φ = 04
1 2

34

2
demonstrated

path

point set 1

point set

3
set

point

γ

γ

γ

γ

γ

γ
5

2

6

3

4

1

φ = 0 φ = 0 φ = 01 2 3

Fig. 7. Example of how demonstrated points determine a set of valid bounded subregions.

region on ci cannot be specified by a single boundary inequal-
ity set. We denote as a bounded subregion the region defined
by a single boundary inequality set, i.e., region 1 in Figure 7
is a bounded subregion. Then, we identify that the bounded
region of a C-surface can be specified as a union of bounded
subregions. For example, the bounded region in Figure 7 is
given by the union of bounded subregions 1, 2, and 3. A point
Q can then be tested to see if it lies within the bounded re-
gion by testing to see if it lies within any of its component
bounded subregions. The question, then, is how to select the
set of bounded subregions that make up our bounded region.
Note that not all bounded subregions that can be generated for
a certain set of boundary equations will be obstacle-free. For
example, region 4 in Figure 7 is a valid bounded subregion,
however region 4 is not obstacle-free.

Our solution is to use the set of demonstration points on
the C-surface to determine what bounded subregions are valid.
Let µ be a possible bounded subregion for ci , and ϒ be the
boundary inequality set that defines µ. Then we say that µ
is a valid bounded subregion if there exists a point in the
demonstration set on ci which satisfies all inequalities in ϒ .
For example, in Figure 7 the demonstrated points in point set
1 show region 1 to be a valid bounded subregion because they
satisfy all inequalities in eq. (11). Similarly, demonstration
point sets 2 and 3 show regions 2 and 3 as valid bounded sub-
regions. Region 4 is not included as a valid bounded subregion
because it does not contain any demonstrated points. This ap-
proach is a conservative solution because we may miss some
valid bounded subregions in which no demonstrated points

exist. However, we take this approach because it guarantees
that we do not generate Q lying in bounded subregions that
define obstacles.

We now present some examples of the likely-free region
generation process. We show in Figure 8 the points in four
likely-free regions that were generated on c5, the C-surface
of state 8 in the task. The likely-free regions shown were
grown from boundary segments in state 7 (Figure 8(a)), in
state 38 (Figure 8(b)), in state 9 (Figure 8(c)), and in state 54
(Figure 8(d)). Note that, for clarity, we present only a subset
of all points generated for each likely-free region. There are
five main things to note about the spindle configurations in
Figure 8.

(1) All configurations correspond to points in C-space that
have been generated a distance eps away from bound-
aries on c5. For example, in Figure 8(c) all configura-
tions maintain some distance between the base of the
spindle and the lower support.

(2) There exist, for all boundary segments in Figure 8, pre-
cise contacts between the spindle head and the rebate
in the top support. This results because we enforced
condition that points Q were generated lying exactly
on a ci .

(3) All configurations lie in a region generally close to the
boundary state. Recall that configurations lying “far”
from a boundary state are undesirable because they may
violate unknown boundaries on a ci . Note in Figure 8

14 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May 2003

(a) (b)

(c) (d)

Fig. 8. Spindle configurations generated for a number of likely-free regions in state 8. (a), (b), (c) and (d) correspond to
likely-free regions generated from boundary segments in states 7, 38, 9, and 54, respectively.

how we do not produce such configurations. This is a
consequence of limiting points generated on c5 to lie a
distance less than md from boundary segments.

(4) All configurations correspond to points in C-space that
do not violate known boundaries. For example, note
how in Figure 8(c) there exists no configuration where
the bottom of the spindle passes into the lower sup-
port, even though such configurations are “close” to our
boundary segment in state 9. This occurs because our
method only generates points for a ci on the obstacle-
free side of known boundaries.

(5) Finally, note how each of the bounded regions in Fig-
ure 8 define, by themselves, only a small obstacle-free
region on c5, but that together they provide an obstacle-
free region covering most of the area of interest on this
C-surface.

4.4. Creating Interior Segments

We know that, in general, a number of demonstrated paths
will exist on our C-surface ci ; we have denoted the j th demon-
strated path on ci as ûij . Our aim here is to derive, for each ûij ,
an interior segment. There are two requirements on interior
segments to which ûij do not comply: (i) points in ûij will
not lie exactly on ci (i.e., work in Section 3 derived equations
that best fit the data points); and (ii) the start and end points
in ûij do not lie exactly on the boundaries of ci . We achieve
(i) by projecting points in ûij onto ci using the same simple
optimization process as described in Section 4.2. We achieve

(ii) by projecting the start and end points of ûij simultaneously
onto ci and the relevant boundary C-surface.

In Figure 9 we show an example of the interior segment
generation process. The figure shows three interior segments
that were produced on c5. An interior segment is shown that
passes through state 8: between states 7 and 27 in Figure 9(a),
between states 27 and 38 in Figure 9(b), and between states
38 and 54 in Figure 9(c). There are three things to note about
the spindle configurations in each interior segment.

(1) There exist precise contacts between the spindle head
and the rebate in the top support. Precise contacts re-
sult here because we projected points in raw interior
segments to lie exactly on c5.

(2) All configurations (except the start and end configura-
tions) in each interior segment correspond to points on
c5 that lie within known boundaries. As such, the inte-
rior segments shown do not accidentally cause spindle-
support collisions that would see the assembly move
into an incorrect state.

(3) The start and end configurations of each interior seg-
ment lie exactly in boundary states to state 8. For ex-
ample, the start and end configurations in Figure 9(c)
correspond to points lying exactly on the C-surfaces of
state 38 and 54. Start and end configurations lying in
boundary states result because we projected start and
end points of raw interior segments onto the C-surfaces
of boundary states to state 8.

Chen and Zelinsky / Programming by Demonstration 15

(a) (b)

(c)

Fig. 9. Three interior segments determined for state 8. The interior segments were derived from paths demonstrated in state 8,
i.e., from demonstration 4 (7-8-27) in (a), from demonstration 2 (27-8-38) in (b), and from demonstration 1 (38-8-54) in (c).

4.5. Creating a Connectivity Graph

The previous two sections have been devoted to generating
points on our C-surface ci . Two types of points were gener-
ated: points in likely-free regions, and points in interior seg-
ments. We show in Figure 10 a possible outcome of the point
generation process for a simple 2D planar ci . The unshaded
region in the figure corresponds to the bounded region of our
2D C-surface. Three likely-free regions on our bounded re-
gion have been identified (labeled A, B, and C). In addition,
two interior segments (labeled η1 and η2) were also generated.
Our aim in this section is to create a graph K that represents
the connectivity between all generated points on a ci . For ex-
ample, in our example in Figure 10, we wish to create a K that
represents the connectivity between all points lying in likely-
free regions A, B, and C and interior segments η1 and η2. Such
a graph should have a node to represent each point in a likely-
free region or interior segment. It should have arcs existing
between nodes whose points are connected by an obstacle-
free path. In addition, we assign to each arc in the graph a
value equal to the cost of traversing the obstacle-free path it
represents. We construct this graph K in three steps: (i) we
create a graph L representing the connectivity between points
in likely-free regions; (ii) we create a graph D representing
the connectivity between points in interior segments; and (iii)
we combine graphs L and D into K.

4.5.1. Creating L

We first create a point set consisting of all points in all likely-
free regions on ci . The nodes in L are created on a one-to-one
basis with points in the point set. To construct arcs in L we

must determine two things for each pair of points in the point
set:

(a) if the points are connected;

(b) the cost of traversing between connected points.

We say that two points Q1 and Q2 in the point set are connected
if two conditions are satisfied. First, that the straight-line path
between Q1 and Q2 is obstacle-free, i.e., that every point on
such a line lies within the bounded region of the C-surface. For
example, points Q1 and Q2 in Figure 10 have a straight-line
path between them that lies fully inside the bounded region.
Secondly, that the distance between Q1 and Q2 does not ex-
ceed a “maximum-connected-distance” parameter mcd_l. We
apply the second condition for the following reasons.

(1) Note that our point set will consist of points from dis-
tinct likely-free regions. We do not want to connect
points in likely-free regions that lie far apart, e.g., be-
tween points in likely-free regions A and C in Figure 10.
Using this approach we are less likely to connect points
on ci between which an unknown boundary exists.

(2) Intermediate points on the straight line between Q1 and
Q2 will not in general lie exactly on the C-surface due
to its curvature (eqs. (5) and (6) are not linear in the
parameters of C-space). However, if Q1 and Q2 do not
lie too far apart, then intermediate points will lie close
enough to the C-surface for the purpose of checking
whether they are obstacle-free.

16 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May 2003

η1

2η
Q

D

2

3

4

C

1

A 1

Q2
B

1R

R2

Fig. 10. Example of points generated by our method for a simple, planar C-surface.

(3) Applying such a condition is advantageous from a com-
putational point of view. The number of points to be
tested for connection increases rapidly as the allowed
distance between the points increases.

(4) Finally, testing for connectivity only between points
lying a distance less than mcd_l apart does not really
detract from the end performance of our method. That
is, points lying far apart that really should be connected,
(e.g., those existing in the same, or overlapping, likely-
free regions), will be connected efficiently at the final
stage of the process; in general, they will be connected
by a path that passes through a sequence of intermediate
points, where intermediate points are separated by a
distance of less than mcd_l.

Our second requirement for creating the arcs in L was (b)
to determine their cost. We denote as #1 and #2 the nodes
in L that represent points Q1 and Q2, and as ϑ the arc in L
that connects #1 and #2. Then we calculate the cost of ϑ as
the distance between Q1 and Q2. Distance is the appropriate
measure of cost here, since we desire that a minimum cost
path in the final connectivity graph K represents the shortest
distance path on our C-surface.

4.5.2. Creating D

We create D in two steps:

(i) create a distinct connectivity graph for each interior
segment on ci (e.g., distinct connectivity graphs for η1

and η2 in Figure 10);

(ii) combine graphs constructed in (i) into D.

Step (i) is straightforward because the connectivity of points
in any interior segment is known, i.e., apart from the start and
end points, each point is connected to two other points, the
previous and following points in the path. We create a graph
for each interior segment with nodes and arcs that reflect this
connectivity. We assign as costs to the arcs in the graph, the
distance between each sequential point pair in the interior
segment.

In step (ii) we must combine the graphs created in step
(i) into a single graph D. The process of combining these
graphs means deciding if and where interior segments on ci
intersect, That is, we should create a connecting arc between
two graphs D1 and D2 derived in step (i) when the interior
segments η1 and η2 represented by these graphs are found to
intersect, e.g., at point D in Figure 10. We say that η1 and η2

intersect at points R1 (in η1) and R2 (in η2), when the distance
between R1 and R2 is less than a parameter mcd_d. If this
is the case, an arc is connected between the node in D1 that
represents R1 and the node in D2 that represents R2. Then D
is created by repeating this process for every possible R1 and
R2 in our set of interior segments on ci .

4.5.3. Creating and Searching K

We create K by combining graphs L and D. The idea is to
connect points in interior segments with those in likely-free
regions where an interior segment passes through a likely-free
region (e.g., along segments labeled 1,2,3 and 4 in Figure 10).
We create a K that represents such connectivity as follows.
For each point R in each interior segment η, find a point Q
in any likely-free region that lies within a distance mcd_l
away. If such Q exist, then for each Q found, create an arc
between the node that represents point R in D, and the node

Chen and Zelinsky / Programming by Demonstration 17

that represents point Q in L. Set the cost of the arc to the
distance between the points R and Q.

Once K is achieved, then the solution to our problem of
deriving a noise-free control command uij is straightforward.
K represents the connectivity of obstacle-free points on ci .
Two of the nodes in K are guaranteed to represent the start and
end via-points of ûij . Then to derive uij , we simply search in
K for the minimum cost path between the nodes that represent
the start and end via-points of ûij . Each node in this minimum
cost path will represent a distinct point on ci , with uij formed
as the sequence of these distinct points.

4.6. Setting Parameters to Appropriate Values

The method we have presented for determining a uij is based
around five parameters, i.e., md, dst, eps, mcd_l and mcd_d.
A key issue in ensuring good performance from our method
regards setting these parameters to appropriate values. To this
end, we now introduce a number of simple metrics that can
be used to set parameter values. These metrics were used to
determine parameter values for experiments in this paper.

Parameter md is the most important parameter in our
method. Recall that the value of md determines how large
a likely-free region is grown. A balance must be struck in set-
ting md between the benefit of large likely-free regions for
path generation purposes, and the risk of generating points
that lie on the non-obstacle-free side of unknown boundaries.
We note that a good gage of the value of md can be made
by looking at the length of the boundary segment from which
the likely-free region is grown. The probability of an unknown
boundary passing close to our boundary segment, but not pass-
ing through it, decreases as the length of the boundary segment
increases. That is, the larger the boundary segment, the larger
md should be made. For our experiments in this section md
for each boundary segment was set to a value of the length of
the boundary segment multiplied by a constant value three.
We found empirically that the value three provided conserva-
tively sized likely-free regions that were still large enough to
be useful for path planning purposes. Once md is determined,
parameter dst is also determined. Recall that we set the value
of this parameter as a random value between md and zero.

The purpose of parameter eps is to ensure we do not gener-
ate points in likely-free regions close to, or exactly on, known
boundaries to a C-surface. The reason for this approach was
because the regression analysis of the previous section pro-
vided only an estimate of the true equation for each boundary
on our C-surface, i.e., the equation will contain some error.
A good estimate of the amount of error is provided by the
root mean squared error (RMSE), a metric often calculated
in regression analysis for determining the “goodness of fit”.
Essentially the RMSE is the average distance between a fitted
surface and the raw data points from which the surface was re-
gressed. A RMSE value can be determined for each boundary
on our C-surface. Then, for our experiments in this section,

we set eps equal to three times the RMSE value determined
for a particular boundary when growing a likely-free region
from that boundary. Three times the RMSE will encompass
99.8 percent of the raw data points if the error in the data
points is a normally distributed random variable, and so pro-
vides a conservative distance away from the boundary from
which points in our likely-free region can be generated.

Parameter mcd_l had the purpose of deciding when two
points in the same, or distinct, likely-free regions should be
tested for connection. Recall that we did not want to connect
points in likely-free regions that lay far apart, i.e., because
of the risk that an unknown boundary to the C-surface may
exist between them. Our aim was to connect points in the same
likely-free region, or points in distinct likely-free regions lying
close together or intersecting. Then, a value for mcd_l for a
C-surface that we found worked well was 5 percent of the
average size of likely-free regions on the C-surface, i.e., 0.05
times the average value of md for the likely-free regions on
the C-surface.

Parameter mcd_d was used to determine if two interior
segments on a C-surface intersected. The value we used for
this parameter was the maximum distance between any two
sequential points in an interior segment on the C-surface. That
is, even if interior segments happened to intersect where se-
quential points in one of them lay the maximum distance apart,
the method would still correctly identify the intersection.

4.7. Results

With a method for determining a value for each parameter in
our approach, we can now present the results for deriving a
set of uij for the spindle-assembly task. For the experiments
reported on in this paper, we derived a u(t) for every ûij in
the demonstration set. A full set of results for these experi-
ments can be found in Chen (2001). However, in this paper,
we show only a subset of the results presented there. We show
(in Table 2) the results of deriving uij for the ûij existing in
demonstration 1 and segments of demonstrations 2 and 5. Note
that we have selected for presentation in Table 2 a subset of
results from these experiments that will allow us to draw out,
in a more compact discussion, all the important conclusions
identified for the method in Chen (2001).

Table 2 presents the experimental results in five columns.
Column 1 shows the uij for which the result was obtained.
Columns 2 and 3 indicate the state number in the HDS, and
the C-surface ci , on which each particular uij was derived.
Columns 4 and 5 show the two important results of the ex-
periments. First (in column 4) how much noise removal did
uij achieve, and second (in column 5) did uij really define
an obstacle-free path? Regarding column 5, noise removal
means that the derived path encoded a more direct route than
the original demonstrated path ûij . In some cases, derived uij
achieved significant noise removal compared to the demon-
strated path, e.g., u4,1, u5,1, u7,1, u1,2, etc. For these cases we
have entered a “Yes” in column 5 of the table.

18 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May 2003

Table 2. Results of Our u(t)(t)(t) Derivation Method For Demonstrations 1 and 3 of the
Spindle-Assembly Task

State Noise Obstacle
u(t) Number ci Removed? Free?

Demonstration 1
u1,1 2 Cfree No noise Yes
u2,1 20 c2 No noise Yes
u3,1 22 c3 No noise Yes
u4,1 21 c4 Yes Yes
u5,1 24 c5 Yes Yes
u4,2 21 c4 No noise Yes
u6,1 27 c6 No noise Yes
u7,1 8 c7 Yes Yes
u8,1 38 c8 No noise Yes
u7,2 8 c7 No noise Yes
u9,1 54 c9 Yes Yes
u10,1 47 c10 No noise Yes

Demonstration 2
u1,2 2 Cfree Yes Yes
u11,1 5 c11 Yes Yes
u12,1 75 c12 No noise Yes
u13,1 6 c13 No noise Yes
u14,1 7 c14 No Yes
u7,3 8 c7 Yes Yes
u15,1 38 c15 No noise Yes
u7,4 8 c7 Yes Yes
u16,1 9 c16 No Yes
...

Demonstration 5
u28,1 30 c28 No Yes
u32,1 56 c32 No Yes

Other demonstrated uij more or less followed exactly the
demonstrated path. In some of these cases this was sensible,
since the demonstrated path was noise-free. We have labeled
these cases in the table with “No noise”, e.g., u1,1, u2,1, u3,1,
u4,2, etc. In the remainder of cases, the demonstrated path
did contain noise, however the derived uij still followed the
demonstrated path. We have labeled these cases in column
5 of the table with a “No”, e.g., u14,1, u16,1, u28,1 and u32,1.
Our main interest here is with those uij labeled in column 5
with a Yes or a No; i.e., did our method remove noise if it
existed? Notice how noise has been removed for uij derived
in states that (a) were visited often in the demonstration, and
(b) correspond to C-surfaces that have many boundary C-
surfaces.5 States 2, 21, 8 and 54 each have properties (a) and
(b). Notice then how the uij derived for noisy demonstrated
paths in these states, i.e., u4,1, u7,1, u9,1, u1,2, etc., have each
had noise successfully removed. In contrast, Table 2 shows

5. Recall our definition of a boundary C-surface in Section 4.2.

that noise was not generally removed for uij derived in states
visited only once in the demonstration set, e.g., states 30 and
56. Neither was it removed for states that were visited more
than once, but that had C-surfaces with only a small number
of boundary C-surfaces, e.g., states 9 and 7 (c16 has only two
boundary C-surfaces, the C-surfaces of states 28 and 65, while
c16 had no boundary states). The dependence of our method
on properties (a) and (b) is a logical outcome, since the C-
surfaces with these properties will contain a larger number of
both interior segments and likely-free regions. In these cases,
the likelihood of finding a uij that encodes a more direct route
on the C-surface than the demonstrated path is greater. That
is, where our method has sufficient “information” on a C-
surface, noise will be removed when deriving uij . Otherwise,
the method will revert to using the original demonstrated path,
even if it contained noise.

The second important question regarding each uij shown
in Table 2 was whether it defined an obstacle-free path.

Chen and Zelinsky / Programming by Demonstration 19

(a) (b)

(c)

Fig. 11. An example of the process showing (a) an original demonstrated path containing noise, (b) the noise-free path derived
by our method, and (c) the shortest length path.

Remember that our method derives uij that are likely obstacle-
free. We show in column 6 of Table 2 the result for each uij
in this regard. A key finding in these experiments was that
each uij did in fact define an obstacle-free path. We have
seen that three distinct types of uij exist in Table 2. First, uij
derived where no noise existed. This type of uij follows a
demonstrated path, and we know that demonstrated paths are
obstacle-free. Secondly, uij derived in states that were visited
often in the demonstration, and had many boundary states. It
would be expected that uij for this type of state are obstacle-
free. The presence of many boundary states means that likely-
free regions will generally cover the C-surface well in regions
where we wish to generate uij . For example, for state 8 we
know that boundary segments exist in states 7, 27, 33, 9, 38
and 54, and we saw in Figure 8 how the likely-free regions
generated from these segments “cover” the C-surface of state
8 very well. Then for this type of uij , if the demonstrated
path on which a uij is based does contain noise, the good
coverage of points of the C-surface means that an alternate,
“noise-free” path for uij will most likely be found. The third
and final type of uij in Table 2 is those where noise existed but
was not removed. We noted how our method reverted to using
the underlying demonstrated path for this type of uij . That is,
although these uij contain noise, they follow a demonstrated
path, and will therefore be obstacle-free.

We have talked in general about the results of our method
for deriving uij . To illustrate more concretely how the method
worked in practice, we now provide the derivation of u1,7 as
an example. u1,7 encodes a path in state 8 between states 27

and 38. We show in Figure 11(a) how û1,7 contains significant
noise in that it is overly long. The demonstrator has moved
the base of the spindle body toward the back of the rebate in
the bottom support, only to then reverse this motion to enter
state 38. This is typical of the type of noise introduced into
a demonstration by a human. The uij derived for û1,7 by our
method is shown in Figure 11(b). Note how this path follows a
much more efficient route than the original demonstrated path.
In fact, the derived uij encodes a path that is just over half the
length of the original demonstrated path. As an interesting
comparison, we show in Figure 11(c) the path resulting by
simply connecting the start and end points of û1,7 by a straight
line (in C-space) path. Note how this path is not valid since it
results in the spindle body passing-into the right support.

We have seen how for uij our method will remove noise if
sufficient information on a C-surface exists. If sufficient infor-
mation does not exist, then it reverts to using the underlying
demonstrated path. This type of outcome is attractive since,
as we have seen, it tends to produce uij that are obstacle-free.
An important influence on achieving this outcome was the
conservative value we set for parameter md. Recall how we
chose in Section 4.6 a metric that resulted in conservative
values for md. Conservative values of md mean our method
will only remove noise if sufficient information exists. The
alternative approach of setting md aggressively may result in
an increased number of demonstrated uij where noise is suc-
cessfully removed, e.g., noise-free paths may be derived for
u14,1, u16,1, u28,1, etc. However, the risk with such an approach
is that uij can then become non-obstacle-free, since points in

20 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May 2003

likely-free regions would be generated far from their bound-
ary segments. We prefer, and recommend, the approach of
setting md conservatively. In this way, the method has the
tendency to produce uij that are obstacle-free, and will only
remove noise in cases where it has sufficient information to
do so.

Our approach has been presented for PbD of a planar 2D
task. However, we would like to reinforce that the approach
is applicable to higher dimensions, including full 3D 6-DOF
tasks. This result stems from the likely-free region generation
process. Demonstrated points on one C-surface are used to
generate points on another of dimension one higher. No built
in limitation exists in the method on the dimension of these
C-surfaces.

5. Conclusion

We have introduced a new method for coping with demon-
stration suboptimality in PbD. The first part of the approach
was to derive an explicit and quantitative representation of
a task geometry from demonstration. The step is a logical
one because it provides a basis for making sensible decisions
about which human actions represent noise, and which repre-
sent skillful execution of the task. Results have shown that a
valid representation of task geometry could be obtained. The
essential result was that sufficient information in the demon-
stration was required for the method to determine an accurate
representation. The second part of this paper was concerned
with deriving noise-free paths from noisy demonstrated paths.
To achieve this end, we presented a path planning technique
that does not require a full knowledge of C-space, but rather
uses a partial knowledge of C-space and a set of known-
obstacle-free, but noisy, paths to determine a more optimal
set of paths. An important part of the work was that paths
derived are not guaranteed to be obstacle-free. However, we
have shown that with conservative tuning of parameter values,
the method would tend to revert back to using the original sub-
optimal paths in regions where sufficient information was not
available, while still providing a useful set of more-optimized
control commands for the robot than those provided directly
by the demonstration.

References

Asada, H. May 1990. Teaching and learning of compliance us-
ing neural nets: Representation and generalization to non-
linear compliance. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pp. 1237–
1244.

Asada, H., and Izumi, H. 1989. Automatic program generation
from teaching data for the hybrid control of robots. In IEEE
Transactions on Robotics and Automation 5:163–173.

Atkeson, C. G., and Schaal, S. May 1997. Learning tasks

from a single demonstration. In Proceedings of the 1997
IEEE International Conference on Robotics and Automa-
tion, pp. 1706–1712.

Brockett, R. W. 1993. Hybrid models for motion control sys-
tems. In H. L. Trentelman and J. C. Willems, eds, Essays on
Control: Perspectives in the Theory and Its Applications,
Birkhauser, Boston, MA, chapter 2, pp. 29–5.

Chen, J. 2001. Coping with demonstration suboptimality in
robot programming by demonstration. Unpublished Ph.D.
thesis, Department of Engineering, FEIT, Australian Na-
tional University, Canberra, Australia.

Chen, J. R., and McCarragher, B. J. April 2000. Program-
ming by demonstration: constructing task level plans in a
hybrid dynamic framework. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, San
Francisco, CA, pp. 1402–1407.

Chen, J. R., and Zelinsky, A. May 2001. Generating a con-
figuration space representation for assembly tasks from
demonstration. In Proceedings of the IEEE International
Conference on Robotics and Automation, Seoul, Korea.

Delson, N., and West, H. 1996. Robot programming by hu-
man demonstration: Adaptation and inconsistency in con-
strained motion. In Proceedings of the 1996 IEEE Inter-
national Conference on Robotics and Automation.

Friedrich, H., Kaiser, M., and Dillmann, R. July 1995. Ob-
taining good performance from a bad teacher. In Work-
shop: Programming by Demonstration vs. Learning from
Examples; International Conference on Machine Learn-
ing, CA.

Hannaford, B., and Lee, P. 1991. Hidden Markov model anal-
ysis of force/torque information in telemanipulation. In-
ternational Journal of Robotics Research 10(5):528–539.

Hovland, G. E., and McCarragher, B. J. September 1997.
Combining force and position measurements for the mod-
eling of robotic assembly. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS’97), Grenoble, France, pp. 655–660.

Ikeuchi, K., Kawade, M., and Suehiro, T. 1993. Toward as-
sembly plan from observation, task recognition with pla-
nar, curved and mechanical contacts. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 2294–2301.

Kaiser, M., and Dillman, R. April 1996. Building elementary
skills from human demonstration. In Proceedings of the
IEEE International Conference on Robotics and Automa-
tion, pp. 2700–2705.

Koeppe, R., and Hirzinger, G. 2000. A signal-based approach
to localization and navigation of autonomous compliant
motion. In Proceedings of the 2000 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems.

Latombe, J.-C. 1991. Robot Motion Planning, Kluwer Aca-
demic, Dordrecht.

Latombe, J., Kavraki, L. E., Svestka, P., and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in

Chen and Zelinsky / Programming by Demonstration 21

high-dimensional configuration spaces. IEEE Transac-
tions on Robotics and Automation 12(4):566–580.

Lozano-Perez, T. 1983. Spatial planning: A configura-
tion space approach. IEEE Transactions on Computing
C32:108–120.

McCarragher, B. J. May 1994. Force sensing from human
demonstration using a hybrid dynamical model and quali-
tative reasoning. In Proceedings of the IEEE International
Conference on Robotics and Automation, San Diego, CA,
Vol. 1, pp. 557–563.

McCarragher, B. J. 1996. Task primitives for the discrete event
modeling and control of 6-DOF assembly tasks. In IEEE
Transactions on Robotics and Automation 12(2):280–289.

McCarragher, B. J., and Asada, H. 1995. The discrete event
modeling and trajectory planning of robotic assembly
tasks. Journal of Dynamic Systems, Measurements and
Control 117(3):394–400.

Nechyba, M. C., and Xu, Y. April 1996. On the fidelity of skill
models. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation, Minneapolis, MN.

Pomerleau, D. A. 1991. Efficient training of artificial neural
networks for autonomous navigation. Neural Computation
3(1):88–97.

Raibert, M. H., and Craig, J. J. 1981. Hybrid position/force
control of manipulators. Journal of Dynamic Systems,
Measurement, and Control 102/127:126–133.

Skubic, M., and Volz, R. A. 1996. Identifying contact forma-
tions from sensory patterns and its applicability to robot
programming by demonstration. In Proceedings of the
1996 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 458–464.

Tso, S. K., and Liu, K. P. April 1997. Demonstrated trajec-
tory selection by hidden Markov model. In Proceedings of
the International Conference on Robotics and Automation,
pp. 2713–2718, Albuquerque, NM.

Witvrouw, W., Wang, Q., De Schutter, J., and Graves, S. April
1996. Derivation of compliant motion programs based on
human demonstration. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pp. 2616–
2621.

