MDP | \( R:S \to \Re \) |
NMRDP | \(R:S^* \to \Re\) |
MDP | \( \pi :S \to A \) |
NMRDP | \( \pi :S^* \to A\) |
MDP | \( \pi : S \to A \) |
NMRDP | \( \pi : S^* \to A\) |
\( V(\pi) = \lim_{n\rightarrow\infty} E \bigg{[} \sum_{i=0}^{n} \beta^{i} R(\Gamma_i) \mid \pi, \Gamma_{0} = s_{0} \bigg{]} \) |
\(V(\pi) = \lim_{n\rightarrow\infty} E \bigg{[} \sum_{i=0}^{n} \beta^{i} R(\Gamma(i)) \mid \pi, \Gamma_{0} = s_{0} \bigg{]}\) |
\(\pltl\) | Past-Looking Linear Temporal Logic |
\(\xfltl\) | Fragment of Forward-Looking Linear Temporal Logic with One Uninterpreted Operator |
\(\mxfltl\) | New Forward-Looking Linear Temporal Logic with Multiple Uninterpreted Operators |
prg\(_\$(\top,\Gamma_i,\$)\) | \(=_{df}\) | \(\top\) |
prg\(_\$(\bot,\Gamma_i,\$)\) | \(=_{df}\) | \(\bot\) |
prg\(_\$(b,\Gamma_i,p)\) | \(=_{df}\) | \(\top \) iff \(p \in \Gamma_i\) |
prg\(_\$(b,\Gamma_i,f_1 \wedge f_2)\) | \(=_{df}\) | prg\(_\$(b,\Gamma_i,f_1) \wedge\) prg\(_\$(b,\Gamma_i,f_2)\) |
prg\(_\$(b,\Gamma_i,f_1 \vee f_2)\) | \(=_{df}\) | prg\(_\$(b,\Gamma_i,f_1) \vee\) prg\(_\$(b,\Gamma_i,f_2)\) |
prg\(_\$(b,\Gamma_i,\nxt f)\) | \(=_{df}\) | \(f\) |
prg\(_\$(b,\Gamma_i,f_{1} \fut f_{2})\) | \(=_{df}\) | prg\(_\$(b,\Gamma_i,f_{2}) \vee (\)prg\(_\$(b,\Gamma_i,f_{1}) \wedge f_{1} \fut f_{2}) \) |
Rew\((\Gamma_i,f) \) | \(=\) | \(\top\) iff prg\(_{\$}(\bot,\Gamma_i,f)=\bot\) |
\(\dollar\)prg\((\Gamma_i,f)\) | \(=\) | prg\(_{\$}(\)Rew\((\Gamma_i,f),\Gamma_i,f)\) |
\(\mathcal{B}^*_f \) | \(=_{df}\) | \( \{\mathcal{B} \;|\; \models_{\mathcal{B}} f \}\) |
\(\mathcal{B}_f[0]\) | \(=\) | \(\bigcap_{\mathcal{B} \in \mathcal{B}^*_f} \mathcal{B}[0] \) |
\(\mathcal{B}_f[i]\) | \(=\) | \(\bigcap_{\mathcal{B} \in \mathcal{B}^*_f, \mathcal{B}[0]=\mathcal{B}_f[0],..,B[i-1]=\mathcal{B}_f[i-1]} \mathcal{B}[i] \) |
\(M \to \$_i\) | letter-rule | |
\(F_j \land \fbx (\$_j \lor \$_i) \;\; \{j < i\}\) | complement | |
\(F_j \land F_k \land \fbx ( (\$_j \land \$_k) \to \$_i ) \;\; \{j < k < i\} \) | intersection | |
\(F_j \land F_k \land \fbx ( (\$_j \lor \$_k) \to\ \$_i ) \;\; \{j < k < i\}\) | union | |
\(F_i \land F_{i+1} \land \ldots \land F_n \land \fbx (\$_n \to \) | ||
\( ( \nxt (F_{n+1}\land F_{n+2}\land \ldots \land F_{n+m} ) ) )\) | concatenation | |
\(F_i \land F_{i+1}\land \ldots \land F_n \land \fbx (\$_n \to \) | ||
\((\$_{n+1} \land \nxt (F_i\land F_{i+1}\land \ldots\land F_n) ))\) | Closure |