Cost-Optimal Planning using Weighted MaxSAT

Nathan Robinson’, Charles Gretton’, Duc-Nghia Pham', Abdul Sattar'
T ATOMIC Project, Queensland Research Lab, NICTA and
Institute for Integrated and Intelligent Systems, Griffith University, QLD, Australia
{nathan.robinson,duc-nghia.pham,abdul.sattar } @nicta.com.au
¥ School of Computer Science, University of Birmingham
c.gretton @cs.bham.ac.uk

Abstract

We consider the problem of computing optimal plans for
propositional planning problems with action costs. In the
spirit of leveraging advances in general-purpose automated
reasoning for that setting, we develop an approach that oper-
ates by solving a sequence of partial weighted MaxSAT prob-
lems, each of which corresponds to a step-bounded variant
of the problem at hand. Our approach is the first SAT-based
system in which a proof of cost optimality is obtained using a
MaxSAT procedure. It is also the first system of this kind to
incorporate an admissible planning heuristic. We perform a
detailed empirical evaluation of our work using benchmarks
from a number of International Planning Competitions.

Introduction

Recently there have been significant advances in the direc-
tion of optimal planning procedures that operate by making
multiple queries to a decision procedure, usually a Boolean
SAT procedure. For example, the work of (Hoffmann et
al. 2007) answers a key challenge from (Kautz 2006) by
demonstrating how existing SAT-based planning techniques
can be made effective solution procedures for fixed-horizon
planning with metric resource constraints. In the same vein,
Russell & Holden (2010) and Giunchiglia & Maratea (2007)
develop optimal SAT-based procedures for net-benefit plan-
ning in fixed-horizon problems. In this setting actions have
costs and goal utilities can be interdependent. Moreover,
in the direction of improving the scalability and efficiency
of SAT-based approaches in step-optimal (and indeed fixed-
horizon) planning, (Robinson ef al. 2009) presents an en-
coding of step-bounded planning problems that shows sig-
nificant performance gains over previous results. Large per-
formance gains have also been demonstrated where efficient
and sophisticated query strategies are employed (Streeter &
Smith 2007; Rintanen 2004). Summarising, in the settings
of step-optimal and fixed-horizon planning, recent works
have demonstrated that SAT-based techniques inspired by
systems like BLACKBOX (Kautz & Selman 1999) continue
to dominate other approaches.

Considering the planning literature more generally, nu-
merous distinct criteria for plan optimality have been pro-
posed. These include: (1) Minimise makespan (a.k.a. step-
optimality); The objective is to find a plan of minimal length.
(2) Minimise plan cost; Each action has a numeric cost, a

plan’s cost is the sum of the costs of its constituent actions,
and an optimal plan has minimal cost. (3) Maximise net-
benefit; States (resp. actions) have rewards (resp. costs), and
an optimal plan is a sequence of actions executable from the
starting state that induces a behaviour of maximal utility —
These problems are sometimes called oversubscribed, and
were recently shown to be equivalent (using a compilation)
to the cost-optimising setting (Keyder & Geffner 2009). One
key observation to be made is that the above optimality cri-
teria are often conflicting. For example, a plan with minimal
makespan is not guaranteed to be cost- or utility-optimal. In-
deed, in the general case there is no link between the number
of plans steps (planning horizon) and plan quality.

Existing SAT-based planning procedures are limited to
makespan-optimal and fixed-horizon settings — i.e., either
the objective is to minimise the number of plan-steps, or
valid optimal solutions are constrained to be of, or less than,
a fixed length. Thus, their usefulness is limited in practice.
For example, optimal SAT-based planning procedures were
unable to participate at the International Planning Competi-
tion (IPC) in 2008 due to the adoption of a single optimi-
sation criteria (cost-optimality). This paper overcomes this
restriction, developing COS-P, the fist sound and complete
cost-optimal planning procedure based solely on a Boolean
SAT(isfiability) procedure. Thus, we open the door to lever-
aging SAT technology in planning settings with arbitrary op-
timisation criteria.

The remainder of this paper is organised as follows. We
first give an overview of optimal propositional planning
with action costs, delete relaxations of that problem, and
the partial weighted MaxSAT optimisation problem. We
then describe our approach in detail, developing compila-
tions to partial weighted MaxSAT of the fixed-horizon plan-
ning problem, and of the fixed horizon problem with a re-
laxed suffix. Following this we develop our novel MaxSAT
solution procedure PWM-RSAT. We then consider work
most related to our approach and empirically evaluate our
approach on planning benchmarks from a number of IPCs.
Finally we make concluding remarks and propose some of
the more interesting directions for future research.

Background and Notations
Propositional planning with action costs

A propositional planning problem with costs is a 5-tuple
II = (P, A, s,G,C). Here, P is a set of propositions that
characterise problem states; .4 is the set of actions that can
induce state transitions; so C P is the starting state; And
G C P is the set of propositions that characterise the goal.
The function C : A — R is a bounded cost function that
assigns a positive cost-value to each action. This value cor-
responds to the cost of executing the action.

Each action a € A is described in terms of its precondi-
tions pre(a) C P, positive effects effy(a) C P, and neg-
ative effects eff,(a) C P. An action a can be executed at
a state s C P when pre(a) C s. We write A(s) for the
set of actions that can be executed at state s — Formally,
A(s) = {ala € A,pre(a) C s}. When a € A(s) is ex-
ecuted at s the successive state is (s U eff, (a))\effs(a). Ac-
tions cannot both add and delete the same proposition —i.e.,
eff,(a) Neff,(a) = 0. A state s is a goal state iff G C s.

Usually any two actions a1, as € A are permitted to be
executed instantaneously in parallel at a state provided any
serial execution of the actions is valid and achieves an iden-
tical outcome. When two actions cannot be executed in par-
allel we say they conflict. Supposing non-conflicting actions
can be executed instantaneously in parallel, a plan 7 is a dis-
crete sequence of time-indexed sets of non-conflicting ac-
tions which, when applied to the start state, lead to a goal
state. We say a plan is serial (a.k.a. linear plan), denoted 7,
if each time-indexed set contains one action. Finally, where
Al is the set of actions at step i of 7 = [A!, A2, .., A"], the
cost of 7, written C(7), is:

h
C(m) =YY Cla)
i=1 ac A

A number of different conditions for plan optimality can
be defined. In particular, a plan is parallel step-optimal if no
shorter plan of the same parallel format exists. The defini-
tion for serial step-optimality is identical, but also respects
the condition that a valid plan has only one action executed
at each step. A plan 7* is cost-optimal if there is no plan 7
s.t. C(m) < C(7*). Finally, we draw the reader’s attention to
the fact that the definition of cost optimality is not dependent
on the plan format.

The relaxed planning problem

A delete relaxation II" of a planning problem I is an equiv-
alent problem in all respects except the definition of actions.
In particular, the set of actions A™ in IT* comprises the el-
ements a € A from II altered so that eff,(a) = 0. The re-
laxed problem has two key properties of interest here. First,
the cost of an optimal plan from any reachable state in IT
is greater than or equal to the cost of the optimal plan from
that state in IT". Consequently relaxed planning can yield a
useful admissible heuristic in search. For example, a best-
first search such as A* can be heuristically directed towards

'In practice this case is given a special semantics, the details of
which shall not be considered further here.

an optimal solution by using the costs of relaxed plans to ar-
range the priority queue. Second, although NP-hard to solve
optimally in general (Bylander 1994), in practice optimal so-
lutions to the relaxed problem IIT are more easily computed
than for II.

Partial weighted MaxSAT

A Boolean SAT problem is a decision problem, instances of
which are typically expressed as a CNF propositional for-
mula. A CNF corresponds to a conjunction over clauses,
each of which corresponds to a disjunction over literals. A
literal is either a proposition (i.e., Boolean variable symbol)
or its negation. Where |= denotes semantic entailment for
propositional logic, a solution associated with a formula ¢ is
an assignment (a.k.a. valuation) V of truth values to propo-
sitions with the property V = ¢.

A Boolean MaxSAT problem is an optimisation problem
related to SAT. In practice a problem instance is again typ-
ically expressed as a CNF, however the objective now is to
compute a valuation that maximises the number of satisfied
clauses. In detail, writing k € ¢ if « is a clause in formula
¢, and taking V = & to have numeric value 1 when valid,
and 0 otherwise, a solution V* to a MaxSAT problem has the

property:

V= arg max Z(V = k) (1)

KED

A weighted MaxSAT problem (Josep Argelic and, Manya,
& Planes 2008), denoted 1), is a MaxSAT problem where
each clause x € 1) has a bounded positive numerical weight
w(k). The optimal solution V* to a 1) satisfies the following
equation:

V* = arg max Z w(k)(V E k) (2)

KEY

Finally, the partial weighted MaxSAT problem (Fu & Ma-
lik 2006) is a variant of weighted MaxSAT that distinguishes
between hard and soft clauses. Only soft clauses are given
a weight. In these problems a solution is valid iff it satisfies
all hard clauses. Therefore we have a notion of satisfiabil-
ity. In particular, if the hard problem fragment of a partial
weighted MaxSAT formula is unsatisfiable, then we say the
formula is unsatisfiable. The definition of satisfiable follows
naturally. An optimal solution to a partial weighted MaxSAT
problem is an assignment V* that is both valid and satisfies
Equation 2.

COS-P

We now describe COS-P, our planner that operates by iter-
atively solving variants of n-step-bounded instances of the
problem at hand for successively larger n. Solutions to the
intermediate step-bounded instances are obtained by com-
piling them into equivalent partial weighted MaxSAT prob-
lems, and then using our own MaxSAT procedure PWM-
RSAT to compute their optimal solutions.

COS-P compiles and solves two variants, VARIANT-I
and VARIANT-II, of the intermediate instances. Those are

characterised in terms of their optimal solutions. Adopt-
ing the notation II,, for the n-step-bounded variant of II,
VARIANT-I admits optimal solutions that correspond to min-
imal cost plans for II,,. VARIANT-II admits optimal plans
with the following structure. Each has a prefix which cor-
responds to n sets of actions from II,,.> Plans can have an
arbitrary length suffix (including length 0) comprised of ac-
tions from the delete relaxation 1.

Both variants can be categorised as direct, constructive,
and tightly sound. They are direct because we have a
Boolean variable in the MaxSAT problem for every action
and state proposition at each plan step. They are constructive
because any satisfying model and its cost in the MaxSAT in-
stances corresponds to a plan and its cost in the source prob-
lem. Critically, our compilations are tightly sound, in the
sense that every plan with cost c in the source planning prob-
lem has a corresponding satisfying model of cost ¢ in the
MaxSAT encoding and vice versa. This permits two key ob-
servations about VARIANT-I and VARIANT-II. First, when
both variants yield an optimal solution, and both those solu-
tions have identical cost, then the solution to VARIANT-I is
a cost-optimal plan for II. Second, if IT is soluble, then there
exists some n for which the observation of global optimality
shall be made by COS-P. Finally, we have that COS-P is a
sound and complete optimal planning procedure for propo-
sitional problems with action costs.

For the remainder of this section we give the compilation
for VARTIANT-I and VARIANT-IL. In the following section
we describe the MaxSAT procedure PWM-RSAT that we
developed for use by COS-P.

Variant-I: bounded cost-optimal planning

We now describe a direct compilation of the bounded propo-
sitional planning problem with action costs to a partial
weighted MaxSAT formula . The source of our compi-
lation is the plangraph. This is an obvious choice because
reachability and neededness analysis performed during con-
struction of the plangraph yield important mutex constraints
between action and propositional variables (Blum & Furst
1997). Such constraints are not deduced independently
by modern SAT procedures such as RSAT2.02 (Rintanen
2008).

Below, we develop our compilation in terms of a list
of 8 axiom Schemata. Whereas the standard definition of
weighted MaxSAT imposes the restriction that weights are
positive, we find it convenient for the remainder of our paper
to admit negative weights. The first 7 capture the hard log-
ical planning constraints, and Schema 8 reflects the action
costs. Overall, the schemata we develop below make use of
the following propositional variables. For each action occur-
ring atastept = 0,..,n — 1 (excluding noop actions), we
have a variable a*. We define a fluent to be a state proposi-
tion whose truth value can be modified by action executions.
For each fluent occurring at step ¢ = 0, .., n we have a vari-
able p'. Also, we have make(p) = {ala € A,p € eff,(a)},
and break(p) = {ala € A, p € eff,(a)}. Lastly, below we

%i.e., an n-step plan prefix in the parallel format.

avoid annotating variables with their time index if it is clear
from the context.

1. Start state axioms (hard): A unit clause containing p°
for every p € s¢.

2. Goal axioms (hard): A unit clause containing p” for
every p € G.

3. Precondition and effect axioms (hard): For every ac-
tion a at each plan step ¢, we have clauses that require: (1)
The action implies its precondition, (2) The action implies
its positive effects, and (3) The action implies its negative
effects. , .

a — /\pGpre(a) p A
" = Npeerr (PN
t+1

t
a — /\peeffo(a) -p

4. Propositional mutex axioms (hard): For every pair of
mutex fluents p; and ps at step ¢, we have a clause:

—pi A —ph

5. Action mutex axioms (hard): For every pair of mutex
actions a; and as at step ¢, we have a clause:

—|at1 A —\atQ

6. At least one action axioms (hard): Where A? is the set
of actions at step ¢, we have a clause that requires at least
one action be executed at step ¢:

Vo

ate At

7. Frame axioms (hard): These constrain how the truth
values of fluents change over successive plan steps. For each
proposition pt,t > 0 we include the following clauses:

pt N (ptfl V. \/ atfl)
a€make(p)

‘pt N (‘ptfl V. \/ atfl)
acbreak(p)

8. Action cost axioms (soft): Finally, we have a set of soft
constraints for actions. In particular, for each action variable
a' such that C(a) > 0, we have a unit clause x; := {—a'}
and have w(r;) = —C(a).

Variant-II: n-step with a relaxed suffix

We describe a direct compilation of the problem II,, from
the previous section, along with the addition of a causal en-
coding of the delete relaxation, that we make available from
step n.> From hereon we refer to the latter as the relaxed
suffix.

Our encoding of the relaxed suffix is causal in the sense
developed in (Kautz, McAllester, & Selman 1996) for their
ground parallel causal encoding of propositional planning in
SAT. This requires additional variables to those developed
for VARIANT-I. In particular, for each fluent p and relaxed
action a € AT we have corresponding variables p* and

3In VARIANT-II constraints from axiom 2 (goal axioms) are
omitted from I1,,.

a*. That p; is true intuitively means: (1) That p?* was false
(see VARIANT-I), and (2) That p; € G, or pj' is the cause
of another fluent p;r in a relaxed suffix to the goal. That

at is true means that a is executed in the relaxed suffix.
We also require a set of causal link variables. These are
best introduced in terms of a recursively defined set S°° as
follows. For the base we take:

S0 = {K(pi,pj)la € At p; € pre(a),p; € effe(a;)}
and then make the definition:
Sl =8ty {K(pj,p0)IK(pj, o), KPR 1) € 5}

For each IC(p;, p;) € S°° we have a corresponding variable.
Intuitively, if IC(p;, p;) is true then we say that p; is the cause
of p; in the plan suffix.

VARIANT-II includes all schemata from VARIANT-I ex-
cept the goal axioms of Schema 2. In addition, VARIANT-II
uses the following Schemata.

9. Relaxed goal axioms (hard): For each fluent p € G
we assert that it is either achieved at the planning horizon n,
or using a relaxed action in A™T. This is expressed with a
clause:

pn Vi er

10. Relaxed fluent support axioms (hard): For each fluent

p we have a clause:

pt—=(\/ o)

a€make(p)

11. Causal link axioms (hard): For all fluents p;, taking
all @ € make(p;) and p; € PRE(a), we have the following

clause:
(pi Nat) — (0] vV K(p],p]))

This constraint asserts that if action a] is executed, then its

preconditions must be true at horizon n, or be supported by
some other action aj with py € eff, (az).

12. Causality implies cause and effect axiom (hard): For
each causal link variable /C(p;, p3) we have a clause:

K(pf,p3) — (0 Ap3)

13. Causal transitive closure axioms (hard): For each pair
of causal link variables K(p;, p3) and K(p3, p3) we have
a clause:

(K(pf,p3) AKX, pT)) — Kl ,pT)

14. Causal anti-reflexive axioms (hard): We assert that
for a valid relaxed plan, the causal relation between fluents
must exhibit irreflexivity. Hence, for each K(p™,pT) € S
we have a unit clause:

-K(pt,p™)

Intuitively, this clause asserts that a fluent in the re-
laxed suffix cannot support itself. For example, in
a simple logistics example the fluent at(p,l)™ can be
achieved by a pair of relaxed actions, Pickup® and
Drop™, regardless of the location of package p. In this
case, we have K(in-truck(¢, p)™, at(p,1)*) via the action

Drop(t,,p)*. Causal support for fluent in-truck(¢, p)™ is
then provided by K(at(p,!)T,in-truck(¢,p)™) via the ac-
tion Pickup(t,,p)*. Transitive closure on the causal links
then implies KC(at(p, 1), at(p,1)).

15. Only necessary relaxed fluent axioms (hard): For each
fluent p we have a constraint:

ﬁp+ vV ﬁpn

—
16. Relaxed action cost dominance axioms (hard): Let P
be a set of non-mutex fluents at horizon n. Relaxed action

aj is redundant in an optimal solution to a VARIANT-II in-

_
stance, if the fluents in P are true at horizon n and there
exists a relaxed action a3 such that:

pre(az)\?ig p1rf.:(al)\1_3>_> A
eff.(al)\P g eff,(ag)\P A\
cost(ag) < cost(ay)

N

For relaxed actigg a™ that is redugdant for P; and not
—

redundant for any P, where |P;| < |P;| we have a clause:*

(/\ p")——a®

peP,

17. Relaxed action cost axioms (soft): We have a set of
soft constraints for relaxed actions. In particular, for each
variable at such that C(a) > 0, we have a unit clause ; :=
{=a™} and have w(k;) = —C(a).

The schemata we have given thus far are theoretically suf-
ficient for our purpose. However, in a relaxed suffix most
causal links are not relevant to the relaxed cost of reaching
the goal from a particular state at horizon n. For example,
in a logistics problem, if a truck ¢ at location /; and needs to
be moved directly to location /o, then the fact that the truck
is at any other location should not support it being at [, —i.e.
—JC(at(L l3), at(t7 ZQ)), l3 7& ll.

The following schemata provide a number of layers that
actions and fluents in the relaxed suffix can be assigned to.
Fluents and actions are forced to occur as early in the set
of layers as possible and are only assigned to a layer if all
supporting actions and fluents occur at earlier layers. The or-
derings of fluents in the relaxed layers is used to restrict the
truth values of the causal link variables. The admissibility
of the heuristic estimate of the relaxed suffix is independent
of the number of relaxed layers.

We pick an horizon k > n and generate a copy a ™ of each
relaxed action a™ at each layer [l € {n, ...,k — 1} and a copy
pT! of each fluent pT at each layer [€ {n + 1,...,k}. We
also have an auxiliary variable auz(p*!) for each fluent p*
at each suffix layer n+1, ..., k. Auxiliary variable aux(p*?)
means that p is false at every layer in the relaxed suffix from
ntol.

18. Layered relaxed action axioms (hard): For each lay-
ered relaxed action a*! we have a clause:

4 . . D
In practise we limit | P; | to 2.

19. Layered relaxed actions only once axioms (hard): For
each relaxed action a™ and pair of layers I1, 1> € {n, ...,k —
1}, where [# I3, we have a clause:

_‘a+l1 \/ _‘a+l2

20. Layered relaxed action precondition axioms (hard):
For each layered relaxed action at!t we have a set of

clauses:
e AV

pEPRE(a) l2€{n,...,l1}
21. Layered relaxed action effect axioms (hard): For
each layered relaxed action a*'* and p € ADD(a) there is
a clause:

(a+l1 A p+) — \/ p+lz
loEn+1,...,01+1

22. Layered relaxed action as early as possible axioms
(hard): For each layered relaxed action att, where [; = n,
we have a clause:

at — \/ —p" Va"
PEPRE(a)
where [; > n, we have a clause:
atlev \/ auz(pt) v ath
PEPRE(a)

23. Auxiliary variable axioms (hard): For each auxiliary
variable aux(pt) there is a set of clauses:

auz(pt) — " A N\ ™)
loe{n+1,...,011}

24. Layered fluent axioms (hard): For each layered fluent
pt! there is a clause:
p+l N er
25. Layered fluent frame axioms (hard): For each layered
fluent p*! there is a clause:
p+l N \/ a“rlfl
a€make(p)

26. Layered fluent as early as possible axioms (hard): For
each layered fluent p*!t there is a set of clauses:

N
a€make(p) l2€n,...,11—2

27. Layered fluent only once axioms (hard): For each
fluent p and pair of layers l;,lo € {n + 1,...,k}, where
l1 # ls, there is a clause:

_‘p-"ll \/ ﬂp+l2
28. Layered fluents prohibit causal links axioms (hard):

For each layered fluent pfll and fluent py such that p; # po
and 3K (p3 , py") there is a clause:

I GV

lge{nﬁ*l,.‘wl*l}

p3"? v =K(p3,p))

PWM-RSat

We find that branch-and-bound procedures for partial
weighted MaxSAT (Josep Argelic and, Manya, & Planes
2008; Fu & Malik 2006) are ineffective at solving our direct
encodings of bounded planning problems. Thus, taking
the RSAT2.02 codebase as a starting point, we developed
PWM-RSAT, a more efficient optimisation procedure for
this setting. An outline of the algorithm is given in Algo-
rithm 1. Based on RSAT (Pipatsrisawat & Darwiche 2007),
PWM-RSAT can broadly be described as a backtracking
search with Boolean unit propagation. It features common
enhancements from state-of-the-art SAT solvers, including
conflict driven clause learning with non-chronological
backtracking (Moskewicz et al. 2001; Marques-Silva &
Sakallah 1996), and restarts (Huang 2007).

Algorithm 1 depicts two variants of PWM-RSAT for
solving VARIANT-I and VARIANT-II formulas: lines 5-6
will only be invoked if the input formula is a VARIANT-II
encoding. These lines prevent the solver from exploring
assignments implying that the same state occurs at more
than one planning layer.

Algorithm 1 Cost-Optimal RSat — PWM-RSAT
1: Input:
. AI given negative weight bound &’. If none is known:
= —00
¢ a CNF formula) consists of the hard clause set 1>
and the soft clause set 1)+
c—0;¢«— ¢l
V,V*— ;T « 0;
while true do
if solving Variant-II && duplicating-layers()) then
pop elements from V until ~duplicating-layers(V);
continue,
T e Y eyt W(K)SatUP(V, Y, k)
8: if ¢ < ¢ then

AN A

9: pop elements from V until ¢ > ¢; continue;
10: if3dk € (Y AT) s.t. =SatUP(V,y>° AT, k) then
11: if restart then V « [|; continue;
12: learn clause with assertion level m; add it to I';
13: pop elements from V until |V| = m;
14: if V = [] then
15: if V* # [] then
16: return (V*,¢) as the solution;
17: else
18: return UNSATISFIABLE;
19: else
20: if V is total then
21: V*«—V; ¢« ¢
22: pop elements from V until ¢ > ¢;
23: add a new variable assignment to V;

Apart from the above difference, the two variants of
PWM-RSAT work as follows. At the beginning of the
search, the current partial assignment V' of truth values to
variables in 1) is set to empty and its associated cost ¢ is set
to 0. We use ¢ to track the best result found so far for the

minimum cost of satisfying 1> given ¢)*. V* is the total
assignment associated with ¢. Initially, V* is empty and ¢ is
set to an input negative weight bound ¢! (if none is known
then é = ¢! := —o0). Note that the set of asserting clauses
T is initiated to empty as no clauses have been learnt yet.

The solver then repeatedly tries to expand the partial
assignment) until either the optimal solution is found or ¥
is proved unsatisfiable (line 4-21). At each iteration, a call
to SatUP(V, ¢, k) applies unit propagation to a unit clause
K € 1 and adds new variable assignments to V. If k is not a
unit clause, SatUP(V, ¢, k) returns 1 if x is satisfied by V,
and 0 otherwise. The current cost c is also updated (line 7).
If ¢ < ¢, then the solver will perform a backtrack-by-cost to
a previous point where ¢ > ¢ (line 8-9).

During the search, if the current assignment V violates
any clause in (1> A T'), then the solver will either (i)
restart if required (line 11), or (ii) try to learn the conflict
(line 12) and then backtrack (line 13). If the backtracking
causes all assignments in V to be undone, then the solver
has successfully proved that either (i) (V*, ¢) is the optimal
solution, or (ii) ¥ is unsatisfiable if V* remains empty (line
14-16). Otherwise, if V does not violate any clause in
(> AT) (line 17), then the solver will heuristically add
a new variable assignment to V (line 21) and repeat the
loop in line 4. Note that if V is already complete, the better
solution is stored in V* together will the new lower cost ¢
(line 19). The solver also performs a backtrack by cost (line
20) before trying to expand V in line 21.

Related Work

One existing work directly related to COS-P is the hybrid
solver CO-PLAN (Robinson, Gretton, & Pham 2008). This
system placed 4th overall out of 10 systems at IPC-6. CO-
PLAN is hybrid in the sense that it proceeds in two phases,
each of which applies a different search technique. The
first phase is SAT-based, and identifies the least costly step-
optimal plan. This can be seen as a more general and effi-
cient version of the system described in (Biittner & Rintanen
2005).3 Along the same lines as COS-P, these phases work
by iteratively solving bounded instances of the problem en-
coded as weighted MaxSAT. This system uses a MaxSAT
procedure that is very inefficient, and based on a now out-
dated version of RSAT. The second phase corresponds to
a cost-bounded anytime best-first search. The cost bound
for the second phase is naturally provided by the first phase.
Although competitive with a number of other competition
entries, CO-PLAN is not competitive in IPC-6 competition
benchmarks with the BASELINE — The de facto winning en-
try, a brute-force A* in which the distance-plus-cost com-
putation always takes the distance to be zero. As we shall
see in the next section, the approach we have developed for
this paper demonstrates a manifold improvement over CO-
PLAN.

Also related to COS-P we have PLAN-A, a system that
placed last in both the optimal and satisficing tracks at IPC-
6. Its poor performance in the satisficing track can be some-

3Given a fixed makespan, that system tried to find a plan in the
parallel format that used the fewest number of actions.

what explained by the fact that PLAN-A is optimal — i.e.,
like the first phase of CO-PLAN, PLAN-A computes a min-
imal cost step-optimal plan. Poor performance in the opti-
mal track occurred because it is a satisficing procedure for
the cost-optimal case, and thus forfeited 3 domains. One
key difference between PLAN-A and the work in CO-PLAN
and COS-P is the way in which PLAN-A learns blocking
clauses. Summarising, the system adds clauses to block
DPLL from assignments that have been seen before, and
from partial assignments that necessarily lead to a subop-
timal solution given known optimal candidates. We find
blocking clauses approach to have an enormous negative im-
pact on the performance of a SAT system. Finally, a minor
difference is that their optimisation procedure is based on
MINIS AT, whereas we find RSAT to be a more effective pro-
cedure on which to build SAT-based planning systems.

Finally, other work related to our own leverages SAT
modulo theory (SMT) procedures to solve problems with
metric resource constraints (Wolfman & Weld 1999). SMT-
solvers typically interleave calls to a simplex algorithm with
the decision steps of a backtracking search, such as DPLL.
Solvers in this category include the systems LPSAT (Wolf-
man & Weld 1999), TM-LPSAT (Shin & Davis 2005),
and NUMREACH/SMT (Hoffmann et al. 2007). SMT-
based planning systems operate according to the BLACK-
BOX scheme, posing a series of step-bounded decision prob-
lems to an SMT solver until an optimal plan is achieved.
Here, step-optimality (resp cost-optimality) is sought, thus
the objective is to find the shortest plan that satisfies the nu-
meric resource constraints associated with the problem at
hand. Although it is easy to imagine asking for successive
decreasing values of § whether a plan with cost less-than 6
exists, to our knowledge this direction has yet to be pursued.
Therefore, existing SMT systems are not directly compara-
ble to COS-P.

Experimental Results

We implemented both COS-P and PWM-RSAT in C++.
We now discuss our experimental comparison of COS-P
with IPC baseline planner BASELINE.® and a version of
COS-P called H-ORACLE. The latter is given (by an oracle)
the shortest horizon that yields a globally optimal plan.
Our experiments were run on a cluster of AMD Opteron
252 2.6GHz processors, each with 2GB of RAM. All plans
computed by COS-P, H-ORACLE, and BASELINE were
verified by the Strathclyde Planning Group plan verifier
VAL, and computed within a timeout of 30 minutes.

Planning benchmarks included in our evaluation include:
IPC-6: ELEVATORS, PEG SOITAIRE, and TRANSPORT; IPC-
5: STORAGE, and TPP; IPC-3: DEPOTS, DRIVERLOG, FREE-
CELL, ROVERS, SATELLITE, and ZENOTRAVEL; and IPC-1:
BLOCKS, GRIPPER, and MICONIC. We also developed our
own domain, called FTB, that demonstrates the effectiveness
of the factored problem representations employed by SAT-
based systems such as COS-P.

Domain FTB demonstrates the greatest strengths of COS-
P and weaknesses of existing alternatives. This domain is

SThe de facto winning entry at the last IPC.

based on the worst-case problem from (Hoey ef al. 1999).
FTB domain features one type of problem object, each with
status achieved or unachieved. In a starting state
all have status unachieved. Objects are grouped into n
classes of equal size, and each class determines a total-order
d; over its objects. For each object we have a zero-cost ac-
tion that will unachieved that object in any state. An-
other zero-cost action will make an object from the ith class
achieved provided its immediate successor according to
§;is achieved.” We also have n actions s—act ion; each
of which makes the least object according to §; achieved,
and which can only be executed in the starting state. There
are corresponding actions g—action; that make the goal
true provided all objects in the ¢th class are achieved.
For increasing 7 the cost of s—action; is non-zero mono-
tonically decreasing, and non-zero monotonically increas-
ing for g—action,. For all 7 and 7 we have that the cost
of s—action; is less than the cost of g-action;. Fi-
nally, we have two types of cheating action: (1) zero-cost ac-
tion cheat—a, that can make any object achieved in any
state, and (2) cheat —g that makes the goal achieved, how-
ever has an action cost grater than executing s—action;
and g-action; for any ¢. Finally, we add a precondition
to actions g—action; by have them forbidden if the agent
has executed a cheating action.

The important characteristics of £tb are as follows. First,
problems have exponentially many states in the number of
problem objects. Moreover, there is a severe branching fac-
tor at each state. Consequently, a (heuristic) search in prob-
lem state space —as performed by systems such as HSP
and BASELINE— is not efficient. Also, for the same rea-
son “worst-case” crippled ADD-based value-iteration tech-
niques, ftb cripples BDD-based symbolic breadth-first
search along the lines of GAMER. Second, ftb contains
some manner of a temporal cost assignment problem. In par-
ticular, the cost of achieving the goal is a foregone conclu-
sion after the agent has executed the first action. Therefore,
systems that do not employ an effective heuristic — examples
include GAMER and BASELINE — are very inefficient.

The results of our experiments are summarised in Table 1.
For each domain there is one row for the hardest problem
instance solved by each of the three planners. Here, we mea-
sure problem hardness as the time it takes each solver to re-
turn the optimal plan. In some domains we also include ad-
ditional instances. Using the same experimental data as for
Table 1, Figure 1 plots the cumulative number of instances
solved over time by each planning system, supposing
invocations of the systems on problem instances are made
in parallel. It is important to note that the size of the CNF
encodings required by COS-P (and H-ORACLE) are not
prohibitively large — i.e, where the SAT-based approaches
fail, this is typically because they exceed the 30 minutes
timeout, and not because they exhaust system memory.

COS-P outperforms the BASELINE in the BLOCKS and
FTB domains. For example, on BLOCKS-18 BASELINE

"Note, this domain admits optimal plans in the parallel format
which execute actions changing the achieved status of multiple
objects in parallel.

Problems solved in parallel

T
Baseline —<—

Horizon Oracle ---e---
COgP ---u--- |

Problems solved

0.01 0.1 1 1‘0 100 1(;00 10000
Planning time (s)

Figure 1: The number of problems solved in parallel after a

given planning time for each approach.

takes 39.15 seconds while COS-P takes only 3.47 seconds.
In other domains BASELINE outperforms COS-P, some-
times by several orders of magnitude. For example, on prob-
lem ZENOTRAVEL-4 BASELINE takes 0.04 seconds while
COS-P takes 841.2. More importantly, we discovered that it
is relatively easy to find a cost-optimal solution compared to
proving its optimality. For example, on MICONIC-23 COS-
P took 0.53 seconds to find the optimal plan but spent 1453
seconds proving cost optimality. More generally, this obser-
vation is indicated by the performance of H-ORACLE.

Overall, we find that clause learning procedures in
PWM-RSAT cannot exploit the presence of the very ef-
fective delete relaxation heuristic from ITT. Consequently,
a serious bottleneck of our approach comes from the time
required to solve VARIANT-II instances. On a positive
note, those proofs are possible, and in domains such as
BLOCKS and FTB, where the branching factor is high and
useful plans long, the factored problem representations and
corresponding solution procedures in the SAT-based setting
payoff. Moreover, in fixed-horizon cost-optimal planning,
the SAT approach continues to show good performance
characteristics in many domains.

Concluding Remarks

In this paper we demonstrate that a general theorem-proving
technique, particularly a DPLL procedure for Boolean SAT,
can be modified to find cost-optimal solutions to proposi-
tional planning problems encoded as SAT. This was sup-
posed to be possible, although in a very impractical sense, in
the final remarks of (Giunchiglia & Maratea 2007). In par-
ticular, we modified SAT solver RSAT2.02 to create PWM-
RSAT, an effective partial weighted MaxSAT procedure for
problems where all soft constraints are unit clauses. This
forms the underlying optimisation procedure in COS-P, our
cost-optimal planning system that, for successive horizon
lengths, uses PWM-RSAT to establish a candidate solution
at that horizon, and then to determine if that candidate is
globally optimal. Each candidate is a minimal cost step-
bounded plan for the problem at hand. That a candidate is

[BASELINE | H-ORACLE COS-P

l Problem c* t n t n ot tr ta
blocks-17 28 39.83 28 0.59 28 3.61 3.61 0
blocks-18 26 39.15 26 0.53 26 347 3.47 0
blocks-23 30 - 30 4.6l 30 3211 3211 O
blocks-25 34 - 34 343 34 2949 2949 0
depots-7 21 98.08 11 6479 | - - - -
driverlog-3 12 0.11 7 0.043 | 7 484.8 0.08 484.7
driverlog-6 11 9.25 5 0.046 | - - -
driverlog-7 13 100.9 7 1.26 - - - -
elevators-2 26 0.33 3 0.01 3 14 0.01 13.99
elevators-5 55 167.9 - -
elevators-13 | 59 28.59 10 378.6 | - - -
freecell-4 26 47.36 - - - -
ftb-17 401 38.28 17 0.08 17 027 0.09 0.18
ftb-30 1001 | - 25 0.7 25 1.95 0.7 1.24
ftb-38 601 - 33 048 33 1.65 0.49 1.15
ftb-39 801 - 33 07 33 235 0.67 1.69
gripper-1 11 0 7 0.02 7 15.7 0.14 15.56
gripper-3 23 0.05 15 3423 | - - - -
gripper-7 47 73.95 - - - - - -
miconic-17 13 0 11 0.07 11 7854 030 785.1
miconic-23 15 0.04 10 0.12 10 1454 0.51 1453
miconic-33 22 2.19 17 217 - - -
miconic-36 27 9.62 22 1754 | - - -
miconic-39 28 10.61 24 4841 | - - - -
pegsol-7 3 0 12 0.08 12 1.63 0.23 1.41
pegsol-9 5 0.02 15 7.07 15 416.6 1225 4044
pegsol-13 9 0.14 21 1025 | - - -
pegsol-26 9 42.44 - - - - - -
rovers-3 11 0.02 8 0.1 8 5321 0.08 53.13
rovers-5 22 164.1 8 69.83 | - - - -
satellite-1 9 0 8 0.08 8 0.92 0.1 0.82
satellite-2 13 0.01 12023 - - -
satellite-4 17 6.61 - - - - - -
storage-7 14 0 14 045 14 1.16 1.16 0
storage-9 11 0.2 9 643.2 - -
storage-13 18 3.47 18 1121 | 18 2628 2628 0
storage-14 19 60.19 - - -
TPP-5 19 0.15 7 0.01 - - - -
transport-1 54 0 5 0.02 5 0.27 0.03 0.24
transport-4 318 47.47 - - -
transport-23 | 630 0.92 9 1.28 - - - -
zenotravel-4 | 8 0.04 7 1.07 7 843.7 247 841.2
zenotravel-6 | 11 8.77 7 5435 | - - -
zenotravel-7 | 15 5.21 8 1600 | - - -

Table 1: C* is the optimal cost for each problem. The fol-
lowing times are all in seconds. For the BASELINE ¢ is the
solution time. For H-ORACLE, n is the horizon returned by
the oracle and ¢ is the time taken to find the lowest cost plan
at n. For COS-P t; the total time for all SAT instances, ¢,
the total time for all SAT instances where the system was
searching for a plan, while ¢, is the total time for all SAT
instances where the system is performing optimality proofs.
Entries without results indicate that a solver either timed out
or ran out of memory.

globally optimal is known if no step-bounded plan with a
relaxed suffix has lower cost. To achieve that, we developed
a MaxSAT encoding of bounded planning problems with a
relaxed suffix. This constitutes the first application of causal
representations of planning in propositional logic (Kautz,
McAllester, & Selman 1996).

The most pressing item for future work is a technique to
exploit SMT —and/or branch-and-bound procedures from
weighted MaxSAT— in proving the optimality of candidate
solutions that PWM-RSAT yields in bounded instances.
We should also exploit recent work in using useful ad-
missible heuristics for state-based search when evaluating
whether horizon n yields an optimal solution (Helmert &
Domshlak 2009). There is also a pressing need to explore
more scalable and efficient split encodings of planning-as-
MaxSAT (Robinson et al. 2009; Ernst, Millstein, & Weld
1997; Kautz & Selman 1992). Finally, COS-P should be
extended in the direction of (Hoffmann et al. 2007) to ac-
commodate planning problems with numeric variables and
corresponding constraints.

Acknowledgements: We would like to thank our anony-
mous reviewers for pointing out the work of (Keyder &
Geftner 2009), and also for drawing our attention to (Biittner
& Rintanen 2005) and (Giunchiglia & Maratea 2007). Also,
NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program. This
work was also supported by EC FP7-IST grant 215181-
CogX.

References
Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence (90):281-300.
Biittner, M., and Rintanen, J. 2005. Satisfiability planning
with constraints on the number of actions. In Proc. ICAPS.

Bylander, T. 1994. The computational complexity
of propositional strips planning. Artificial Intelligence
69:165-204.

Ernst, M.; Millstein, T.; and Weld, D. S. 1997. Automatic
SAT-compilation of planning problems. In Proc. IJCAL
Fu, Z., and Malik, S. 2006. On solving the partial max-sat
problem. In SAT 2006, 252-265.

Giunchiglia, E., and Maratea, M. 2007. Planning as satis-
fiability with preferences. In Proc. ICAPS.

Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. ICAPS.

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: stochastic planning using decision diagrams. In
Proc. UAIL

Hoffmann, J.; Gomes, C. P.; Selman, B.; and Kautz, H. A.
2007. Sat encodings of state-space reachability problems
in numeric domains. In Proc. IJCAI

Huang, J. 2007. The effect of restarts on the efficiency of
clause learning. In Proc. IJCAL

Josep Argelic and, C. M. L.; Manya, F.; and Planes, J.
2008. The first and second max-sat evaluations. Journal on
Satisfiability, Boolean Modeling and Computation 4:251—
278.

Kautz, H., and Selman, B. 1992. Planning as satisfiability.
In Proc. ECAI

Kautz, H., and Selman, B. 1999. Unifying SAT-based and
graph-based planning. In Proc. IJCAI.

Kautz, H.; McAllester, D.; and Selman, B. 1996. Encoding
plans in propositional logic. In Proc. KR.

Kautz, H. A. 2006. Deconstructing planning as satisfiabil-
ity. In Proc. AAAL

Keyder, E., and Geffner, H. 2009. Soft goals can be
compiled away. Journal of Artificial Intelligence Research
36(1).

Marques-Silva, J. P, and Sakallah, K. A. 1996. Grasp - a
new search algorithm for satisfiability. In Proc. ICCAD.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an Efficient SAT
Solver. In Proc. DAC.

Pipatsrisawat, K., and Darwiche, A. 2007. Rsat 2.0: SAT
solver description. Technical Report D-153, Automated
Reasoning Group, Computer Science Department, UCLA.
Rintanen, J. 2004. Evaluation strategies for planning as
satisfiability. In Proc. ECAL

Rintanen, J. 2008. Planning graphs and propositional
clause learning. In Proc. KR.

Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A.
2009. Sat-based parallel planning using a split representa-
tion of actions. In Proc. ICAPS.

Robinson, N.; Gretton, C.; and Pham, D.-N. 2008.
Co-plan: Combining SAT-based planning with forward-
search. In Proc. IPC-6.

Russell, R., and Holden, S. 2010. Handling goal utility
dependencies in a satisfiability framework. In Proc. ICAPS.
Shin, J.-A., and Davis, E. 2005. Processes and continuous
change in a sat-based planner. Artif. Intell. 166(1-2):194—
253.

Streeter, M., and Smith, S. 2007. Using decision proce-
dures efficiently for optimization. In Proc. ICAPS.
Wolfman, S. A., and Weld, D. S. 1999. The LPSAT engine
and its application to resource planning. In Proc. IJCAL.

