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Abstract

A fundamental capability of any navigation system is the perception of potential con-

tact with surfaces in the environment. The efficiency and robustness of natural vision

has motivated the development of biologically-inspired approaches to achieve this. Bio-

logical studies have highlighted the importance of visual motion (as perceived via opti-

cal flow) in the guidance of animal action. However, the use of optical flow in robot nav-

igation systems remains problematic, impeded by measurement noise, environmental

assumptions, and real-time constraints. This thesis proposes new biologically-inspired

visual cues and algorithms for robust visual control and contact estimation from optical

flow. We consider this primarily in the context of robot navigation and control.

We present a robust strategy for docking a mobile robot with near-frontal surfaces

using optical flow divergence. Results show improved robustness during egomotion,

allowing closer than previously reported stopping distances. We present a strategy for

performing controlled approaches towards surfaces of arbitrary orientation, providing

the first unified control law for landing and docking. Velocity and heading control is

achieved using only the maximum flow divergence on the view sphere. We present

an insect-inspired structure-from-motion scheme using spherical optical flow from a

hemispherical fish-eye sensor, providing the first demonstration of real-time depth map

recovery from dense optical flow estimation. In dynamic environments, we investigate

the use of optical flow to predict the time and location of impact of incoming objects.

We consider this in the context of a stationary camera, as well as for on-road driver

hazard perception assistance.

We conclude that robustness in flow-based control schemes can be improved if sys-

tem dynamics are handled in the image domain. This can be achieved by prioritising

visual cues conveying a relationship between self-motion and scene structure over ex-

plicit structure-from-motion recovery in the control loop. Results suggest a wide-angle

spherical projection model is well-suited for visual contact estimation from optical flow.
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Chapter 1

Introduction

1.1 Motivation

So seamlessly does vision serve the needs of animal activity, its complexity and resilience

is easily taken for granted. Yet, it has been estimated that at least forty independently

evolved eye designs exist in the natural world [Dawkins 1996]. Each design differs in

size, field of view, resolution, configuration and geometry. Underlying these physical

designs are visual processes charged with the task of extracting meaningful informa-

tion from the received light, supporting capabilities such as object recognition, and

navigation. Ecological studies suggest these visual processes are highly tuned to an

animal’s environment and the needs of survival within that environment [Gibson 1950;

Gibson 1979]. Vision therefore serves a multitude of purposes, defined by the tasks it

supports, and the conditions in which it operates.

Determining the role of vision in the guidance of action has been a focus of science

and philosophical discussion for many years. Biologists, psychologists, psychophysis-

cists, neuroscientists, among others, have sought to better understand the complex

interplay between visual perception and the behaviour of animals (including humans).

More recently, these researchers have been joined by those who seek to build artifi-

cial vision systems. In particular, the field of computer vision has sought to develop

algorithms capable of interpreting digital imagery to infer scene structure and self-

motion. One aim of this research is to provide vision algorithms capable of supporting

autonomous vehicle guidance in unknown environments. Such techniques may also

be embedded in technologies to improve or enhance human perception and mobility,

particularly for the visually impaired.

1



2 Introduction

1.1.1 Exploring visual perception through robotics

The complexity of vision is exemplified in its application to robot navigation. The

concept of a robot navigating autonomously within an unknown environment has been

a driving goal of many researchers for over forty years. This interest has been primarily

motivated by a desire to increase the efficiency of human activity, and to replace humans

in dangerous environments. The earliest areas of impact for such systems have been

in industrial environments such as on automotive production lines, typically fixed in

position and operating under precise, highly controlled conditions. More recently, non-

fixed mobile robotic systems have been applied under less controlled environments, of-

ten inaccessible to humans. Examples include space exploration [Matthies et al. 2007],

deep ocean [Kunz et al. 2008], subterranean [Roberts et al. 2003] and glacial survey-

ing [Williams and Howard 2008], as well as search and rescue operations in disaster

scenes [Birk and Carpin 2006].

The use of vision as a primary sensor for robot navigation offers several advantages

over other sensor choices. In general, digital cameras are cheaper than other commonly

used sensors such as laser range finders, sonar and radar. In addition, the ever decreas-

ing size and weight of modern cameras allows for their easy integration and mounting

on robotic platforms. This is particularly important where physical constraints exist,

such as on aerial vehicles. Vision also offers a flexibility of use not present in other

sensor choices. Information about colour, texture, and motion may be combined to

perceive scene structure, surface shape and self motion. Moreover, this data can be

communicated at high speed and made available through a single input source. Other

sensors typically provide only single, fixed types of data, requiring multiple streams of

sensory inputs to be sampled.

Applying vision to robot navigation is also motivated by a broader interest in

biological vision. The building and testing of biologically-inspired vision algorithms

provides a useful platform for examining theories and computational models of vision

in the context of real navigation tasks. This enables researchers to consider vision

at a system-level, potentially uncovering limitations and/or implicit assumptions in

theoretical models of biological vision systems. Such outcomes also serve to inform the
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building of more robust vision systems to assist human activity.

1.1.1.1 The challenge of computational visual perception

Despite considerable attention, the application of vision to robot navigation remains

problematic. A primary issue is scaling vision algorithms to environments beyond for

which they are designed. Issues such as lighting variation, image signal noise, and visual

ambiguities (e.g., depth versus size, shadows, reflections) all pose significant challenges

for any vision-guided navigation system seeking to operate in the real world. In many

cases, robust solutions currently do not exist. Overcoming such issues typically requires

significant computational resources, potentially introducing considerable latency in the

control loop. To alleviate these issues, assumptions about robot motion and/or envi-

ronmental conditions are often required, thereby reducing system scalability.

In applying computer vision algorithms to robot navigation, the classical role of vi-

sion has been to facilitate the construction and maintenance of some internal geometric

world model. Based on this, robot motor actions can be formulated, and if needed,

adjusted as conditions change. However, the real-time recovery and maintenance of

such models in complex, real-world environments has proven to be a difficult and chal-

lenging problem. While algorithmic and hardware advances continue to alleviate such

concerns, these inherent difficulties have motivated researchers to consider alternative

approaches to visual navigation.

1.1.2 An ecological approach to visual navigation

From a broad study of animals in their environment, Gibson [1979] argued that the

world itself provides its own best model, implying that no internal representation of the

environment is required to support navigation. Gibson argued that all environmental

structure and self-motion information is made directly available to animals through

the perception of motion. Movement may therefore be controlled directly from visual

information expressed through invariants present in the constantly changing image.

Subsequent neuroscience and psychophysical research suggests most biological vision

systems are equipped with specific neural mechanisms designed for processing and
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interpreting motion [Lee 1980]. The first stage of motion perception is measuring the

visual motion.

1.1.2.1 Visual motion

Visual motion represents the apparent motion induced by the movement of surfaces in

a scene with respect to the retina (or camera). It may be induced by the independent

motion of objects in the scene, or by the motion of the observer with respect to the

scene. Computationally, visual motion is represented as a 2D vector field in the image

space, where vectors describe the movement of scene points in the image. These vector

fields may be generated via the explicit correlation of features between time separated

images (point-matching), or via the estimation of instantaneous image velocities (optical

flow). Figure 1.1 shows some example visual motion fields.

In primate vision, visual motion is perceived in the early stages of the visual pro-

cessing pathway [Duffy and Wurtz 1997]. Being immediately available and requiring

minimal cognition to compute, it provides crucial support for low-level navigation and

threat avoidance tasks [Fogassi et al. 1996; Zako et al. 2009]. Insects, with their immo-

bile, fixed-focus eyes and low interocular separation rely almost exclusively on visual

motion to infer range information [Srinivasan and Zhang 2004]. Estimating depth from

visual motion is also simpler, computationally, than estimating depth from stereo, and

thus better suited to the relatively simple nervous systems of insects. Insects have

been shown to utilise visual motion to (i) navigate safely through narrow gaps, (ii)

detect and avoid collisions with objects, (iii) distinguish objects from their immedi-

ate backgrounds, and (iv) orchestrate smooth landings [Srinivasan and Zhang 2004].

These ecological observations have inspired new approaches to the application of vision

in robot navigation.

1.1.3 Visual contact estimation for navigation and perception

A fundamental capability of any visual navigation system is the perception of potential

contact with surfaces in the scene. Most important is perceiving changes in their prox-

imity resulting from either self-motion towards a surface, or the independent motion of
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(a)

(b)

(c)

Figure 1.1: Example visual motion fields for (a) translational (b) rotational and (c) looming

visual motion of the scene (a textured wall). Vectors show the apparent movement of image

points due to the motion of the camera with respect to the surface.
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objects towards the observer. Perceiving the relative change in distance between ob-

server and environment is crucial to a number of important navigation tasks, including:

collision avoidance, docking/landing and threat avoidance in dynamic environments.

1.1.3.1 Collision avoidance

The most basic visual navigation task when moving in an unknown environment is

avoiding collision with objects in the scene. Given sufficient warning, a robot may

alter its course, or halt further motion towards the surface.

1.1.3.2 Docking/Landing

The ability to perform controlled approaches to surfaces is an essential capability for

any mobile robot seeking to interact with objects in its environment. Tasks such as

plugging into a re-charging station, pallet lifting or transporting goods on a factory

floor are common tasks requiring some form of docking manoeuvre to be performed.

In flight, performing graze landings on run ways, or hover-down approaches are common

tasks. Of particular importance in all these tasks is the controlled deceleration of the

vehicle during the approach, such that velocity is zero (or close to zero in the case of

graze landing) at the point of contact.

1.1.3.3 Threat avoidance in dynamic environments

An important capability of any system (artificial or biological) working in a dynamic

environment is the ability to perceive independently moving objects. This is particu-

larly important when the object poses an imminent threat of collision with the observer.

To avoid collision, a looming object’s rate of approach, and predicted trajectory with

respect to the observer must be extracted.

1.1.4 Contact estimation from optical flow

All the necessary visual information to support the above applications is made directly

available in the visual motion of the scene. The motion of an observer towards a

surface, or analogously, a surface towards the observer, induces an apparent expansion,
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or looming effect in the observer’s image (e.g., Figure 1.1(c)). The rate of this expansion

provides a direct means of estimating the immediacy of contact with the surface. This

is commonly referred to as the time-to-contact or time-to-impact.

1.1.4.1 Time-to-contact

There is strong biological evidence suggesting time-to-contact is a commonly employed

cue for detecting looming objects, and controlling motion towards surfaces. Srini-

vasan et al. [2000] observe how honeybees use visual motion to decelerate and perform

smooth graze landings. Lee [1976] theorised that a human driver may visually control

vehicle braking based on time-to-contact estimation obtained from image expansion.

Primate and human studies have also shown that the looming effect causes defensive ac-

tions in response to perceived threats [Schiff et al. 1962; Bower and Broughton 1970].

1.1.4.2 Time-to-contact estimation for robot navigation

The direct availability of time-to-contact from visual motion has motivated its use

for reactive robot control. Most commonly, time-to-contact has been applied to col-

lision avoidance (e.g., [Nelson and Alloimonos 1989][Coombs et al. 1998]). Few, how-

ever, have applied the cue to tasks such as docking (or landing). Visually controlling

velocity to achieve close proximity docking with a looming surface (without collision)

requires significantly greater tolerance to noisy on-board conditions. This is because of

the significantly higher risk of collision as surface distance decreases, but also because of

increased susceptibility to external forces such as bumps, undulations and wind effects

as forward velocity is reduced. Existing visual docking and landing strategies typically

assume specific camera motions and/or surface orientations (or at least assume these

to hold) during the execution of the task (e.g., [Cipolla and Blake 1997]). This limits

the applicability of such approaches under real-world conditions.

1.1.5 Systems of visual control using visual motion

The direct use of time-to-contact estimation for motion guidance represents a visuo-

motor system of control. Extracted visual quantities are used directly to guide motion,
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thereby avoiding the need for internal reconstructions of the scene [Lee 1980]. Thus,

the choice of visual cues are necessarily task specific, exploiting the visual conditions

that characterise the successful execution of the task.

An alternative approach is to derive control schemes directly from explicit estimates

of observer self-motion and a reconstructed representation of the scene. This represents

the traditional approach to vision-guided navigation in computer vision, referred to as

structure-from-motion. Structure-from-motion is a key and active area of research in

computer vision. A central motivation for this approach is that the obtained solutions

may support a wide range of navigation tasks, thus providing a potentially more general

solution. A major drawback in applying structure-from-motion to visual control is that

this requires solving for all structure and motion parameters in each iteration of the

control loop, placing significant computational demands on the system. For many

visual control tasks, full structure-from-motion recovery is not required.

Such choices of visual control systems highlight the varying roles prescribed to

vision. How vision best serves the needs of perception and motion control remains a

fundamental question for anyone seeking to understand, or build, visual perception and

navigation systems.

1.1.6 Projective geometries for visual contact estimation

Whether for reactive visuo-motor control or explicit structure-from-motion recovery,

the projective geometry in which visual information is expressed has significant im-

plications for the extraction of visual data, and the design of visual control schemes.

Ecological studies [Gibson 1979], and subsequent theoretical analysis [Fermüller and

Aloimonos 2000], have made clear that the geometry of eye designs in the natural

world have a significant impact on the visual navigation strategies employed. In robot

vision, however, a pinhole perspective projection model is most commonly applied, a

choice primarily dictated by the use of standard digital cameras.

Recent theoretical examination of alternative eye geometries such as the com-

pound eye of flying insects, suggests a spherical projection model (as an approxi-

mation to this geometry) provides a better suited alternative [Brodsky et al. 1998;

Fermüller and Aloimonos 1998]. In particular, researchers have identified potential ad-
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vantages for egomotion recovery [Nelson and Aloimonos 1988; Lim and Barnes 2008],

and for the unambiguous recovery of structure-from-motion parameters [Brodsky et al. 1998;

Fermüller and Aloimonos 1998]. Understanding how this choice impacts on control de-

sign, the choice of visual inputs used for control, and the strategies employed to extract

them, is essential to the development of robust navigation strategies based on visual

motion.

1.2 Core contributions of this thesis

In this thesis we propose new visual cues and algorithms for estimating potential surface

contact from optical flow. We explore this primarily in the context of robot navigation

and perception. Through this study, this thesis offers the following contributions.

A robust algorithm for docking a mobile robot using optical flow field di-

vergence

We have developed an algorithm to compute the flow field divergence, or time-to-

contact, in a manner that is robust to small rotations of the robot during ego-motion.

We achieve this by tracking the focus of expansion of the optical flow field and using

this to compensate for ego rotation of the image. This operates without the need for

explicit segmentation of features in the image, using complete gradient-based optical

flow estimation in the optical flow computation.

A unified algorithm for landing/docking using optical flow field divergence

under spherical projection

We propose a single unified strategy for performing controlled approaches to planar

surfaces of arbitrary orientation. Central to this is the use of optical flow field diver-

gence under spherical projection, which allows time-to-contact to be measured for an

arbitrary angle of approach, without explicit knowledge of the surface orientation, and

without de-rotation of the flow field. The proposed scheme provides the first general

solution to the docking/landing problem using time-to-contact.
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A strategy for estimating 3D depthmaps from spherical optical flow in real-

time

We present a strategy for generating real-time relative depth maps of an environment

from optical flow, under general motion. We achieve this using an insect-inspired hemi-

spherical fish-eye sensor, and a de-rotated optical flow field. De-rotation is achieved

through explicit egomotion estimates obtained using an algorithm first proposed by

Nelson and Aloimonos [1988] for use on a full view sphere. For the first time, we

demonstrate the application of this algorithm over real image sequences, to support

real-time structure-from-motion recovery.

A technique for estimating time and location of impact based on primate

vision

We present a preliminary investigation for the use of optical flow to predict the time

and location of impact of an incoming object. By examining patterns of optical flow,

we make predictions on an object’s trajectory with respect to a stationary observer,

and its time-to-contact with the observer’s (assumed planar) body. This approach is

modelled on the observed behaviour of neurons in the F4 region of the pre-motor cortex

of primates.

A flow-based hazard alert system for classes of on-road hazards

We report preliminary results from work towards the development of low-level visual

motion cues to identify potential hazards during on-road driving. In conjunction with

a clinical study of hazard perception in older age drivers, we consider the detection of

a range of hazardous scenarios identified as particularly challenging for older drivers.

We present results obtained using the same hazard perception test that will be used in

clinical trials.

1.3 Thesis Overview

This thesis is structured as follows:
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Chapter 2 outlines the motivation and approach upon which the contributions of

this thesis are based. We contrast the different roles prescribed to vision in the context

of robot navigation. We argue that biology provides an important and informative

base for developing visual navigation behaviours. Additionally, we motivate the use of

optical flow as a primary sensory input for perception and motion control.

Chapter 3 overviews the estimation of optical flow and examines the underlying

theory of inferring scene structure and self-motion from optical flow. We also provide

an overview of structure-from-motion techniques for visual navigation, and motivate

consideration of a spherical projection model to address inherent limitations of tradi-

tional structure-from-motion techniques.

Chapter 4 provides an in depth review of techniques for estimating and applying

time-to-contact as an input to visuo-motor control schemes. We particularly focus on

its application to visuo-motor landing and docking, where we highlight specific issues

and limitations associated with its use for fine motion control tasks.

Chapter 5 describes a visuo-motor control strategy for docking a mobile robot

with upright, near fronto-parallel surfaces using time-to-contact estimates. We derive

a time-to-contact estimator that is robust to small rotations of the robot inevitably

introduced during egomotion. We validate the theoretically derived estimator with

quantitative open-loop simulation and real image experiments. We then integrate the

time-to-contact estimator into the control loop of a mobile robot performing close

proximity docking manoeuvres with an upright surface.

Chapter 6 presents a generalisation of the docking scheme presented in Chapter 5,

allowing a mobile robot to dock with (or land on) a surface of arbitrary orientation.

Central to this strategy is the use of a spherical projection model, over a wide field of

view. We show that distinct advantages are gained if time-to-contact is estimated from

flow divergence on the view sphere, and from this, derive a scheme that exploits the

global divergence maximum across the projected surface. The viability of the proposed

scheme is tested in open-loop experiments over a range of image sequences. Closed-loop

simulation experiments, and on-board trials examine the in-system performance of the

control scheme.



12 Introduction

Chapter 7 examines optical flow under a structure-from-motion framework, us-

ing a spherical projection model. We propose a scheme for generating 3D relative

depthmaps of the environment, in real-time, from optical flow under spherical projec-

tion. We present the details of the scheme, and discuss its application to generating 3D

depthmaps on the view sphere. We implement the proposed scheme for use with a wide-

angle hemispherical sensor, and quantitatively and qualitatively assess performance in

simulation, and over real image sequences.

Chapter 8 considers visual contact estimation for self-moving objects and a sta-

tionary observer. We briefly review background literature in primate neuroscience

which then motivates a proposed time and location of impact prediction scheme. We

report preliminary results and a discussion of future directions for this research.

Chapter 9 presents a heuristic-based contact estimation scheme for the detection

of non-looming side-entering on-road hazards. We briefly overview motivations drawn

from studies of visual ageing and its effects on driver hazard perception. We then

outline a scheme for the in-car detection of other side-entering objects. We present

preliminary results and discuss future work for the project.

Chapter 10 sets out the overall conclusions and outcomes of this thesis. We also

list the limitations of this study, and discuss future work.



Chapter 2

Motivation and Approach

2.1 Introduction

In this thesis we explore vision as a primary sensor for navigation and perception.

Before presenting the novel contributions of this thesis, we provide background and a

review of relevant literature. We split this review into three parts. The first part (this

chapter) motivates our approach to visual contact estimation, providing a philosophical

basis for the work presented in this thesis. The second part (Chapter 3) provides a

review of literature and theory on the estimation and traditional use of optical flow

to infer scene structure and self motion (i.e., structure-from-motion). The third part

(Chapter 4) motivates the use of time-to-contact from optical flow as an alternative to

structure-from-motion recovery, comprehensively reviewing previous work in the esti-

mation and application of time-to-contact for collision avoidance, docking and landing.

We now outline the approach to visual contact estimation and navigation adopted

in this thesis. In so doing, we review the defined roles prescribed to vision when serving

the needs of navigation, and in particular, for the control of motion. We explore this

in the context of robot navigation systems, for which the choice of visual cues utilised,

the processes by which they are extracted, and the perceptual purposes they serve

vary widely. Through this, we argue for the importance of visual control strategies

that avoid global maps or scene reconstructions. We further motivate biological vision

as a useful and informative base for the design of reactive visual navigation and per-

ceptual algorithms, and review biological arguments in support of visual motion as an

important sensory input for perception and motion control.

The chapter is structured as follows. Section 2.2 considers perception as it is defined

13
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for robot navigation, splitting the perception problem into two roles: deliberative navi-

gation and reactive control. Section 2.3 outlines the classical methodology of computer

vision for navigation and perception where its traditional role has been viewed as a

process of 3D reconstruction. In Section 2.4 we explore how vision has been applied in

existing vision-guided robot navigation systems, emphasising the distinction between

vision for map-based deliberative navigation and for reactive motion control without

global maps. Section 2.5 then presents arguments from biological visual perception in

favour of visual control without world models, highlighting the central role of visual

motion in biological vision and motion control. Section 2.6 then motivates visual mo-

tion for robot navigation and control. In addition, we justify the choice of optical flow

estimation for recovering dense visual motion across the field of view under real-time

constraints. Finally, Section 2.7 summarises the chapter.

2.2 Perception for robot navigation

The design of perceptual architectures for robot navigation has undergone a significant

paradigm shift over the last thirty years. In this, the role of perception has moved from

a process supporting purely deliberative navigation based on symbolic representations

of the scene, to a methodology encompassing non-deliberative, reactive navigation.

This shift has paved the way for significant advances in robot navigation systems. It

is therefore important to understand why this paradigm shift has occurred, and the

implications of this on the defined role of vision for perception and navigation.

2.2.1 The sense-plan-act paradigm

The dominant architecture of early robot navigation systems was the sense-plan-act

architecture [Arkin 1998]. This architecture is characterised by a sequential pipe-line

of modular processes, taking sensory input to output commands of actuators. The

sense module receives all sensory inputs, from which a 3D world model is maintained.

The plan module interprets this model, and in conjunction with the set goals of the

system, composes sequences of actions to achieve each goal. The act module executes

the plan via appropriate outputs to actuators.
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The sense-plan-act architecture was well aligned with contemporary artificial intel-

ligence approaches of the time, relying heavily on the use of symbolic representations

of the world for reasoning and action planning [Arkin 1998]. Thus, in order to plan

and actuate movement, an accurate internal model of the environment must first be

obtained.

The earliest examples of such systems include the mobile robot Shakey (Stanford

Research Institute) [Nilsson 1969; Nilsson 1984], and later work by Giralt et al. [1979],

and Moravec [1983]. Moravec was the first to demonstrate a mobile robot (The Stanford

Cart) navigating autonomously using a full geometric model without an a priori model.

This pioneering work provided significant new insights into the complexity of au-

tonomous navigation. However, systems developed under the sense-plan-act paradigm

generally lack the robustness required for real-world application [Arkin 1998]. Most

problematic is the strict requirement for the construction and maintenance of accurate

3D world models before reasoning and actuation may occur. As a result, delays and

errors introduced through the scene reconstruction process are propagated through sub-

sequent planning and motor actions. High computational costs in maintaining internal

models also place significant restrictions on the speed of robot motion and complexity of

working environments. For these reasons, the architecture has been largely abandoned.

2.2.2 Behaviour-based navigation

The behaviour-based paradigm asserts that centralised control and global world mod-

els are not necessary to achieve autonomous robot navigation [Arkin 1998]. Moreover,

reliance on such models in the control loop may be detrimental to the overall robust-

ness of the system when environments are complex and dynamic. Intelligent behaviour

may instead be realised through the complex interplay of low-level modules, and the

environment. These emergent behaviours form the basis of Brook’s subsumption archi-

tecture [Brooks. 1986; Brooks 1990]. This architecture represents the first significant

shift away from the sense-plan-act model.

Fundamental to behaviour-based navigation is the decomposition of the general

navigation problem into a hierarchy of navigation tasks (behaviours). At the lowest

level reside the most basic reactive tasks (e.g., obstacle avoidance, free-space naviga-
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tion). At higher levels reside processes to compute goals and coordinate the choice of

low-level behaviours.

The subsumption architecture has been applied to many successful robot navigation

systems. For example, Horswill [1993] applies the architecture for the navigation of a

mobile robot tour guide. Brooks and Stein [1994] use a subsumption architecture as

part of a humanoid robot (from the waist up) to test theories of robot-human interac-

tion. Cheng and Zelinksy [1998] describe a behaviour-based navigation system capable

of coordinating multiple navigation subsystems. Lenser et al. [2002] report on the im-

plementation of a behaviour-based framework for soccer playing robots. More recently,

Hentout et al. [2007] describe a three level behaviour-based system for navigating a

mobile manipulator robot.

2.2.3 Visual perception under a behaviour-based framework

Despite significant advances achieved under the behaviour-based paradigm, vision-

guided navigation remains difficult. While behaviour-based navigation systems remove

the requirement for global world models as a pre-requisite for action, the method-

ology does not replace the need for high level deliberate executive function. Thus,

visual perception under a behaviour-based architecture must support both the needs

of deliberative and reactive navigation. How vision best serves these needs remains a

fundamental question for both the computer vision and robotics community.

2.3 Classical computer vision for navigation and percep-

tion

In the previous section we defined two dominant roles for perception in robot naviga-

tion: perception for deliberative navigation and for reactive control. We now discuss

the perspective of classical computer vision and the approach this implies to visual per-

ception for navigation. We also outline the traditional approach to 3D reconstruction

in computer vision, and discuss reasons why the classical formulation of the problem

is ill-suited to the needs of real-time visual navigation tasks.
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Figure 2.1: Marr’s representational framework for vision processing, defined as a pipe-line of

sub-processing stages to yield a complete scene reconstruction.

2.3.1 Marr’s theory of computational vision

The classical role of vision in navigation and perception is exemplified by Marr’s theory

of vision [Marr 1982]. Marr argues that vision is best understood as an information-

processing problem, emphasising the need for internal representations to support the

information extraction process. This is realised through a sequence of intermediate

representations, beginning with a 2D array of image intensity values, to produce 3D,

object-centred descriptions. Thus, Marr defines vision as a process of scene reconstruc-

tion. Figure 2.1 shows the pipeline of vision processes forming Marr’s representational

framework.

Marr’s theory of vision is widely regarded as the first formalisation of a scientific

methodology for computer vision [Barnes and Liu 2004]. It also fits naturally with

the sense-plan-act perceptual architecture of early robot navigation systems, and in

general, serves the needs of deliberative navigation and perception. While aspects of

the theory have been subsequently discarded, modern computer vision remains heavily

influenced by the work of Marr. In particular, geometric 3D reconstruction remains a

dominant focus of computer vision research.

2.3.2 Traditional 3D scene reconstruction in computer vision

The task of inferring the 3D structure of an environment from multiple 2D images

of the scene has been a topic of significant interest in computer vision for over thirty

years. The problem is classically defined as that of taking point correspondences be-

tween two or more views to infer the 3D location associated with each point corre-

spondence [Hartley and Zisserman 2000]. In the simplest case, point correspondences

between two overlapping images provide the input. Where the displacement of these
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points is the result of camera motion, the problem is commonly referred to as the

structure-from-motion problem.

Given a sufficient number of such correspondences, the complete projective geom-

etry of the camera pairs can be computed, allowing the 3D location of the projected

points to be inferred via triangulation (at least up to scale). This is achieved by esti-

mating the fundamental matrix, providing linear constraints on each correspondence.

A common approach to estimating the fundamental matrix is via the eight-point algo-

rithm [Longuet-Higgins 1981].

For general scene reconstruction over multiple views, the problem is significantly

more complex. In this case, the dominant methodology in computer vision is bundle

adjustment [Triggs et al. 2000]. Techniques that employ bundle adjustment attempt to

fit a non-linear model over point correspondences, typically over many images. This is

performed as an iterative process, and thus requires an initialisation step prior to its ex-

ecution. Recent examples of the classical reconstruction approach include Pollefeys et

al. [2004] who produce complete 3D rendered models from hand-held video sequences,

and Vidal and Hartley [2008], who propose a three-view reconstruction technique ca-

pable of handling multiple motions in the scene.

Techniques for obtaining dense 3D reconstructions from multiple views have ad-

vanced significantly over the last twenty years. However, this classical approach is

generally regarded as infeasible for real-time closed-loop control of a robot. Most prob-

lematic are the computational demands associated with constructing and optimising

world models in complex environments. This is an inherent drawback of the methodol-

ogy. While efficient methods for computing bundle adjustment exist [Triggs et al. 2000]

achieving real-time performance currently requires significant reductions in the de-

tail of models, and/or fusion with other sensor measurements for camera positioning

(e.g., GPS, INS) (discussed in more detail in Chapter 3). We therefore do not apply

classical reconstruction-based structure-from-motion in this thesis.
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2.4 Vision-guided robot navigation

While classical computer vision techniques have proven difficult to apply in real-time

robot navigation systems, there exist many examples of vision being successfully applied

to various robot navigation tasks. In this section we review existing approaches to

vision-guided robot navigation. We divide these approaches into three classes:

1. visual navigation with global maps,

2. visual navigation with local egocentric maps, and

3. visual navigation without maps.

Through this spectrum of approaches we emphasise the important distinction between

visual perception for deliberative navigation, and visual perception for the direct control

of motion.

2.4.1 Visual navigation using global maps

Dense geometric reconstructions are rarely applied in robot navigation systems. Rather,

simpler, more efficient scene mapping frameworks that better support the needs of de-

liberative navigation tasks such as path-planning, localisation and visual odometry are

employed. These are typically defined independently of the sensing technology, assum-

ing only that an estimate of range to surfaces is available. An advantage of this is

that measurements from multiple sensors may be fused together and used to construct

a more accurate model. We briefly overview two popular approaches to map-based

navigation below, with specific examples of their use in visual navigation.

2.4.1.1 Grid-based mapping

Grid-based mapping divides the world into discrete cells, with each cell conveying

the traversability of the space it represents. One of the earliest and most popu-

lar grid-based mapping frameworks is Occupancy grids. Occupancy grids provide a

probabilistic framework for fusing multiple sensor readings into surface maps of the

environment [Thrun et al. 2005]. Moravec and Elfes [1985] proposed a technique for
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encapsulating uncertainty by associating each cell with a probability of occupation.

An occupancy grid at a given time is estimated as a posterior probability over a set of

possible maps. This is generated from the set of scene measurements (surface depths),

and robot poses with respect to a world coordinate frame, over time. Thus, the map

generation assumes the robot’s path is known. When applied to robot navigation, oc-

cupancy grids are most commonly projected onto the ground plane, representing a 2D

slice of the 3D scene structure. Examples of vision-based navigation systems utilising

occupancy grids include Murray and Little [Murray and Little 2000], who apply real-

time stereo-vision disparity analysis to construct a 2D occupancy grid. More recently,

Correa and Okamoto [2005] generate an occupancy grid using omni-directional stereo

vision to compute depth in the scene.

Other mapping frameworks such as artificial potential fields [Khatib 1986] have also

been applied to map-based navigation. In this, range estimates of surfaces are used to

form a 2D vector field, where each vector represents the combined forces of attraction

towards a goal, and repulsion away from obstacles. Such representations may facilitate

path-planning within a global map (e.g., [Warren 1989; Urmson et al. 2002]), or can

be applied within egocentric maps for reactive navigation (e.g., [Haddad et al. 1998]).

2.4.1.2 Simultaneous localisation and mapping (SLAM)

Map-based navigation in an unknown environment requires both building a map and

localising within that map. This, however, represents a circular dependency in that

both tasks imply solutions to the other already exist. This key issue in map-based nav-

igation forms the basis of the Simultaneous localisation and mapping (SLAM ) prob-

lem [Smith and Cheesman 1987; Durrant-Whyte 1988]. The use of vision for SLAM

(Visual SLAM) represents the closest thing to geometric 3D visual reconstruction in

broad use in robot navigation.

Interest in SLAM grew dramatically when Csorba and Durrant-Whyte [1997] proved

convergence if scene mapping and localisation are combined into a single estimation

problem. Thus, solutions are obtained by measuring the relative position of land-

marks with respect to the robot, and correlating subsequent observations of the same

landmarks over time (while also adding new landmarks as they appear). Most com-
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monly, solutions are obtained by computing a probability distribution describing the

joint posterior density of landmark observations and the robot pose at each discrete

time instant [Durrant-Whyte and Bailey 2006]. By recursively incorporating new land-

mark observations over time, correlations between landmark estimates increase mono-

tonically, thus ensuring estimates of landmark locations can only improve with more

observations [Dissanayake et al. 2001].

Two dominant representations exist for computing solutions to the SLAM problem:

Kalman (or extended Kalman) filtering (KF or EKF), and particle filtering. KF- and

EKF-SLAM employ a state-space model, representing landmarks as a joint set of covari-

ances and assume Gaussian disturbances in the robot motion and landmark observation

model [Dissanayake et al. 2001]. Particle filtering models robot movement via samples

of a non-Gaussian probability distribution [Thrun et al. 2000; Montemerlo et al. 2003].

Landmarks are typically represented as a set of independent Gaussians rather than joint

correlations, providing significant efficiency gains [Durrant-Whyte and Bailey 2006].

A wide range of sensors, including laser range sensing (e.g., [Thrun 1998]) and sonar

(e.g., [Leonard et al. 2002]), have been applied to implementations of SLAM solutions.

Increasingly, focus has turned to visual SLAM techniques. In many cases, stereo match-

ing is applied to estimate depth in the scene. Recent examples of this include Elinas

et al. [2006], and Dailey and Parnichkun [2006]. While visual SLAM algorithms are

typically designed for indoor or structured outdoor environments, recent work such as

Marks et al. [2008] have applied visual SLAM in unstructured outdoor environments.

Other recent examples of real-time visual SLAM techniques include [Gee et al. 2008],

[Davison et al. 2007] and [Milford and Wyeth 2008].

2.4.1.3 Summary of global map-based visual navigation

Global map-based methods are well suited to deliberative navigation tasks such as path

planning and map building. However, the high computational demands of constructing

and maintaining global maps in complex scenes makes them ill-suited for use in the

control loop. Where vision is in direct control of motion, the emphasis of visual per-

ception is typically on the recovery of local egocentric information rather than global

mapping.
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2.4.2 Visual navigation using local maps

Visual navigation from local maps represents a bridge between mapless reactive control

and deliberative navigation from global maps. A local map is typically used to provide

an egocentrically defined representation of the environment distinguishing traversable

space from obstructed space in the immediate area. Thus, the primary task of vision

is most often to compute the range to obstacle surfaces across the field of view (we

refer to this as a depth map). However, in contrast to global map-based techniques, no

attempt is made to consolidate local maps into a world coordinate frame.

Given a depth map, grid-based techniques such as occupancy grids (introduced in

Section 2.4.1.1) provide a natural representation for local mapping and path planning.

Vision-based examples include Otte et al. [2007], who acquire real-time depth maps

from stereo disparity to create an egocentrically defined occupancy-grid. The occu-

pancy grid is defined entirely within the image space, allowing path planning to take

place within the image. Pacheco et al. [2008] apply depth-from-focus using a monoc-

ular vision system to generate an egocentrically defined occupancy grid for navigation

in indoor environments.

Local depth maps have also been used to form Vector field histograms, whereby a

one-dimensional discretised polar obstacle density function is defined [Borenstein and

Koren 1991]. A robot’s heading is determined via a search over an obstacle density

function. The direction with lowest obstacle density closest to the target direction is

selected. Extensions of this method have since been proposed to incorporate robot size

and dynamics (known as VFH+ [Ulrich and Borenstein 1998]), and the incorporation

of A* searching to verify a heading choice with respect to the goal (known as VFH*

[Ulrich and Borenstein 2000]).

Local mapping from vision-based depth recovery has also been applied to off-road

navigation in outdoor environments. Competing in the 2005 DARPA Grand Challenge,

the autonomous ground vehicle, TerraMax [Caraffi et al. 2007] completed the race us-

ing a vision-based obstacle detection system. A stereo rig with variable baseline is

utilised to provide accurate depth estimates for both distant surfaces and objects in

close proximity. By correlating edges between stereo views, a vertical disparity map
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(V-disparity) is acquired, from which depth in the scene is inferred. Using models of

ground plane curvature, obstacles in front of the vehicle are identified and mapped

to a 2D egocentric coordinate system. Stereo-based disparity is also applied for as-

sessing terrain traversability and obstacle avoidance on the current NASA/JPL Mars

Exploration Rover mission [Matthies et al. 2007; Olson et al. 2007]. Feature correla-

tion between stereo pairs is also used to acquire egomotion and odometry information.

2.4.2.1 Summary of local map-based navigation

The removal of the requirement for registering local maps in a global coordinate system

provides a significant efficiency gain over global-mapping techniques. The recovery of

detailed egocentric maps, however, still requires significant computation, thus hindering

their use in the control loop. While hardware and algorithm advances make their use

in the control loop increasingly plausible, local maps are most often used for local path

planning to support lower-level reactive behaviours (e.g., to avoid local minima).

2.4.3 Visual navigation without maps

Visual navigation techniques that do not employ maps span an array of approaches,

ranging from those that exploit structures and features in the scene, to those that

derive motion control schemes within the image space itself using directly measured

visual quantities. In most cases, vision is used exclusively to support reactive motion

control schemes. We outline some of these approaches below.

2.4.3.1 Visual navigation in semi-structured environments

The operating environment of many robots contain characteristic structural properties

that may be exploited to simplify visual navigation. Conventional indoor environ-

ments, for example, are typically dominated by planar surfaces. In this context, Zhou

and Li [2006] propose a technique for extracting the ground plane from a single camera.

To detect the ground plane, they apply a homography-based approach through the ex-

amination of tracked image features. From this, a dominant homography between two

frames is extracted. Dao et al. [2005] present a similar approach whereby lines describ-
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ing planar features are tracked and used to compute a homography between frames.

By combining odometry data and various heuristics exploiting the camera-robot con-

figuration, the ground plane is segmented allowing on-ground obstacles to be detected.

Micusik et al. [2008] present a method for detecting orthogonal planar surfaces using a

single camera via estimates of the vanishing points in the three orthogonal directions.

A probabilistic approach is then adopted to estimate planar patches, using a Markov

Random Field (MRF) and a colour-homogeneity heuristic.

In the context of outdoor environments, visual navigation is made more challenging

by the comparatively less structured conditions (in addition to other well reported fac-

tors such as variable lighting conditions). In the case of vision-based road navigation,

however, specific features such as the road plane and/or the road edge, or lane markings

on the road are commonly utilised to maintain a vehicle’s path. In the original ver-

sion of the autonomous vehicle project, Navlab (Carnegie-Mellon University Robotic

Institute) [Thorpe et al. 1988], road following is achieved via a combination of colour

and texture classification. A Hough-based voting scheme is applied to the extracted

road edges to guide steering. More recently, Wedel et al. [2008] propose a scheme

for on-road navigation that alleviates the commonly applied planar road assumption.

From stereo camera data, a non-planar ground surface extraction is achieved via a

parametric B-spline model. An optimisation algorithm is then employed to define the

road-obstacle boundary. Armingol et al. [2007] present numerous visual subsystems for

on-road navigation and human driver assistance, including systems for lane-keeping,

pedestrian detection and vehicle detection.

2.4.3.2 Visual servoing and appearance-based navigation

The image-based visual servoing methodology exemplifies navigation without internal

representations. Rather, motion is controlled via a task specific image function defined

in an image feature parameter space [Hutchinson et al. 1996]. Velocity control outputs

are then obtained via the application of an inverse image Jacobian, defining a linear

transformation between the parameter space and the velocity space.

The majority of work in visual servoing has concentrated on the control of eye-

in-hand robot arm manipulators [Hutchinson et al. 1996]. However, interest has also
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grown in the use of image-based visual servoing techniques for mobile robot navigation.

In this context, the most common approach adopted is to minimise a cost function

associated with the current view of the environment, and some target image. Usher

et al. [2003], for example, demonstrate this approach using an omni-directional vision

sensor on a car-like vehicle. Through deliberate movements, the vehicle positions itself

in a target position by aligning specific features in the image. Gaussier et al. [1997]

apply online learning to train a neural network that maps visual cues to motor actions.

Using learnt associations between landmarks close to the goal location and actions

leading towards this location, the robot is able to compare its current view with the

learnt view to generate appropriate movements. Zhang and Ostrowski [2002] present

an image-based visual servoing approach to motion planning for a mobile robot within

the image plane (thus avoiding global maps). Motion planning ensures image features

remain within the field of view of the robot.

Nierobisch et al. [2006] propose a scheme for image-based visual servoing to traverse

an environment using previously acquired images as landmarks. A pan/tilt camera is

employed to actively track features over large distances, thereby reducing the number of

landmark images to be registered. Chen and Birchfield [2006] apply a similar teach and

replay approach, but employ a significantly simpler control strategy. Image features

are detected and tracked during a training run, and milestone images are recorded

at regular short intervals. During path execution, a comparison of features in the

current view with features in the relevant milestone image provides the basis for heading

adjustments based on the relative location of features. A left or right adjustment

is determined via a winner takes all vote over all correlated features. Other recent

examples of similar approaches include [Mochizuki et al. 2007] and [Segvic et al. 2007].

2.4.3.3 Reactive vision-guided obstacle detection and avoidance

Where the objective is explorative navigation, systems generally employ reactive colli-

sion avoidance strategies, based on estimates of relative (or absolute) depth of potential

obstacles in the view field. Many techniques assume a ground plane, and base obstacle

detection on regions of the image that ‘disrupt’ the planar model. Shao et al. [1995], for

example, use stereo disparity and a neural network to identify the ground plane. De-
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viations from the ground plane disparity model encoded in the neural net are treated

as potential obstacles. Burschka et al. [2002] also model the ground plane in stereo

disparity space using the known camera calibration parameters, baseline and camera

orientations of a stereo rig. After removing the ground plane, an egocentric obsta-

cle map is formed via an inverse projection of segmented residual disparities onto the

ground plane.

Reactive obstacle avoidance has also been demonstrated using more qualitative vi-

sual cues measured directly from the image. For example, Horswill’s tour guide robot,

Polly [Horswill 1993] achieves reactive visual navigation using numerous qualitative

cues. Assuming all obstacles lie within the ground plane, and motion is constrained

to the ground plane, the heuristic that obstacle depth increases with the height of

its projected location in the image is applied. Other visual cues such as background

texture, edge detection and vanishing-points are utilised for obstacle avoidance and cor-

ridor navigation. Lorigo et al. [1997] demonstrate a simple collision avoidance strategy

using image intensity gradients, RGB colour and HSV (hue, saturation, value) infor-

mation to detect obstacles. By combining the results of these heuristic-based detection

criteria, estimates of object boundaries are also obtained.

Another commonly applied visual input for collision avoidance is optical flow. We

discuss this approach to robot navigation in Sections 2.5 and 2.6.

2.4.3.4 Summary of visual navigation without maps

Progress continues to be made in developing efficient reactive visual navigation systems.

It is apparent from the literature, however, that applying vision under this framework

remains a significant challenge. In particular, the significant variation in approaches

adopted, and the visual cues employed, indicate that we are far from converging on a

general methodology. This issue brings into context the broader question of how vision

best serves the needs of navigation, a question that has received significant attention

in ecological studies of animal vision. This has motivated interest in biological vision

as a basis for developing navigation strategies for robots.
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2.5 Biological vision for robot navigation

2.5.1 Gibson’s theory of direct perception

Ecological studies of animal vision systems provide compelling support for visual navi-

gation without global models. In particular, the pioneering work of Gibson [1950, 1979]

who, from a broad study of animals in their environment, argued that the world itself

provides its own best model. Gibson [1979] proposed a theory of direct perception,

prescribing a role for vision defined by the needs of specific navigation tasks and mo-

tion control. Thus, movement is controlled directly from visual information expressed

through invariants present in the constantly changing image. Vision is therefore a nec-

essarily constant task, seeking to extract appropriate visual cues to facilitate the needs

of navigation and motion control. Movement is guided through embedded visuo-motor

control schemes.

Gibson’s theory of direct perception was largely disregarded by visual perception

researchers of the time. Marr [1982], for example, argued that Gibson had significantly

underestimated the underlying computational processes to support it. Marr went on

to formalise such processes in his computational theory of vision (discussed in Sec-

tion 2.3.1). The lack of success in applying vision under Marr’s reconstruction-based

approach motivates interest in Gibson’s ecological observations, and the central tenants

of direct perception.

2.5.2 Active perception

Active perception may be regarded as the emergence of Gibsonian visual perception

theory in behaviour-based robot navigation, though the methodology’s origins can be

attributed with numerous precursory contributions. It defines vision as a searching,

explorative task, defined by the needs of specific navigation capabilities. Vision is re-

moved from a centralised role, and instead distributed and embedded in navigation

subsystems to form visual behaviours. Several researchers have provided significant

contributions to the development of the active perception framework for robot naviga-

tion.

Early work saw the emergence of active vision systems. Aloimonos et al. [1987]



28 Motivation and Approach

argue that traditionally ill-posed problems such as structure-from-motion become well-

posed through active observation (i.e., deliberate camera motions to control the geo-

metric parameters of the sensor). Notably, however, vision is still defined in terms of a

reconstruction task. Ballard’s [1991] animate vision removes the task of reconstruction

from vision entirely, asserting that vision is more readily understood in the context of

the visual tasks being performed. Ballard emphasises the important role of gaze control

as a means of simplifying tasks such as range determination, and camera stabilisation,

among others. Aloimonos [1993a] argues that for many navigation tasks, only a partial

recovery of scene structure and self-motion is required. Thus, vision is not viewed as

a centralised and isolated subsystem, but rather as part of a more complex system,

interacting with its environment in specific ways. These contributions, among others,

form what is more generally referred to as active perception.

2.5.3 Active perception with visual motion

Gibson [1979] argued that the vast majority of visual information for the guidance of

action is made available through the perception of motion (visual motion). Gibson,

among others, have identified specific invariants present in the visual motion field that

may be utilised to infer scene structure and self motion. These include:

• Depth-from-motion (motion parallax)

Helmoltz [1925] first noted that motion perception conveyed information about

the relative depth of surfaces in the scene. Gibson [1950], however, was the first

to formally examine the properties of visual motion that provide such cues. He

noted that as an observer translates, the apparent relative motion of objects in the

scene provides a direct cue of their relative depth. Thus, for a scene undergoing

rigid translation with respect to the observer, it is possible to infer the global

structure of the scene from the image motion describing this perspective change

(referred to as motion parallax ).

• Direction of heading

Gibson [1950, 1966] observed that the visual motion induced by self-motion moves

radially away from a single point in the field of view. This focus of expansion
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Figure 2.2: The looming effect. Image points diverge from a single point in the image (the

focus of expansion).

(FOE) represents a singularity in the flow field (i.e., the optical flow is zero). Gib-

son argued that the FOE provides a direct cue for estimating heading direction,

and thus may be used to regulate and maintain a given heading with respect

to the environment. While subsequent psychophysics studies have highlighted

issues associated with its general use in perception and navigation (e.g., under

high visual rotation during eye movement), it remains an important and useful

invariant of the optical flow field. We discuss its role in structure-from-motion

and vision-guided robot navigation further in Chapter 3.

• Visual looming

The motion of an observer towards a surface causes an isotropic expansion of

the surface image. This image expansion, or looming effect, is characterised by

motion vectors diverging from the FOE at a rate determined by the ratio of the

approach velocity and distance from the surface. An example of this motion

pattern is given in Figure 2.2. Visual looming (as measured by the motion field

divergence) has been shown to provide a direct estimate of the time-to-contact.

• Surface orientation/curvature and motion
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Gibson noted the possibility that local orientation, curvature and relative mo-

tion of surfaces may be inferred from local examination of the motion parallax

[Gibson 1979]. Subsequent theoretical analysis has confirmed this, although the

resulting relationships are non-linear (discussed in detail in Section 3.3). Surface

slant and curvature may also be inferred from the relative depths of neighbouring

points on the same surface.

2.6 Visual motion for robot navigation

For many years, researchers have considered both the estimation of visual motion,

and algorithms for extracting structure and motion properties from the visual motion

field. In computer vision, the dominant motivation for this has been for solving the

structure-from-motion problem (introduced in Section 2.3.2), primarily for 3D recon-

struction. However, the direct availability of visual information relating self-motion

and scene structure in the visual motion (as observed by Gibson) motivates its use

for reactive robot navigation and control. In particular, the efficient use of visual mo-

tion by cognitively constrained animals such as insects provides much inspiration for

visuo-motor control schemes for robot navigation. We list some example insect-inspired

visuo-motor approaches to robot navigation below.

2.6.1 Corridor following

Honeybees achieve centred flight through corridors by balancing the visual motion ex-

perienced in opposing sides of their view [Srinivasan et al. 2000]. This has inspired

numerous visuo-motor schemes for corridor centring and obstacle avoidance in robot

navigation. Coombs and Roberts [1993] use a wide angle, forward-facing active cam-

era to achieve corridor centring. Optical flow is computed in the left and right pe-

ripheral thirds of the image. By balancing the maximal flow in both thirds through

heading corrections, the robot maintains a centred path between walls and obstacles.

Examples of similar corridor following strategies include [Duchon and Warren 1994;

Santos-Victor and Sandini 1995; Cole and Barnes 2008].
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2.6.2 Visual odometry

Srinivasan et al. [2000] showed that the accumulated visual motion experienced by hon-

eybees during flight, provides an accurate estimate for their distance travelled (referred

to as visual odometry). For robot navigation, visual odometry offers a viable alterna-

tive to traditional odometric gauges which are often inaccurate, or not available such as

in flight [Iida 2003]. Weber et al. [1996], for example, demonstrate a visual odometry

scheme for corridor-like environments. Reduced lateral drift sensitivity is introduced

by accumulating the recipricol of flow magnitudes from both sides of the corridor. Iida

and Lambrinos [2000] demonstrate visual odometry on an autonomous flying blimp.

Flow from the periphery of a down-facing panoramic camera is accumulated over time

and used as the odometer.

2.6.3 Altitude regulation, hovering and station keeping

Kelber and Zeil [1997] observed that hovering guard bees maintain a constant distance

from the hive entrance through compensatory visuo-motor responses to perceived ex-

pansion and contraction of the hive entrance surface. Such observations have inspired

strategies for robot hovering and station keeping such as Zwaan et al. [2002], who

demonstrate a similar approach for an air-based blimp and an underwater robot. Hori-

zontal and vertical positioning is maintained through motor responses directly inferred

from the apparent translation and expansion of the surface patch. Roberts et al. [2003]

report work on a small autonomous helicopter that makes use of stereo image matching

and optical flow to measure the height and ground velocity of the helicopter respec-

tively. Other example aerial robot systems that employ visuo-motor control schemes

for hovering, either for station-keeping or for landing (in the case of rotor-based robots)

include Azinheira et al. [2002] and Sharp et al. [2001].

2.6.4 Landing and docking

From a study of honeybee landing patterns, Srinivasan et al. [2000] propose a model

describing the descent velocity profile of honeybees as they perform smooth graze

landings. The model proposes that velocity control is achieved by holding the apparent
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angular velocity of the ground plane constant during the descent, while at the same

time reducing the speed of descent proportionally. This visuo-motor strategy yields

an exponential decay in forward velocity over time, matching the observed behaviour

of honeybees. This model has inspired visuo-motor control schemes for performing

controlled approaches towards surfaces. Being a significant focus of the work presented

in this thesis, we postpone the discussion of docking and landing techniques until

Chapter 4, where we consider visual time-to-contact estimation for achieving such

tasks.

2.6.5 Discussion of current visual motion-based navigation

The above work demonstrates how visual motion may be employed to support closed-

loop visuo-motor control. However, such control schemes have not been broadly ac-

cepted by the robotics community. Of primary concern is the robustness of control

schemes based on noisy visual motion estimation. Existing systems primarily serve as

a proof of concept, and generally do not provide in-depth consideration of system ro-

bustness. For tasks such as corridor centring and visual odometry, control demands are

relatively low and thus more tolerant to noisy visual measurements. Where fine motion

control in close proximity with surfaces is required (i.e., landing and docking), such

issues come to the fore as robustness and efficiency requirements grow significantly. We

therefore specifically examine this class of navigation tasks in this thesis.

2.6.6 Measuring visual motion: optical flow versus point matching

Visual motion is most commonly measured in one of two ways, via:

• point-matching, the explicit correlation of features in two (or more) images of the

same scene, or

• optical flow : the estimation of image velocities (i.e., pixels per frame) describing

the movement of brightness patterns between two images.

In this thesis we measure visual motion via the optical flow field. We choose optical

flow on the basis of its ability to support dense visual motion estimation across large
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fields of view in real-time. While point-matching, in general, provides a more precise

measure of visual motion, optical flow accuracy is comparable over small frame dis-

placements, at a lower computational cost [Lin et al. 2009]. This is due to the linear

approximation of motion resulting from its representation as a velocity field rather than

as displacements. Our decision to use optical flow is also motivated by its demonstrated

role in biological vision, and in particular, insect vision.

2.7 Summary

In this chapter we have reviewed the role of vision for perception in vision-guided robot

navigation. We have argued for the importance of visual navigation systems that do not

attempt to build and maintain world models in the control loop. Rather, we advocate a

role for vision defined by the needs of the specific navigation tasks. Based on ecological

observations of natural visual perception systems, we have motivated visual motion as

an important and viable input for visual control. Visual motion provides an abundance

of visual cues to support such tasks. We have highlighted the two dominant applications

of visual motion for navigation: structure-from-motion and visuo-motor control. We

have also justified the use of optical flow for dense visual motion recovery over a large

field of view, under real-time constraints.

We next review theoretical work in the interpretation of scene structure and self

motion properties from the optical flow field. We then consider how such properties

have been utilised to serve the needs of visual control under both a structure-from-

motion framework, and in Chapter 4, for visuo-motor control using time-to-contact.
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Chapter 3

Estimating and Interpreting

Optical Flow

3.1 Introduction

We have now explored the role of vision in navigation, and motivated the use of optical

flow as a viable sensor for motion control. We considered this in the context of robot

navigation, for which the application of vision remains difficult. We now now examine

the estimation of optical flow, and the underlying theory of extracting structure and

self-motion quantities from the optical flow field. In particular, we focus on visual

navigation using traditional structure-from-motion estimation, highlighting inherent

issues associated with its estimation and use in the control loop. In the next chapter

we consider the use of time-to-contact as an alternative visuo-motor based approach

to visual contact estimation for motion control.

This chapter is structured as follows. Section 3.2 derives the optical flow equations

employed in this thesis, and reviews literature on the computation of optical flow.

Section 3.3 reviews background theory and literature on the inference of structure

and motion from local differential invariants of the flow field. Sections 3.4 through

3.6 discuss techniques for estimating egomotion and recovering depthmaps, as well as

providing an overview of existing real-time (or close to real-time) structure-from-motion

techniques for navigation. In Section 3.7 we discuss issues impeding the accurate and

robust recovery of structure-from-motion solutions. Section 3.8 presents arguments

in favour of a spherical projection model for structure-from-motion recovery. This is

followed by a chapter summary.

35
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3.2 Optical flow

Despite over thirty years of study, the estimation of optical flow remains an active field

of research in computer vision. This research has produced a multitude of techniques

for recovering image motion, spanning a wide range of approaches and application

domains. This thesis does not address the specific issue of optical flow estimation, and

thus we do not provide a comprehensive review of optical flow techniques here. Reviews

and comparisons of existing optical flow techniques can be found in Beauchemin and

Barron [1995], Barron et al. [1994], Liu et al. [1998], McCane et al. [2001], McCarthy

and Barnes [2004], and most recently, Baker et al. [2007]. Here, we focus on the central

issues surrounding the estimation of optical flow for real-time navigation and perception

tasks, and provide specific details of the optical flow techniques employed in this thesis.

3.2.1 Derivation of optical flow

This thesis examines optical flow under two projection models: perspective (or pinhole

projection), and spherical projection. We therefore derive the optical flow equations

under both models explicitly. Note that the derivations presented below already exist

in the literature (e.g., Beauchemin et al. [1995] and Fermüller and Aloimonos [1998]).

For completeness and consistency of presentation, we re-derive these equations using

common definitions employed throughout this thesis. We outline these below.

3.2.1.1 Common definitions

Consider a point, P = [ Px Py Pz ] ∈ R
3. Let T = [ Tx Ty Tz ] ∈ R

3 denote the

instantaneous translational velocity of P , and Ω = [ ωx ωy ωz ] ∈ R
3 denote the

instantaneous rotational velocity, where Ω is the vector of rotation, and its magnitude,

||Ω||, is the angular velocity in radians per unit time. From these definitions, we may

define the total instantaneous velocity of P to be:

Ṗ = −T − Ω × P, (3.1)

The optical flow generated by P is defined as the apparent velocity of P on the
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image surface. We consider the projection of Ṗ under both projection models separately

below.

3.2.1.2 Optical flow under spherical projection

Let S ∈ R
3 be a view sphere of radius r, centred on the origin O. The ray originating

from O and passing through P gives the ray of projection. The intersection of this

line with S marks the spherical projection point, p ∈ R
3, of P . Thus, the spherical

projection of P is given by:

p =
rP

||P ||
, (3.2)

where ||P || is the distance of P from the origin [Ma et al. 2006]. Without loss of

generality, we set the radius to one (i.e., r = 1).

To obtain the optical flow, ~u, generated by Ṗ under spherical projection, we take

the time derivative of the spherical projection of P such that:

~u =
d

dt

P

||P ||
,

=
Ṗ ||P || − P d

dt
||P ||

||P ||2
. (3.3)

Substituting for Ṗ we obtain:

~u =
(−T − Ω × P )||P || − P d

dt
||P ||

||P ||2
, (3.4)

where p is projection of P on the sphere.

Considering d
dt
||P ||, we note that:

d

dt
||P || =

d

dt

√

(P � P ),

=
1

2

1

||P ||

(

Ṗ � P + P � Ṗ
)

,

=
1

||P ||

(

− T − Ω × P
)

� P (3.5)
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Noting also that (Ω × P ) � P = 0, Equation 3.5 is reduced to:

d

dt
||P || =

−T � P

||P ||
,

= −T � p. (3.6)

Substituting Equation 3.6 into Equation 3.4, we obtain the optical flow under spher-

ical projection [Fermüller and Aloimonos 1998]:

u =
−T − p(−T � p)

||P ||
− Ω × p,

=
1

||P ||

(

(T � p)p− T
)

− Ω × p. (3.7)

3.2.1.3 Optical flow under perspective projection

Consider again the view sphere S. Let I be a tangent plane (referred to as the image

plane) on the surface of S. Without loss of generality, let the tangent plane be centred

on the Z axis. Consider again a point P ∈ R
3, and its radial projection line passing

through the origin. Let p = (px, py) ∈ R
2 mark the intersection point in the tangent

space, I, of the projective line of P through O. The point p is therefore the perspective

projection point of P , defined by the well known equations (e.g., [Ma et al. 2006]):

px =
fPx

Pz

,

py =
fPy

Pz
, (3.8)

where f , the focal length, takes the value of r, and Pz gives the depth of the point P

assuming the Z axis forms the central axis of projection. We refer to this as the optical

axis. Note that the image plane resides at Z = f , and thus points within the image

plane are defined in a 2D coordinate system with origin at the optical axis intersection

point.

Let (u, v) denote the two dimensional optical flow field in the image plane, such

that:

(u, v) = (ṗx, ṗy). (3.9)



§3.2 Optical flow 39

To obtain the image velocities, we take the time derivative of the projection of P

in the image such that:

(u, v) =
d

dt

(fP

Pz

)

,

= f
(PzṖ

P 2
z

−
P d

dt
Pz

P 2
z

),

=
f

Pz

(

Ṗ − pTz

)

. (3.10)

Substituting Ṗ for Equation 3.1, and P
Pz

for Equations 3.8, we obtain:

(u, v) =
f

Pz

(

− T − Ω × P − pTz

)

. (3.11)

Multiplying through by 1
Pz

we obtain the following equation for the optical flow under

perspective projection [Fermüller and Aloimonos 1998]:

(u, v) =
f

Pz

(

− T − pTz

)

− Ω × p. (3.12)

3.2.2 Estimating the optical flow field

3.2.2.1 The aperture problem

The computation of the the optical flow field is difficult. The problem is inherently

ill-posed, impeded by the well known aperture problem [Hildreth 1984]. Consider a

straight-edged surface boundary of constant intensity moving rigidly in an image. If

we view a portion of this boundary through a narrow, restricted view, it is impossible

to determine a unique solution for the true motion of the edge from the local apparent

motion alone. This is demonstrated graphically in Figure 3.1(a). The only motion in-

formation we can deduce unambiguously is the component of motion in the direction of

the normal to the edge. This is commonly referred to as the normal flow. Figure 3.1(b)

demonstrates a notable exception. Given two differently oriented edges undergoing the

same rigid motion, it is possible to deduce the true motion of the square from the

intensity gradients within the aperture.
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(a)

(b)

Figure 3.1: The aperture problem: (a) the apparent motion of the straight edge of the square

within the aperture can result from any movement of the square with some component in the

direction of the normal to the edge, and thus cannot be uniquely determined from this local

information alone. (b) the apparent motion of the square corner within the aperture can only

result from the true motion of the square, thus providing a unique solution in this case.



§3.2 Optical flow 41

3.2.2.2 Classes of optical flow techniques

Numerous optical flow techniques have been proposed, each applying various assump-

tions and constraints to overcome the aperture problem. Beauchemin and Barron [1995]

divide optical flow techniques into four classes:

1. Energy-based or frequency-based methods estimate optical flow from the output

of velocity-tuned filters designed in the Fourier domain. It has been noted that

the power spectrum generated from rigid translation of a 2D image pattern lies

in a plane in Fourier space [Watson and Ahumada 1983]. Heeger [1988], for ex-

ample, estimates the optical flow by searching for a plane that best fits the power

spectrum of the spatio-temporal signal.

2. Phase-based methods estimate image velocity in terms of band-pass filter outputs.

Fleet and Jepson [1990], for example, make use of band-pass velocity-tuned filters

to decompose the image signal into scale, speed and orientation. More recent

examples include Argyriou and Vlachos [2006], and Tho and Goecke [2008].

3. Correlation-based or region-matching methods search for a best match of small

spatial neighborhoods between adjacent frames (discussed further below).

4. Gradient-based or differential methods use spatio-temporal image intensity deriva-

tives and an assumption of brightness constancy (discussed further below).

Despite their ability to achieve high numerical accuracy, both energy-based, and

phase-based methods suffer significant storage and computational overheads in com-

parison with other approaches [Barron et al. 1994]. On current standard processor

speeds, such overheads limit the ability of these techniques to perform under real-time

constraints, effectively discounting them from such applications.

Correlation-based methods such as Kories and Zimmerman [1986], Sutton et al. [1983],

and Little et al. [1988] are also computationally intensive, however, attempts have

been made to address this issue. Camus [1996, 1997], for example, achieves significant

speed-up by relaxing the requirements of sub-pixel accuracy. Rather than searching for

matching regions over increasing spatial displacements, Camus proposes searching for
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matches over time. Thus, the level of temporal support dictates the quantisation level.

While the technique is demonstrated on a mobile robot for measuring time-to-contact

[Camus 1994] and achieving obstacle avoidance [Camus et al. 1996], subsequent com-

parisons of its performance for specific navigation tasks have highlighted difficulties

in applying it to fine-motion control [McCarthy and Barnes 2004]. The trade-off of

execution time for reduced quantisation error is reported to be the most problematic

issue for its use in the control loop.

3.2.2.3 Gradient-based optical flow estimation

Gradient-based methods are defined by their use of spatio-temporal intensity deriva-

tives to estimate optical flow. The assumption that image intensity is conserved over

time is the basis of all techniques in this category. This is formalised in what is

commonly referred to as the gradient constraint equation, or brightness constancy con-

straint [Barron et al. 1994]:

Ixu+ Iyv + It = 0, (3.13)

where Ix, Iy and It represent partial derivatives of the image intensity function I(x, y, t),

and u and v represent the horizontal and vertical components of the image velocity at

the point (x, y) respectively.

It is immediately apparent that a direct calculation of optical flow is not possible

from Equation 3.13 alone. Two components of flow exist for a single point-wise con-

straint. Thus, the problem is under-constrained, highlighting the inherent ambiguity

resulting from the aperture problem. To overcome this, researchers typically exploit

the rigidity of surfaces in the scene. This assumption introduces a new constraint on

the motion field. Gradient-based techniques apply this constraint in various ways, how-

ever, the strategies employed typically fall into one of two categories: global techniques

and local techniques.

Global methods

Global techniques apply a global smoothness constraint to estimate the optical flow

field. Horn and Schunck [1981] were the first to demonstrate this approach. They
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proposed an iterative gradient-based method combining Equation 3.13 with a global

smoothness constraint. Optical flow is then estimated by minimising:

∫

D

(∇I(x, t) · v + It(x, t)) + λ2(∇u2 + ∇v2)dx, (3.14)

where D is the domain of interest, v = (u, v), and ∇I(x, t) represents the spatial

gradients of I about a location x at time t. λ represents the influence of the smoothness

constraint, defined as the sum of the square of the Laplacians of u and v.

Global techniques have two significant drawbacks: (i) the application of global

smoothing over object boundaries can cause erroneous flow estimates along surface

boundaries; and, (ii) global smoothing implicitly assumes a single motion in the scene

(typically due to the camera). While techniques such as Hildreth [1984], Nagel [1990],

Alvarez et al. [1999], Heitz and Bouthemy [1993], Weickert and Schnörr [2001], and

Brox et al. [Brox et al. 2004], attempt to alleviate these issues via piece-wise global

smoothing (e.g., Nagel [1990] and Weickert and Schnörr [2001]) and/or additional as-

sumptions such as image gradient constancy (e.g., Brox et al. [2004]), most are too

computationally intensive for real-time application on current hardware.

Local methods

Local gradient-based methods such as Lucas and Kanade [1981], Simoncelli et al. [1991]

and Weber and Malik [1993] estimate optical flow through the minimisation of con-

straints over local image regions [Barron et al. 1994]. In the original formulation of

the approach, Lucas and Kanade [1981] apply a model of constant velocity as a second

constraint on small local neighbourhoods of the image. The model is applied through

a weighted, least squares fit of local first-order constraints, such that:

∑

x∈ω

W (x, t)(∇I(x, t) · v) + It(x, t)))
2, (3.15)
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where W (x, t) denotes a window function and ω is the spatial neighbourhood. From

this, a linear system may be defined such that:

WAv = Wb, (3.16)

where for k points in the local neighbourhood ω, we define:

A = [∇I(x1, y1), . . . ,∇I(xk, yk)]
T ,

W =











w(x1, t1) . . . 0
...

. . .
...

0 . . . w(xk, tk)











,

b = − [It(x1, t1), . . . , It(x1, t1)]
T .

Re-arranging Equation 3.16 to solve for v we obtain the equation:

v = [ATWA]−1ATWb, (3.17)

From Equation 3.17 we note that the algorithm requires computing the inverse of
[

ATWA
]

(where it exists). This, however, is only a 2 × 2 matrix, defined as:

ATWA =





∑

W 2(xk)Ix(xk)
2

∑

W 2(xk)Ix(xk)Iy(xk)
∑

W 2(xk)Iy(xk)Ix(xk)
∑

W 2(xk)Iy(xk)
2



 . (3.18)

From this, solutions to the local optical flow, v, are obtained.

3.2.2.4 Advantages of local gradient-based flow estimation

Local methods generally achieve better accuracy compared with global techniques

[Barron et al. 1994]. While local techniques are susceptible to inaccuracies at motion

boundaries due to the breakdown of local flow models, these errors are contained to

local regions, and do not influence surrounding flow vector estimates. The removal

of global regularisation of the flow field also improves the efficiency of local methods.

Moreover, local methods do not enforce the computation of flow across entire surfaces,
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and thus provide more flexibility in their use.

Notably, Bruhn et al. [2005] propose a hybrid technique by combining local velocity

constraints with global regularisation. Such techniques offer a potential means in which

to obtain spatially consistent flow using local techniques. This, however, increases

computational overheads significantly.

Based on these trade-offs, we apply a local gradient-based optical flow method

throughout all experimental results reported in this thesis. We choose Lucas and

Kanade’s technique on the basis of observations outlined above, and its strong per-

formance in previous optical flow comparisons such as Barron et al. [1994], McCane

et al. [2001], and McCarthy and Barnes [2004]. Of particular relevance to this thesis,

McCarthy and Barnes [2004] report strong results from the techniques application to

robot navigation tasks such as corridor-centring, and visual odometry.

3.2.2.5 Enhancements and extensions to Lucas and Kanade flow estimation

Numerous variations and enhancements have been proposed for use with Lucas and

Kanade’s method. In this thesis, the following extensions to the classical Lucas and

Kanade technique have been applied.

• Eigenvalue thresholding: In Equation 3.17, we may regard
[

ATWA
]−1

as a

covariance matrix for the estimated image velocity, v. Thus, a confidence measure

may be obtained for the likelihood of an accurate local flow estimate by exam-

ining the eigenvalues of this matrix [Simoncelli et al. 1991]. Barron et al. [1994]

propose thresholding the magnitude of the smallest eigenvalue of ATWA for de-

termining where flow is estimated. This, however, is a tradeoff between flow field

accuracy and flow field density, and thus is not applied when full optical flow

fields are required.

• Pyramidal flow estimation: Bouguet [2000] describes the implementation of

Lucas and Kanade’s technique over a pyramidal representation of input images.

For each level of the pyramid, a minimisation is iteratively solved to produce

a local estimation of the flow. This is then used to initialise the same process

at the next pyramid level. While the algorithm is intended for feature tracking
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(and thus for a restricted number of image points), it may also be applied to

obtain optical flow fields across the image. The technique also performs well in

the most recently published comparison of state of the art optical flow meth-

ods [Baker et al. 2007]. An efficient implementation of the algorithm is available

in the open source computer vision developers library: OpenCV 1

3.2.3 Summary of optical flow estimation

Optical flow is difficult to estimate accurately. This is, in part, due to noise levels in the

underlying image signal, but also because of the assumption of brightness constancy

and the inherently ill-posed nature of the problem. Optical flow techniques therefore

apply different constraints and assumptions in order to estimate image velocity. In

many cases, achieving high accuracy comes at the cost of significant computational

overheads, and thus a trade-off between accuracy and efficiency is typically required

when applying optical flow to real-time tasks. It is therefore incumbent upon algorithms

that seek to apply optical flow, to design suitable mechanisms for handling noisy motion

estimation.

3.3 Inferring local structure and motion from optical flow

Significant attention has been given to the task of inferring scene structure and self-

motion from the apparent rigid motion of a scene when a camera moves. The problem,

as formulated by Longuet-Higgins and Prazdny [1980], is that of estimating the cam-

era’s six motion parameters, and the structure of surfaces in the environment. This may

then be used to reconstruct 3D models of the environment, or to facilitate autonomous

navigation within an environment (with or without reconstruction). In this section we

focus on the early theoretical development of the structure-from-motion problem, upon

which much of the work presented in this thesis is based.

1http://opencv.willowgarage.com

http://opencv.willowgarage.com
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3.3.1 Differential versus discrete motion

Structure-from-motion algorithms typically assume one of two motion geometries: dif-

ferential or discrete. Differential motion techniques consider the movement of points

in the image over an infinitesimal time period. Thus, motion between frames is con-

sidered in terms of a velocity field. Discrete motion techniques, on the other hand,

represents this motion as a displacement field. Most commonly, displacements are ob-

tained via feature matching techniques such as the Scale Invariant Feature Transform

(SIFT) [Lowe 1999], which provide better accuracy over large baselines. Over small

displacements, the distinction between differential and discrete motion becomes negli-

gible [Adiv 1985; Lin et al. 2009]. Given differential motion estimates provide a suffi-

cient accuracy at a reduced computational cost, we consider the structure-from-motion

problem in the context of differential motion estimation (i.e., from optical flow).

3.3.2 Differential invariants of visual motion

Koenderink and Van Doorn [1975, 1976] were the first to examine the local properties

of the motion parallax field for a piece-wise planar surface in motion. By decomposing

local optical flow field patches into elementary fields, they show that the local spatial

change of the optical flow field can be expressed by the linear combination of these

elementary fields. The importance of this decomposition is that locally, optical flow

can be characterised in a coordinate-free manner, via differential invariants. Before

introducing these invariants, we first consider the optical flow equations in the context

of a single rigidly moving surface.

3.3.2.1 Optical flow across a rigid surface

Locally, we assume optical flow to result from a single continuous rigid surface in

relative motion. For a camera centred coordinate system, let C ∈ R
3 be a (possibly

curved) surface projecting to a local patch in the image plane. We may describe the

depth of points on the surface of C by the depth function:

Z(X,Y ) = Zo + aX + bY +O2(X,Y ), (3.19)
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where (X,Y ) are points on the surface of C, (a, b) is the depth gradient of C at its

intersection with the optical axis, Zo is the distance to C along the optical axis, and

O2(X,Y ) represents second-order derivatives of C.

Longuet-Higgins and Prazdny [1980] introduce the perspective projection equations

into Equation 3.19, thereby defining surface depth as a function of the image coordi-

nates:

Z(x, y) =
Z0

1 − a x
fx

− b y
fy

−O2(x, y)
, (3.20)

where (x, y) are the image coordinates, and fx and fy are focal lengths expressed

in pixels. Given a known aspect ratio, we may set these both to 1 without loss of

generality.

From this we may express the optical flow as [Longuet-Higgins and Prazdny 1980]:

u(x, y) =
(−Tx + xTz)

Zo

[

1 − ax− by −O2(x, y)
]

+ ωxxy − ωy(1 − x2) + ωzy,

v(x, y) =
(−Ty + yTz)

Zo

[

1 − ax− by −O2(x, y)
]

+ ωx(1 − y2) + ωyxy + ωzx,

(3.21)

where u(x, y) and v(x, y) are the horizontal and vertical components of the flow field.

3.3.2.2 Local flow field structure and decomposition

For the inference of properties from the optical flow field, it is useful to represent the

optical flow equation in terms of its partial derivatives. Taking a Taylor expansion

about the image origin, and assuming a locally smooth surface, the flow field is com-

monly expressed in terms of the first order derivatives of the flow field only. This

approximation is given by the affine transformation [Subbarao 1990]:

[

u

v

]

=

[

uo

vo

]

+

[

ux uy

vx vy

][

x

y

]

, (3.22)
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where

uo = −Tx

Zo
− ωy, vo = −

Ty

Zo
+ ωx,

ux = Tz

Zo
+ aTx

Zo
, uy = ωz + bTx

Zo
,

vx = −ωz + a
Ty

Zo
, vy = Tz

Zo
+ b

Ty

Zo
.

The 2×2 matrix in Equation 3.22 defines the velocity gradient tensor [Subbarao 1990].

It is in the decomposition of this matrix that the local differential invariants may be

derived. Koenderink and Van Doorn [1975] apply the Cauchy-Stokes decomposition

theorem [Aris 1962] which stipulates that any 2×2 matrix can be decomposed into the

sum of an antisymmetric matrix and a symmetric matrix such that:

[

ux uy

vx vy

]

=
1

2

[

0 uy − vx

−uy + vx 0

]

+
1

2

[

2ux uy + vx

uy + vx 2vy

]

. (3.23)

The symmetric matrix can be further decomposed into the sum of the multiples of the

identity matrix, I, and a symmetric matrix with zero trace, such that:

[

ux uy

vx vy

]

=
1

2

[

0 uy − vx

−uy + vx 0

]

+
1

2

[

ux + vy 0

0 ux + vy

]

+
1

2

[

ux − vy uy + vx

uy + vx −ux + vy

]

.

(3.24)

Factorising each of the matrices then yields:

[

ux uy

vx vy

]

=
curl

2

[

0 −1

1 0

]

+
div

2

[

1 0

0 1

]

+
def

2
S, (3.25)

where

div = ux + vy, (3.26)

curl = −uy + vx, (3.27)

def =
√

(uy + vx)2 + (ux − vy)2, (3.28)

and S is a symmetric matrix of zero trace and determinant −1. Notably, S has eigen-

values of 1 and −1, and mutually perpendicular eigenvectors [Cipolla and Blake 1997].
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Following Cipolla and Blake’s derivation, a rotation matrix, Q, may be applied such

that:

S = Q−1

[

1 0

0 −1

]

Q (3.29)

where

Q =

[

cos θ sin θ

− sin θ cos θ

]

, (3.30)

and θ is the angle of rotation.

Substituting back into Equation 3.25, we obtain [Cipolla and Blake 1997]:

[

ux uy

vx vy

]

=
div

2

[

1 0

0 1

]

+
curl

2

[

0 −1

1 0

]

+
def

2

[

cos 2θ sin 2θ

sin 2θ − cos 2θ

]

.

(3.31)

From this decomposition, the differential invariants: div (divergence), curl (vortic-

ity), and def (the magnitude of deformation, or the shear magnitude [Subbarao 1990])

are obtained. These invariants, all defined in terms of partial derivatives of the affine

flow field, are independent of the coordinate system [Koenderink and van Doorn 1976].

3.3.2.3 Relating differential invariants to 3D motion and structure

Each differential invariant is directly related to the 3D rigid motion and structure of the

scene. From Equations 3.22, we can express the differential invariants in terms of the 3D

motion and tangent plane orientation of a surface such that [Cipolla and Blake 1997]:

div =
2Tz

Zo
+
aTx + bTy

Zo
, (3.32)

curl = −2ωz +
(−bTx + aTy)

Zo
, (3.33)

def cos 2θ =
(aTx − bTy)

Zo

, (3.34)

def sin 2θ =
(bTx + aTy)

Zo
. (3.35)

Koenderink and Van Doorn [1975] derive the above relationships similarly for the
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unit sphere:

div(p̂) = −2
Tperp

R(p̂)
−

(

∇R(p̂)

R(p̂)
�

Tpar

R(p̂)

)

, (3.36)

curl(p̂) = 2ωperp +

∣

∣

∣

∣

∣

∇R(p̂)

R(p̂)
×
Tpar

R(p
¯
)

∣

∣

∣

∣

∣

, (3.37)

def(p̂) =
∣

∣

∣

∇R(p̂)

R(p̂)

∣

∣

∣

∣

∣

∣

Tpar

R(p̂)

∣

∣

∣
, (3.38)

where p̂ is a unit vector in the direction of the point P ∈ R
3, Tperp is the velocity

in the direction p̂ (i.e., perpendicular to the tangent plane at p̂), Tpar is the velocity

parallel to the local tangent plane at p̂, and ∇R denotes the depth gradient of the

surface about P .

3.3.2.4 Interpreting differential invariants

It is important to understand the geometric meaning of each differential invariant

derived above. Below we summarise how each invariant relates to motion and structure

in the 3D environment.

divergence (div) represents the isotropic expansion (or contraction) of a brightness

pattern within a local image patch about the image origin. Any velocity in the

direction p̂ results in a local expansion of optical flow about p̂. The rate of

this expansion is proportional to the scaled velocity, and thus reflects the rate

of approach of the surface projecting to p̂. Figure 3.2(a) shows an example of a

pure divergent flow field (i.e., curl = 0, def = 0).

curl represents a rigid rotation about the optical axis of the brightness pattern in the

neighbourhood of the optical axis. Thus, pure rotation of the scene about the

direction of view, p̂, produces curl. Figure 3.2(b) shows an example of the flow

field resulting from pure curl (i.e., div = 0, def = 0).

deformation (def) gives the magnitude of the pure shear of the brightness pattern

about p̂. This translates to a contraction in one direction, and an expansion in

an orthogonal direction. The magnitude of this deformation is determined by
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(a)div=1; curl = 0; def=0

(c) div = 0; curl = 0; def = 1 (d)div = 0; curl = 0; def = 1; (45 deg axis of expansion)

(b)div = 0; curl = 1; def = 0;

Figure 3.2: The elementary fields of optical flow: (a) divergence, (b) curl, (c) deformation

(θ = 0), (d) deformation (θ = 45o).
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the depth gradient of the surface patch projecting to the neighbourhood about

p̂ and the scaled velocity of the camera orthogonal to p̂ (i.e., parallel to the

image plane). The rotation angle, θ, used to form the deformation matrix in

Equation 3.31 corresponds with the direction of maximum expansion in the image.

Unlike the deformation magnitude, however, this angle depends on the choice of

coordinate system. Thus, only the deformation magnitude can be regarded as

differentially invariant [Koenderink and van Doorn 1976]. Figures 3.2(c) and (d)

show examples of flow fields resulting from pure deformation.

3.3.2.5 Coupling of deformation with divergence and curl

The measurement of div and curl in the image is subject to additional contributions

from the deformation of the local flow field. If fronto-parallel alignment exists, or

translational motion is only along the direction of view (i.e., p̂), then the deformation

term vanishes. However, due to the coupling of these two conditions in the deformation

magnitude, it is impossible to account for the contribution of deformation without

knowledge of, or assumptions on, the camera motion or local surface orientation. This

has significant implications for the extraction of unique quantities relating the local

motion parallax to surface structure and motion.

3.3.3 Closed-form solutions to local structure and motion

Early work in structure-from-motion was concerned primarily with developing closed-

form solutions to structure and motion parameters from local optical flow samples. In

the original formulation of the problem, Longuet-Higgins and Prazdny [1980] consider

the use of constraints provided by the partial derivatives of a local flow field patch to

solve for the six motion parameters: Tx, Ty, Tz, ωx, ωy, ωz, and the local surface gradient

(a, b). Given only six affine constraints (Equation 3.22), additional constraints, and/or

assumptions are required.

One option is to include second-order constraints from the flow field. Longuet-

Higgins and Prazdny [1980], for example, include two additional second-order con-

straints to provide eight equations. To further constrain the system, they exploit a

geometric property that image points lying on the line connecting the image origin and
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the direction of translation in the image will remain straight in subsequent time-steps.

For a non-planar surface, this line will be unique, and thus provides an additional

constraint on the translational components of motion.

Waxman and Ullman [1985] employ a system of twelve non-linear equations, includ-

ing second-order spatial gradients, to resolve the local structure of a curved surface.

To avoid solving the non-linear system, a rotation of the image coordinate system is

applied. This aligns the image axes with the direction of constant depth on the surface.

In addition to removing one of the surface coefficient unknowns, this transformation

linearises the constraint equations, allowing more easily obtainable solutions.

3.3.4 The planar surface ambiguity

Reliance on second-order constraints assumes sufficient local curvature of the surface. If

the surface is planar, second order gradients vanish, leaving only affine constraints, thus

yielding an under-constrained system. Even where curvature does exist, it is unlikely

that local curvature would be sufficient to support accurate estimates of second-order

gradients [Cipolla and Blake 1997]. Given real-world surfaces are often well approxi-

mated by piece-wise planar surfaces, it is important to consider structure-from-motion

for the planar case.

Multiple solutions exist if the surface is planar. Inspection of the deformation com-

ponent of the local flow field decomposition given in Equation 3.38 (and equivalently

Equations 3.34 and 3.35 for the perspective case) highlights the existence of dual so-

lutions. Specifically, the contributions of the scaled surface depth gradient, ∇R(p̂)
R(p̂) ,

and the parallel translation component,
Tpar

R(p̂) , are confounded in the total deforma-

tion component of the local flow field. A dual solution is obtained if their direction

is interchanged. Figure 3.3 illustrates this duality of solutions. Note that the same

duality is expressed in Equations 3.34 and 3.35 via θ, the angle of greatest extension

of deformation. This angle marks the bisection of the projected directions ∇R(p̂)
R(p̂) , and

Tpar

R(p̂) in the image.

Tsai and Huang [1981] were among the first to formally show that multiple solutions

to local structure and motion exist when the surface is planar. Subsequent work by

Longuet-Higgins [1984], and Waxman and Ullman [1985], have considered both the
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O

∇R(p̂)
R(p̂)

(a, b)
T

θ Tpar
R(p̂)

θTpar
R(p̂)

∇R(p̂)
R(p̂)

O

T

(a, b)

(b)

(a)

Figure 3.3: The planar ambiguity. The same deformation is generated by swapping the

direction of motion parallel to the image plane (i.e.,
Tpar

R(p̂) ) with the direction of the surface

gradient, as defined by the surface normal (a, b). Note the direction of maximum expansion, θ,

is the bisection of the angle between these directions, as shown by the dotted green line.
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number of solutions, and the specific cases under which a unique solution can be found,

or at least, chosen from a set of possible solutions.

3.3.4.1 Unique solutions for the planar case

In the case that Tz = 0, and both Tx and Ty are non-zero, a unique solution is ob-

tained [Waxman and Ullman 1985]. In addition, Equations 3.32 through 3.35 give rise

to two other distinct cases. Specifically, unique solutions are obtained when:

1. motion is only along the optical axis such that Tx = Ty = 0 and Tz 6= 0, or,

2. the surface is fronto-parallel with the image plane, such that (i.e., a = b = 0).

In both cases, the components of deformation vanish, thus resolving the surface gradient-

translation direction ambiguity.

Notably, a degenerate case exists when Tx = Ty = Tz = 0. In this case, the flow

field is pure rotation [Waxman and Ullman 1985]. While the motion parameters can

be uniquely determined, nothing can be inferred about surface structure.

3.3.4.2 Planar structure-from-motion under general motion

Where conditions for a unique solution cannot be met, researchers have considered

alternatives for obtaining workable solutions to local planar structure and motion.

Kanatani [1987] argues that spurious solutions to planar structure-from-motion are

removed if a pseudo-orthographic approximation of the optical flow is considered. Un-

der this approximation, the squared focal length terms in Equations 3.21 are omitted.

The removal of these terms effectively avoids the spurious solution, which Kanatani

shows to be present in the foreshortening effects of perspective projection. If the sur-

face is sufficiently far away, and projective distortion is small, the pseudo-orthographic

solution will correspond to the correct perspective solution.

Subbarao [1989] proposes a non-linear spatio-temporal system of equations by com-

bining the affine constraints (Equation 3.22) with temporal derivatives of the flow field.

The addition of temporal constraints relating the depth and temporal gradient of the

surface patch to the scene motion provide a sufficiently constrained system. The so-

lution assumes smoothness in scene depth, scene motion and deformation, as well as



§3.3 Inferring local structure and motion from optical flow 57

in local patches of optical flow. Under these assumptions, the system can be solved

in general, however, a number of degenerate cases exist. Specifically, if the surface is

fronto-parallel, or if translation is only along the optical axis or only parallel to the

image plane. Subbarao and Waxman [1986] show that unique solutions to the motion

and surface orientation parameters can be obtained for a planar surface if either suc-

cessive optical flow fields depicting the apparent motion of the plane are available, or,

two distinct planar patches are available.

3.3.5 Limitations of closed-form structure-from-motion

Closed-form solutions to structure-from-motion are primarily motivated by a need to

understand the theory underlying the estimation of scene structure and motion from

local properties of the optical flow field. However, there has been little success in

applying such techniques to real-time, real-world applications. This can be attributed

to a number of factors:

1. the system of equations to solve is typically non-linear, and therefore non-trivial

to solve [Aloimonos 1993b],

2. the motion and structure parameters are obtained locally, and generally as-

sume optical flow to provide a close approximation to the true motion field

[Verri and Poggio 1989], and

3. the non-linear system is inseparable, forcing motion and structure to be solved

simultaneously [Adiv 1985].

Such limitations can be alleviated if structure and motion parameters are estimated

from samples of the global flow field (or point correspondences). Specifically, the use

of global flow fields increases the availability of optical flow vectors from which to sam-

ple, providing greater robustness to measurement noise [Bruss and Horn 1983]. More

significantly, egomotion and scene structure can be solved separately [Adiv 1985], pro-

viding greater flexibility in the formulation of solutions. For structure-from-motion

based navigation, egomotion is typically estimated first, from which scene structure
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may be directly inferred. In the following sections we discuss techniques for estimating

egomotion and scene structure from the global optical flow field.

3.4 Egomotion estimation from optical flow

Numerous optical flow-based approaches have been proposed for estimating egomotion.

Techniques typically differ in both the order in which parameters are solved, and in

what (and how) features of the optical flow field are combined to obtain the solution.

3.4.1 Egomotion from global flow field samples

Bruss and Horn [1983] propose a least-squares framework for estimating egomotion

parameters from a system of seven equations. This is a global scheme which is ap-

plied over the entire flow field. While the equations relating camera translation are

non-linear, rotation constraints are linear and uniquely expressible in terms of camera

translation. A numerical solution (e.g., gradient-descent) is proposed to solve for the

translation parameters first.

Adiv [1985] proposes an alternative least-squares framework by subdividing the

flow field into patches, and estimating motion parameters for each patch. Optimal

local estimates are then combined to form surfaces undergoing the same motion. Adiv

applies the same least-squares residual function as Bruss and Horn, but avoids the use

of gradient-descent to solve for translation. Instead, a search over the entire solution

space of translation directions is applied. Image patches sharing the same solution are

then grouped together to form surfaces undergoing the same 3D motion. The technique

also handles multiple independently moving objects in the scene.

Heeger and Jepson [1992] form three sets of equations to solve for translation,

rotation and scene depth separately. Similar to Adiv, Heeger and Jepson subdivide the

image into patches to solve for scene translation locally, and then globally. Two schemes

are described for solving rotation. Taking the estimated translational parameters and

several samples of the optical flow field, rotation parameters may be estimated from

a least-squares minimisation over a linear constraint relating rotation parameters and

the flow field. Alternatively, rotation can be solved directly from a large set of linear
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equations relating 3D motion and depth to the optical flow. This has the advantage of

decoupling the estimation of translation and rotation, allowing for parallel computation.

Computational efficiency is the biggest drawback of the techniques described above.

In most cases, a least-squares minimisation is required, followed by the application of

an iterative numerical technique to solve the non-linear system. An additional issue

is avoiding local minima during the minimisation process. In the case of differential

motion between two frames, researchers have noted that this is particularly impor-

tant when camera translation is predominantly forward with respect to the image

plane [Chiuso et al. 2000; Oliensis 2005]. In this case, least-squares error functions

often contain numerous local minima. This has lead researchers to consider other

techniques for robustly estimating egomotion, capable of real-time performance.

3.4.2 Egomotion from the focus of expansion

An alternative approach is to make use of global invariants of the optical flow field.

One particular feature of the flow field of use to egomotion estimation is the focus of

expansion (FOE). Some of the earliest work in extracting properties of image motion

focussed on finding the FOE of the translational flow field.

3.4.2.1 FOE estimation

Given pure translational motion, the FOE is located at the intersection of the resulting

radial expansion of flow. Under general motion, however, the location of the FOE can-

not be assumed to be the direction of heading, and thus more sophisticated techniques

are required to extract the translational FOE for heading estimation.

Jain [1983] proposed one of the first methods for extracting the FOE from matched

features in consecutive frames. For each image location, the Euclidean distance to

feature locations are separately computed in both frames. The location yielding the

largest difference between these sums is taken to be the FOE. This technique, however,

assumes noiseless feature correlations.

Considering the extraction of the FOE from the optical flow field, Rieger and Law-

ton [1985] propose a scheme for estimating heading direction by examining flow vectors

at points of significant depth variation. At these locations, differences of flow vectors
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are computed within local patches, from which an average orientation of difference

vectors is obtained. Given sufficient depth variation within the patch, the resulting

difference vector orientation will be dominated by the translational component, and

thus will be approximately aligned with the translational flow field. A linear least-

squares minimisation is applied to estimate the intersection of translational motion

vectors.

Li [1992] proposes the use of higher-order flow field derivatives to obtain linear

constraints on the translational motion of the camera. A least-squares solution for the

translational motion is then obtained from the globally defined constraints. Li notes

that by considering the translational motion in the image domain, similar constraints

can be obtained to locate the FOE.

Sazbon et al. [2004] present a two stage technique for estimating the FOE. A

matched filter, F , of specified size (typically 7 × 7) is applied across the flow image.

The FOE is chosen as the image location that minimises a sum of squared difference

error function with F . To account for erroneous flow estimates, a weighting function

based on the flow vector magnitude is used as a measure of confidence, which may then

be thresholded.

3.4.2.2 Structure and egomotion from the FOE

Numerous systems (including some described above) have applied FOE estimation to

full egomotion and/or scene structure recovery. In some cases, structure-from-motion

recovery is combined with the estimation of the translational FOE providing further

constraints on its possible location. Negahdaripour [1996], for example, estimate the

FOE by combining spatio-temporal derivatives of the image function with a depth

positivity constraint applied over candidate depth maps from a set of possible trans-

lational motion parameters. The technique exploits a previous result reported by Ne-

gahdaripour and Horn [1989] showing that several arbitrarily chosen camera motions

provide a strong constraint on the true motion of the camera, and hence the true FOE.

Minimisation of the depth positivity constraint enforces the condition that the depth

of any scene point projecting into the image must necessarily be positive to be visible.

Other techniques such as those described by Joarder and Raviv [1994], and McQuirk et
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al. [1998], have also combined depth map estimation and the use of a depth positivity

constraint to estimate the FOE. In general, such techniques require sufficient texture

across the view field to apply the constraint.

Srinivasan [1999, 2000] estimates the translational FOE in conjunction with camera

rotation and inverse depth, but without explicit use of the depth positivity constraint.

From a set of candidate FOE locations, a linear system of equations relating all the un-

knowns is formed. A least-squares error function is then computed for each candidate,

from which an error surface is formed and minima located, providing an estimate of

the FOE location. Ego-rotation and inverse depth are then obtained by solving linear

equations.

Branca et al. [2000] estimate the FOE location by first recovering the camera’s

egomotion parameters. A sparse displacement field is decomposed into a linear com-

bination of six elementary fields, each corresponding to one of the six 3D motion pa-

rameters. A global minimisation is then applied to obtain weights for each elementary

field, thus providing solutions for each of the 3D motion parameters, and the location

of the FOE. The FOE is used to steer a mobile platform undergoing planar motion,

using images from a forward facing camera. The time-to-contact with surfaces project-

ing onto the FOE is also obtained from the egomotion parameters. In Chapter 4 we

discuss the role of FOE estimation for time-to-contact and collision avoidance in more

detail.

3.5 Robust depth map recovery

The second task of conventional structure-from-motion based navigation is the infer-

ence of egocentric scene structure. Given robust egomotion estimation and a noiseless

optical flow field, the scaled depth of projected points in the scene can be directly

obtained from Equation 3.12. In practise, however, obtaining accurate depth maps

across the field of view is impeded by measurement noise, egomotion estimation error,

and incompleteness due to lack of scene texture or feature-points. In addition, ensur-

ing temporal consistency between recovered depth maps poses a significant issue for

navigation.
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Where depth maps are consolidated or interpreted discretely over time, temporal

filtering is typically applied. Matthies et al. [1989], for example, apply Kalman filtering

to provide predictions of depth for each image location. This prediction is combined

with direct depth estimates obtained from optical flow to obtain an overall depth

estimate for each image location. Bolles et al. [1987] combine feature tracking and the

known motion of the camera. More recently, Hung and Ho [1999] apply a Kalman

filter using derivatives of the image intensity function to obtain depth maps. At each

time step, the known camera translation is used to warp the previous depth map,

and obtain new depth values at each point. Results indicate that, with smoothing,

reasonable depth estimates can be obtained. Jamal and Venkatesh [2007] estimate

depth maps from a proposed colour-based optical flow estimation technique. To account

for rotation they maintain an active camera alignment with the direction of motion.

Kalman filtering is again applied during depth recovery. The system assumes planar

motion, thereby linearising the motion equations.

3.6 Real-time structure-from-motion for navigation

Despite significant work in structure and egomotion recovery, few systems apply such

techniques to real-time navigation tasks. By introducing various assumptions, or relax-

ing the need for the on-line maintenance of dense 3D reconstructions in world coordinate

frame, techniques adapting the classical structure-from-motion approach have been ap-

plied to mapping and navigation tasks, with the potential for real-time application. We

provide an overview of recent work towards this goal below.

3.6.1 Example systems

Nister [2003] proposes a real-time structure-from-motion scheme for estimating camera

motion via feature-points under a Random Sample Consensus (RANSAC) [Fischler and Bolles 1981]

framework. Pre-emptive hypothesis testing is applied prior to the application of RANSAC,

thus reducing the sample size, and improving the quality of hypotheses to score. The

total number of hypotheses is set a priori, allowing them to be computed prior to the

application of RANSAC. Nister et al. [2004] apply this scheme to the task of general
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motion estimation (referred to as visual odometry). While it does not explicitly main-

tain an absolute world model of the environment, a map of the vehicle’s travelled path

is maintained within a single coordinate frame, making obstacle mapping possible.

Mouragnon et al. [2006] apply bundle adjustment incrementally to obtain 3D re-

constructions at a significantly faster rate than the classical approach. For each new

frame, the camera pose is computed with respect to the previous reconstruction. New

points are then matched and reconstructed, after which a local bundle adjustment is

applied to refine the model. The method is demonstrated to achieve reasonably accu-

rate localisation estimates over real-world sequences. Whilst the algorithm does not

currently support real-time application, such potential is evident.

Assuming camera pose is known, Akbarzadeh et al. [2006] report close to real-time

performance when obtaining dense reconstructions of urban environments. Data from

an on-board global positioning system (GPS) and inertial navigation systems (INS)

are fused with a sparse reconstruction from multiple onboard cameras to produce geo-

registered 3D maps. A dense reconstruction is then obtained using depth estimates

acquired from stereo matching.

Lee et al. [2008] propose a scheme for estimating depth from probability distribu-

tions of optical flow at specific feature locations. By examining local image intensities,

optical flow estimation is accompanied by a Gaussian probability distribution. This

distribution is then incorporated into the cost function of a least-squares minimisation

scheme to recover egomotion parameters, and the scene depth. The scheme demon-

strates adequate robustness to support basic obstacle avoidance over real images ac-

quired from an aerial vehicle. While the approach offers potential real-time application,

the computation of probability distributions and minimisation place restrictions on the

resolution of the resulting depth maps.

Techniques such as those outlined by Chiuso et al. [2000] and Jin et al. [2000], do not

explicitly apply structure-from-motion solutions to navigation, but offer the potential

for real-time performance. They apply nonlinear filtering over feature-point correla-

tions to achieve robust estimates of structure and motion. Chiuso et al. [2000] address

the specific issue of handling occlusions during the temporal filtering process. The

authors report strong performances if sufficient feature-points exist and displacements
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are small with respect to frame rate.

3.6.2 Summary of structure-from-motion based navigation

There currently exists no structure-from-motion based scheme capable of supporting

robust real-time depth map recovery from dense optical flow estimation in the control

loop. Existing navigation systems make use of discrete feature-matching to estimate

the motion field, and sparse displacement fields to facilitate the accurate and efficient

egomotion recovery. These systems do not attempt to recover detailed egocentric depth

maps of the environment online. To support general navigation, both accurate egomo-

tion and detailed depth map estimation is necessary.

3.7 Issues for structure-from-motion recovery

3.7.1 Flow field noise

As discussed in Section 3.2, optical flow estimation is inherently ill-posed by virtue

of the aperture problem. Thus, noise free image motion estimation is an unrealis-

tic assumption, and one that has impeded the practical application of early solutions

to the structure-from-motion problem. While current systems, in general, do not as-

sume noiseless motion estimation, the techniques employed to handle outliers typi-

cally require significant computation, and do not necessarily handle the general case.

Adiv [1989], for example, notes that under certain conditions, flow field noise introduces

inherent ambiguities in structure-from-motion solutions. These conditions include:

• a small field of view,

• fronto-parallel or moderately tilted planar surfaces,

• low translation with respect to depth in the scene,

• a sparse flow field,

• coarse image resolution, and

• noise in adjacent flow vectors being highly correlated.
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translation rotation

Figure 3.4: A graphical depiction of the translation-rotation ambiguity. The left image shows

the flow field resulting from a translation parallel to the X axis; the right image, a rotation about

the Y axis. Flow vectors within the central rectangular regions highlight the close resemblance

of both flow field patterns when the field of view is small.

Subsequent work by Young and Chellapa [1992] has verified these findings via a statisti-

cal analysis of error variances. However, Young and Chellapa show that the application

of smoothness constraints during optical flow estimation may reduce the inherent un-

certainty in structure-from-motion solutions.

Other studies highlight inherent errors in optical flow estimation itself. Fermüller

et al. [2001] present an analysis of the statistical bias apparent in local gradient-based

estimates of optical flow. Specifically, noise effected gradient estimates are shown to

introduce systematic bias that depends on the direction of the flow vector and the

distribution of gradient directions and noise. This is shown to be true even in regions

where flow is constant, and effects the estimation of both magnitude and direction of

the flow vector. Ng and Solo [2001] also note that statistical errors are introduced via

finite differencing to obtain image gradient estimates. This is an instance of the error-

in-variable problem, whereby variables from which a model is obtained, contain errors.

Typically, to estimate optical flow from image gradients in local patches, least-squares

minimisation is applied. Such techniques assume independence in errors between pixels.

In general, however, this is not the case.
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3.7.2 Translation-rotation ambiguity

Researchers have noted particular difficulties when the field of view is narrow [Adiv 1989;

Verri and Poggio 1989; Daniilidis and Nagel 1993; Fermüller et al. 2001]. This is at-

tributed to an increased coupling between translation and rotation. The ambiguity

can be easily visualised when considering the local interpretation of optical flow in-

duced by the translation of the camera in, say, the X direction. Determining whether

the resulting horizontal flow vectors are due to a translation in X, or a rotation about

Y is difficult (see Figure 3.4). This potential ambiguity is also expressed in the first

two constraints of Equations 3.22, where the same value of uo and vo can result from

a translation in X or Y , or a rotation in Y or X respectively.

For this reason, many structure-from-motion based navigation systems either as-

sume pure translational motion of the sensor (e.g., Chahl and Srinivasan [1997]), or

apply planar models to extract surfaces from the scene (e.g., Santos-Victor and San-

dini [1997]). While de-rotation algorithms exist, these are largely constrained to a

single rotation, or are not fast or robust enough for real-time depth mapping. To

generate full 3D depth maps from optical flow, under general motion, an egomotion

estimation strategy must solve for all rotational components. To obtain workable depth

maps for navigation from flow, the algorithm must be sufficiently accurate, and must

provide dense depth map recovery in real-time. Under perspective projection, no such

technique has been demonstrated.

3.7.3 Qualitative versus quantitative structure from motion

As noted above, the presence of noise in the optical flow field introduces significant

difficulties for uniquely determining structure and motion from optical flow. Based on

these observations, Verri and Poggio [1989] argue against the use of optical flow for

quantitatively estimating 3D motion and structure parameters. Through an analysis

of surface irradiance and its effects on the estimated optical flow field, they show that

the optical flow field and the true motion field (i.e., the motion field resulting from the

projection of 3D velocities into the image plane) do not, in general, coincide. Indeed,

the two align only when a surface with Lambertion reflectance is undergoing pure
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translation under uniform, fixed illumination. For this reason, Verri and Poggio assert

that structure-from-motion methods that rely on local estimates of the optical flow

field are unlikely to be accurate.

3.8 Insect-inspired structure-from-motion for navigation

Traditionally, a perspective camera model has been used when inferring scene structure

from optical flow. This is in contrast to insect vision, where the compound eye structure

of most insects provides an almost global view of the scene [Chahl and Srinivasan 1997].

There is a growing body of theoretical work suggesting a near global field of view, often

described by a spherical projection model, may offer distinct advantages when infer-

ring scene structure and self-motion from optical flow [Fermüller and Aloimonos 2000].

Below, we overview arguments and motivate consideration of a spherical projection

model for structure-from-motion recovery for navigation.

3.8.1 Geometric advantages of spherical projection

Geometric properties of the sphere have been shown to facilitate more efficient and

robust interpretations of optical flow. For example, Brodsky et al. [1998] show that on

a full view sphere, optical flow can be unambiguously interpreted on the basis of the

direction of flow vectors alone. Given a hemispherical projection, two different rigid

translations and rotations cannot induce the same motion field on the sphere unless

the plane of the translational vectors of both motions is perpendicular to the plane

of rotational vectors of both motions. Allowing the use of flow magnitude, however,

provides an unambiguous interpretation of the flow field given a hemispherical view.

Fermüller and Aloimonos [1998] show that depth maps generated under a spherical

projection model are inherently more stable than under perspective projection. Sta-

bility is measured on the satisfaction of positive depth across the field of view. Under

perspective projection, depth map distortion introduced via errors in estimated egomo-

tion parameters is shown to be dependent on the relative orientation of the translational

and rotational axes. In contrast, depth map distortions resulting from the same error

under spherical projection are not effected by their relative orientation. Thus, the best
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achievable depth map under spherical projection is obtained by assuming de-rotation

is correct.

3.8.2 Estimating egomotion from spherical optical flow

The view sphere has been identified as providing particular advantages for the estima-

tion of egomotion. In early theoretical work, Nelson and Aloimonos [1988] highlight

three key geometric properties of optical flow on the sphere that may be exploited to

recover egomotion:

1. the component of flow parallel to any great circle is effected only by the rotational

component about its perpendicular axis, thus decoupling it from rotations about

orthogonal axes.

2. under pure translation, both the FOE and the focus of contraction (FOC) will be

located at antipodal points on the sphere, and will evenly partition flow along any

great circle connecting these two points, into two distinct directions of motion

(i.e., clockwise and counter-clockwise).

3. the existence of any rotational motion along a great circle causes the FOE and

FOC to converge, thus ensuring the two points will only lie at antipodal locations

under pure translation.

The first observation indicates that each component of rotation can be resolved

independently, and thus each may be considered in turn. Observations 2 and 3 sug-

gest a simple search strategy over a range of possible rotations can be employed to

recover the rotation about the axis of the great circle under consideration. After de-

rotation, the direction of translation is given by the line passing through the FOE and

FOC. While simulation and some theoretical analysis of the algorithm’s performance is

given, no published results report this algorithm’s application to real-time navigation

tasks, over real image sequences. In this thesis, we consider the possible application of

this algorithm for the generation of real-time 3D depth maps in real-time to support

structure-from-motion for navigation (Chapter 7).
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Recently, Lim and Barnes [2007, 2008] have proposed techniques for recovering

egomotion on the view sphere, by examining the direction of optical flow vectors at

antipodal points on the view sphere. Examination of the direction of flow vectors

at antipodal points provides a constraint on the possible directions of camera motion.

Taking many such antipodal flow vector samples provides further constraints on this sub

region, leading to a consensus-based estimate of egomotion. The key advantage of this

approach is that it avoids searching the motion parameter space, and provides increased

robustness to erroneous flow estimates. A practical drawback of the technique, however,

is the explicit requirement for correspondences of flow vectors at antipodal points within

the image. This may be problematic in environments where significant portions of

the scene are featureless (e.g., flying above a planar surface or moving alongside a

featureless wall).

3.8.3 Summary of insect-inspired structure-from-motion

Despite strong theoretical justification for the use of a spherical projection model in

structure-from-motion recovery, practical applications of the approach are only be-

ginning to be explored. Recent examples include Maddern and Wyeth [2008], who

describe the design of a hemispherical compound optical flow sensor to support robust

3D egomotion on a miniature aerial vehicle. Dengate et al. [2008] consider the use of a

hemispherical camera for self-motion recovery in a wearable low-vision assistive device.

There remains, however, a need for further experimental validation of the theoretically

identified geometric and computational advantages of a spherical projection model for

structure-from-motion. In addition, there is a need for consideration of potential gains

under other systems of flow-based visual navigation such as visuo-motor control.

3.9 Summary

In this chapter we have reviewed work in the estimation of optical flow and the inter-

pretation of scene structure and self-motion from the optical flow field. Specifically, we

have derived the differential invariants of the local affine flow field: div, def and curl,

and their respective relationships with local motion and structure in the scene. These
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Table 3.1: Summary of Structure-from-motion (SFM) techniques discussed in this chapter.

SFM Solution Data References

Closed-loop
local SFM

Optical flow +
differentials

Koenderink and Van Doorn [1975][1976],
Longuet-Higgins [1984] and
Prazdny [1980], Waxman and
Ullman [1985], Kanatani [1987],
Subbarao [1989][1990], Cipolla and
Blake [1997]

Feature points Tsai and Huang [1981],
Longuet-Higgins [1981]

Egomotion Optical flow field Bruss and Horn [1983], Adiv [1985],
Heeger and Jepson [1992], Chiuso et
al. [2000], Oliensis [2005]

Optical flow (FOE) Jain [1983], Rieger and Lawton [1985],
Negahdaripour and Horn [1989],
Li [1992], Sazbon et al. [2004],
Joarder and Raviv [1994]

Optical flow (FOE
+ depth constraint)

Negahdaripour [1996], McQuirk et
al. [1998], Srinivasan et al. [1999][2000],
Branca et al. [2000]

Omni-visual flow Nelson and aloimonos [1988],
Lim and Barnes [2007][2008], Maddern
and Wyeth [2008], Dengate et al. [2008]

Depth map
(given
egomotion)

flow + filtering Matthies et al. [1989],
Hung and Ho [1999],
Jamal and Venkatesh [2007]

1D Omni-visual flow Chahl and Srinivasan [1997]

Feature points +
filtering

Bolles et al. [1987]

SFM for
navigation

Sparse optical flow Lee et al. [2008]

Feature points Nister [2003][2004], Chiuso et al. [2000],
Jin et al. [2000], Mouragnon et al. [2006]

Feature points +
INS/GPS

Pollefeys et al. [2008]

Full omni-visual flow Chapter 7

relationships provide the foundations of the major contributions of this thesis.

We have considered navigation in the context of structure-from-motion, via the
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explicit estimation of egomotion and scene structure parameters. Table 3.1 provides a

summary of all the structure-from-motion techniques discussed in this chapter. Despite

continuing improvements in structure-from-motion techniques for real-time applica-

tions, there currently exist no reported work demonstrating full structure-from-motion

recovery from dense optical flow capable of supporting navigation in the control loop.

Chapter 7 of this thesis (referred to in last row of Table 3.1) addresses this need by

proposing a new structure-from-motion scheme using dense optical flow under a spher-

ical projection model. To this end, we have reviewed theoretical arguments in favour

of a spherical projection model.

In the next chapter we consider the application of optical flow in the control loop

under a visuo-motor control framework. In particular, we motivate and examine the

use of time-to-contact as an important visual quantity for visuo-motor control.
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Chapter 4

Time-to-contact for visuo-motor

control

4.1 Introduction

We have now motivated the use of optical flow for visual contact estimation and ex-

plored techniques for inferring scene structure and egomotion from the optical flow

field. In particular, we considered visual navigation using general solutions to the

structure-from-motion problem, highlighting inherent issues impeding the general ap-

plication of the methodology to real-time navigation tasks. As an alternative approach

to visual contact estimation, we now consider the use of optical flow for inferring

time-to-contact. In particular, we focus on the role of time-to-contact in supporting

visuo-motor navigation tasks such as collision avoidance, docking and landing.

The contributions of this thesis are primarily concerned with the robust estimation

and use of time-to-contact as an input to visuo-motor control. In this chapter we review

the underlying theory of time-to-contact estimation, and previous work demonstrating

its application to vision-guided navigation. We focus specifically on tasks requiring

fine motion control such as landing and docking, for which the demands on robust

estimates of time-to-contact are high. We argue that current time-to-contact estimation

techniques do not provide sufficient robustness, or generality of application, to support

such tasks.

The chapter is structured as follows. Section 4.2 defines and motivates the use of

time-to-contact over traditional structure-from-motion solutions. Section 4.3 provides

an explicit derivation of time-to-contact from local flow field differential invariants.

73
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Section 4.4 discusses techniques for estimating time-to-contact before discussing its

application to collision avoidance in Section 4.5, and controlled surface approaches

(i.e., docking and landing) in Section 4.6. Section 4.7 discusses current issues in esti-

mating and applying time-to-contact to such tasks. A chapter summary is provided in

Section 4.8.

4.2 Time-to-contact

4.2.1 Definition and motivation

Time-to-contact (often referred to as τ) is defined as the ratio of surface distance to

velocity towards the surface [Lee 1976]. Thus, for a pinhole camera translating along

its optical axis, the time-to-contact is defined as:

τ =
Zo

Tz
, (4.1)

where Zo is the distance to the surface, and Tz is the velocity towards the surface (or

analogously, the surface towards the camera).

A key motivation for computing time-to-contact is that it may be recovered without

the need for solving the complete structure-from-motion problem. Rather, time-to-

contact is a directly measurable cue from local differential invariants of optical flow.

In contrast to the scaled depth of points in the scene, time-to-contact shifts the unit of

measure from a spatial metric to a temporal one. Thus, surface distances are measured

in terms of the time it would take to collide with that surface, given the instantaneous

component of the observer’s velocity in that direction.

Measuring proximity in this way has important implications for motion control

design. Most significantly, the cue directly relates the observer’s motion to the scene

structure without any requirement for the explicit recovery of the observer’s direction of

heading. In addition, measuring proximity in temporal units provides a more intuitive

means in which to make control adjustments such as the speed of approach. A temporal

unit of distance measure also satisfies the need for a predictive cue upon which to base

motor control adjustments.
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4.2.2 Biological support

There is strong evidence in support of time-to-contact as a fundamental visual cue for

motor control across a wide range of animal species. Studies of locusts and other flying

insects have highlighted selective neural responses to looming visual stimuli enabling

evasive actions to avoid collision [Rind 1997; Robertson and Johnson 1993]. Neural

mechanisms have also been identified to control motor actions during approaches to-

wards surfaces in flies [Wagner 1982], and in birds such as gannets [Lee and Reddish 1981],

and pigeons [Lee et al. 1993]. In all cases, the neural response has been shown to di-

rectly correspond with visual looming. How time-to-contact is perceived in primate

vision is less understood, though the underlying sensory cues and associated neural

mechanisms have been given considerable attention [Lappe 2004].

4.3 Inferring time-to-contact from optical flow

Subbarao [1990] was the first to provide an explicit derivation of time-to-contact from

local flow field differential invariants. For completeness, we provide an overview of the

derivation here.

Recall the decomposition of a local optical flow patch into the differential invariants:

div, curl and def, defined in Equations 3.25. Recall also, Equations 3.32-3.35, which

express these invariants in terms of the 3D motion and structure of a piece-wise planar

surface projecting to a small patch about the image origin.

We re-define the scaled parallel components of translational motion such that:

Tx

Zo

= m cos(ψ)
Ty

Zo

= m sin(ψ), (4.2)

where m is the signed magnitude of parallel translation, and ψ is the direction of the

parallel translation in the image plane. Similarly, we redefine the direction of the depth

gradient of the planar surface such that:

a = f cos(φ) b = f sin(φ), (4.3)
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where φ is the direction of the depth gradient parallel to the image plane, and f is the

signed magnitude of the depth gradient. Substituting the above into Equation 3.32,

we obtain:

div =
2Tz

Zo
+mf

(

cosψ cosφ+ sinψ sinφ
)

=
2Tz

Zo

+mf cos(ψ − φ). (4.4)

With simple algebraic manipulation, we obtain the following equation:

Tz

Zo

= −
1

2

[

div +mf cos(ψ − φ)
]

, (4.5)

thus defining the recipricol of the time-to-contact.

The above highlights an example of the deformation induced ambiguity when infer-

ring structure and motion quantities from the divergence. Without knowledge of either

the surface gradient direction in the image (φ), or the direction of translational motion

in the image (ψ), it is not possible to calculate this term precisely. Noting, however,

that −1 ≤ cos(ψ − φ) ≤ 1, we may define τ as a bound, such that [Subbarao 1990]:

1

2

(

div− def

)

≤ τ−1 ≤
1

2

(

div + def

)

. (4.6)

Given div and def are both defined in terms of first-order partial derivatives

of flow, we may define the bound on τ in terms of these measurable visual quanti-

ties [Subbarao 1990]:

1

2

(

ux+vy−
√

(uy + vx)2 + (ux − vy)2
)

≤ τ−1 ≤
1

2

(

ux+vy+
√

(uy + vx)2 + (ux − vy)2
)

.

(4.7)

4.3.1 Generalising time-to-contact to any viewing direction

In this thesis, we consider time-to-contact estimation at locations across entire viewing

areas, and under both a perspective and spherical projection model. Equation 4.7,

however, defines the bound on time-to-contact along the viewing direction only. Thus,

given an image under perspective projection, the bound is only valid along the optical
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axis. To consider time-to-contact estimation along different visual angles, a generalised

definition of time-to-contact (Equation 4.1) is required.

Addressing this issue, Colombo [1999, 2000] shows that a bound for time-to-contact

can always be computed, regardless of the field of view, if time-to-contact is redefined to

encompass the non-decoupled total relative velocity of the surface and camera. Specif-

ically, if Ṗ is the total velocity of a point P , such that Ṗ = Tp +Ωp, Colombo redefines

time-to-contact under perspective projection as:

τp =
Pz

|Ṗ | cos β
, (4.8)

where β is the angle between the visual ray passing through P , and the optical axis,

and Pz is the depth of the point in the direction parallel to the optical axis. In addition,

Colombo defines time-to-contact under a spherical projection model as:

τs =
|P |

Ṗ � r
, (4.9)

where |P | is the radial distance to a surface point projecting to a location, r, on the

image sphere. τs provides a radial definition of time-to-contact. Note that computing

τp within the tangent plane about r yields the same definition of time-to-contact. This

yields two important implications: (i), a bound on τs will always exist, and is defined

as in Equation 4.6 within the local tangent plane; and (ii), by mapping this bound to

a tangent perspective image plane to the sphere, a bound for τp can also be computed

for any viewing direction.

Another significant contribution of these definitions is that a clear distinction be-

tween time-to-contact and scaled depth is provided. While time-to-contact and scaled

depth are the same along the optical axis, these quantities diverge rapidly for points

away from the image centre.

4.4 Computing time-to-contact

Numerous approaches have been adopted for computing time-to-contact. We review

the major classes of techniques applied below.
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4.4.1 Time-to-contact from flow field models and approximations

To avoid the overheads of computing full optical flow fields, many early time-to-contact

estimation techniques made use of flow approximation models. Most commonly, these

approximations are used to generate motion models for surfaces in the scene, from

which time-to-contact can be estimated.

Meyer [1994] assumes planar motion to obtain first order image motion parameters

for a smooth, rigid surface in relative motion with respect to the camera. From this, an

equation is derived for estimating time-to-contact for any point in the image in terms

of the first-order coefficients of the flow field and the surface orientation parameters.

Meyer notes that the surface orientation parameters cannot be recovered given only

forward translational motion of the camera. To obtain the first-order flow coefficients, a

multi-resolution scheme is used to refine the estimate of the six parameters. Considering

the constraint for every point in the local region provides an over-constrained system of

linear equations, which can then be solved using least squares. The proposed method

assumes the vertical component of the motion field is zero. This assumption, however,

will only hold if the camera’s optical axis is parallel to the ground plane.

Assuming a flat ground plane, Santos-Victor and Sandini [1996] apply a model-

based approach to estimate the range of surfaces lying on the ground plane. Using

knowledge of the geometrical arrangement of a camera at a fixed and calibrated angle

with respect to the ground plane, obstacles are detected as regions of the image where

the estimated ground plane motion model is violated. This is demonstrated through a

a simple obstacle avoidance strategy for a mobile robot.

Applying a similar approach, Lourakis and Orphanoudakis [1999] propose a tech-

nique for computing time-to-contact for obstacles on the ground plane. The technique

estimates a motion model for the ground plane from the optical flow, and then sub-

tracts the ground plane motion from the estimated optical flow, yielding regions where

obstacles exist. Using the motion model, time-to-contact is computed for points on the

ground plane. Planar parallax is then employed to estimate time-to-contact for points

off the ground plane. The technique is demonstrated to robustly estimate time-to-

contact with obstacles across a real image sequence. The technique assumes a planar
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ground, and requires that this surface remain sufficiently visible in the image. Thus,

the technique is only valid for collision avoidance tasks.

Arnspang et al. [1995] combine estimates of optic acceleration with the normal flow

field to estimate time-to-contact along curve segments in the image. The use of curves

circumvents the aperture problem, allowing use of the normal flow field.

The most significant drawback of model-based time-to-contact estimation is the

requirement for recovering structure-from-motion parameters in order to solve for time-

to-contact. Such techniques typically impose restrictions on camera motion to avoid

recovering full structure-from-motion solutions.

4.4.2 Time-to-contact from closed-contours

4.4.2.1 Green’s theorem

Time-to-contact can be estimated by examining the temporal changes in the moments

of area of a closed-contour. Such techniques are based on Green’s theorem [Kaplan 1991],

which provides a means of estimating the divergence of a region without the explicit

computation of optical flow.

Given a projected surface patch, S ∈ R
3, whose image is bounded by a closed

contour, C ∈ R
2, and with a flow field, ~U ∈ R

2, defined continuously across S, Green’s

theorem states that the integral of flow vectors along C in the direction of the normal

to C, is equal to the integral of the divergence of flow vectors defined on S. That is, the

average divergence of the surface patch S can be obtained by summing normal vectors

along C. This can be expressed as:

∫ ∫

S

div ~U ds =

∮

C

~U � ~n dl, (4.10)

where ~n is a component of flow normal to C, ds is an element of S and dl is an element

of C [Duric et al. 1999]. The average time-to-contact for the surface patch is simply

the recipricol of this summation [Duric et al. 1999]. Figure 4.1 shows this graphically.
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C

U

Figure 4.1: Green’s theorem applied to the computation of divergence. The average divergence

of the optical flow, ~U, within the closed contour, C, is given by the integral of the components

of flow normal, ~n to C, along C.

4.4.2.2 Closed-contour examples

Maybank [1987] was the first to apply Green’s theorem to the estimation of the rate-

of-approach. He shows that for a small image patch, the rate of change of the apparent

area of a rigidly moving object can be expressed as an integral, from which an approxi-

mation to the time-to-contact of the object can be obtained if the axis of motion passes

through the patch. The same approximation is obtained using the divergence of the

flow field within the patch.

Cipolla and Blake [1997] propose a technique for estimating surface orientation and

time-to-contact by examining temporal changes in the moments of area of a closed-

contour. Closed-contours are tracked via B-spline snake control points, which after an

initial radial search from the image centre to find contour points, are then tracked via
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the image motion. While local affine approximations of the flow field do not provide

sufficient constraints upon which to recover full motion and structure, Cipolla and

Blake augment this with additional constraints. Specifically, they assume that the

direction of translation is deliberate, and therefore known. This assumption resolves

the planar deformation ambiguity. Experiments demonstrate the application of the

time-to-contact estimation scheme for computing the proximity of approaching objects,

performing a controlled approach to a surface, using the divergence for time-to-contact

estimation, and the deformation to align the camera fronto-parallel with the surface.

Duric et al. [1999] consider the estimation of the average rate of approach (i.e., τ−1)

for a closed surface patch on the view sphere, from the expansion of the patch. Using

Green’s theorem, they derive an equation relating the average τ−1 of a surface patch in

the scene to the orientation of the surface patch, and the integral of the normal motion

field along the boundary of the spherically projected patch. From this, a desired upper

bound on the rate of approach of the patch with respect to the area of the closed patch

is derived.

Di Marco et al. [2003] propose a set-theoretic approach to closed-contour time-

to-contact estimation. Temporal changes of the contour region are tracked via the

recursive application of a set membership filter. At each time step, the filter com-

putes a set of state vectors (i.e., affine transformation parameters of the region, and

their time derivatives) consistent with current measurements and previously computed

state approximations. Time-to-contact is then computed from a central estimate of

possible state vectors. The spread of possible state vectors gives a direct indication of

uncertainty in the estimate. Results indicate some sensitivity to initial value choices,

however, the algorithm is capable of detecting when time-to-contact estimates fall out-

side the error bounds.

Closed-contour time-to-contact techniques are generally motivated by a desire to

avoid computing optical flow explicitly. It is important to note, however, that Green’s

theorem provides only an affine approximation to the projected surface deformation. In

small regions, affine models provide an adequate approximation of non-planar surfaces.

However, such models are likely to break down as the surface draws closer, particularly

if the approach is non fronto-parallel with the surface tangent plane. An additional
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issue is finding a closed contour to track when in close proximity with a surface. If

the field of view is restricted, then closed-contour regions are likely to grow larger than

the image plane. Thus, closed-contour time-to-contact estimation may be ill-suited to

tasks requiring fine motion control in close proximity with a surface.

4.4.3 Time-to-contact from space-variant maps/sensors

Light receptors of the human retina are not uniformly distributed. Rather, they are

at highest density about the fovea (effectively the eye’s optical axis), and decreasingly

so at locations radially away from this point [Tistarelli and Sandini 1993]. Researchers

have attempted to mimic this topology via the use of space-variant sensors, or map-

pings, where the sampling distance between pixels is linearly increased away from the

projective centre. A common representation of the mapping is on a Cartesian plane,

where the dimensions represent both components of the polar coordinates of each pixel.

Thus, one dimension represents the radial position of a pixel with respect to the fovea,

and the other, its angular position on a circle centred on the fovea.

Tistarelli and Sandini [1993] argue that considering optical flow under such a repre-

sentation holds particular advantages for the estimation of time-to-contact. Specifically,

they show that a direct estimate of the time-to-contact can be obtained for any surface

orientation (i.e., not just the bounds) by considering the partial derivatives of flow in

the radial direction of the mapping. It is shown that only the radial component of

motion relates to the time-to-contact, and is equivalent to estimating the flow field

divergence. Notably, however, their derivation of time-to-contact assumes the surface

gradient is locally zero. This effectively assumes the surface is fronto-parallel at each

imaged point, and thus cannot provide a precise time-to-contact estimate for inclined

surfaces away from the projective centre [Colombo 2000].

It is important to note that while such foveated representations do provide particu-

lar advantages, these are typically of more relevance to fixation-based approaches. The

inherent assumption of this representation is that a single point in the field of view

represents the point of interest, or at least, that there is some capability of fixating on

such a point. Where points of interest are potentially numerous, more globally constant

representations are likely to be more appropriate.
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4.5 Time-to-contact for collision avoidance

The primary use of time-to-contact in robot navigation has been to facilitate obstacle

avoidance. We review existing techniques for achieving this below. We limit our review

to techniques that estimate time-to-contact directly from visual motion information.

Nelson and Aloimonos [1989] were first to implement a simple obstacle avoidance

algorithm using flow divergence for a camera mounted on a robot arm. The camera

is guided between two obstacles by orienting motion towards areas of minimal flow

divergence. The motion of the sensor is not continuous, having to pause before each

directional update.

Ancona and Poggio [1993] propose a simple 1D correlation-based approximation

method for estimating the elementary motion components of a linear optical flow field.

Assuming translational motion only, they estimate time-to-contact with a looming

surface using 1D correlation patches placed symmetrically about a circle centred on

the image origin. Noting the invariance of divergence to the location of the FOE under

an affine flow model, Ancona and Poggio exploit Green’s theorem, treating the circle of

correlation patches as a closed-contour. Summing the radial component of estimated

flow from each patch, they obtain the divergence, and hence, the time-to-contact. The

scheme is demonstrated over a sequence obtained from a mobile platform undergoing

constant forward translation only.

Coombs et al. [1998] use normal flow in the central region of the camera view to

recover flow divergence for real-time time-to-contact estimation. Time-to-contact is

used to decide whether to turn or to stop when collision was imminent.

More recently, researchers have considered flow-based collision avoidance strategies

for non-ground-based robots. In particular, focus has been given to insect-inspired

visuo-motor control schemes based on the neural circuitry of insect vision. Much of

this work employs hardware-based Elementary Motion Detectors (EMDs) to estimate

visual motion. EMDs are based on the motion detection of insects [Reichardt 1969].

Zufferey and Floreano [2006] propose a divergence-based obstacle detector for in-

voking evasive steering responses using EMD-based flow estimation. Divergence is

measured along the optical axis of a forward-facing camera by taking the difference of
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flow in the left and right of the image. A steering response is invoked to avoid collision

if divergence exceeds a preset threshold. The direction of steering is determined by the

relative balance of flow magnitudes in the left and right views, however steering itself

is not controlled using visual inputs.

A similar saccading strategy for obstacle avoidance is demonstrated by Green et

al. [2004] on a micro air vehicle. Unlike Zufferey and Floreano, they do not use the

divergence of flow, and instead base obstacle detection on translational flow in the

periphery of the frontal view. Thus, they assume translational motion only (or flow

field de-rotation).

Bermùdez et al. [2007] demonstrate a locust-inspired collision detection scheme

for a flying robot. The detection method is modelled on the Lobula Giant Movement

Detector (LGMD) in locusts. EMD responses are integrated in the LGMD model, from

which an output spike is produced when visual motion is divergent. LGMD responses

are also integrated over time. A collision detection is triggered if the value exceeds a

pre-set threshold.

4.5.1 Summary of collision avoidance systems

For time-to-contact based obstacle avoidance, the primary task is the detection of

looming obstacles. The resulting evasive response, however, is typically performed in

open-loop over a preset time duration, for which no continuous use of visual quantities

such as time-to-contact is required. Thus, the demands on high accuracy and temporal

consistency in proximity estimates are relatively low. For this reason, time-to-contact

estimation has been most successfully applied to collision avoidance in robot navigation.

Where continuous use of time-to-contact is required for fine motion control, particularly

in close proximity with surfaces, estimation strategies such as those outlined above are

unlikely to provide sufficient robustness.

4.6 Time-to-contact for docking and landing

We now review current techniques for performing controlled approaches to surfaces

using visual motion as the primary cue for velocity and alignment control. Note that
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we do not include landmark-based visual servoing strategies for docking such as those

in Wei et al. [2005] and Usher et al. [2003], which base velocity and pose control on

the location of scene features in the image. Rather, we focus on techniques that derive

control schemes using the optical flow field.

4.6.1 The docking problem

Arkin and Murphy [1990] break the general docking problem into two phases: ballistic

and controlled. The ballistic phase seeks to quickly navigate the robot to the general

target area. The controlled phase then employs the fine direction control to accurately

position the robot in preparation for the final deceleration (and any other interaction

with the docking surface). When reaching the controlled phase in Arkin and Murphy’s

model, two operations must occur:

• alignment : the robot seeks to minimise an angular error between its current

heading and the target orientation. When docking with surfaces, the target

orientation is most often a fronto-parallel alignment with the surface.

• braking : the robot decelerates to a halt as close as possible to the desired location

(often the docking surface).

It is important to note that these tasks are not strictly sequential. However, it

is often a requirement that alignment with a docking surface be achieved before fine

velocity control becomes crucial [Questa et al. 1995]. One common reason for this is

that time-to-contact estimates obtained from flow field measures such as divergence,

typically assume a fronto-parallel orientation with the surface.

4.6.2 Docking and landing systems

Santos Victor and Sandini [1997] align the docking surface through the use of param-

eters obtained from an affine approximation to the optical flow field. Normal flow is

measured and an affine model is applied to obtain the approximated flow field. Affine

parameters allow the surface normal to be identified. The control scheme then seeks

to minimise the angle between the surface normal and the optical axis of the camera.
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Forward velocity is also controlled via affine parameters of the approximated motion

field. They present two forms of docking:

• ego-docking : visual data is acquired from a camera mounted on the robot per-

forming the docking behaviour, and used to guide the manoeuvre.

• eco-docking : the camera and computation resources are located at the docking

surface and used to guide the robot to the surface.

Questa et al. [1995] use normal flow to approximate the affine parameters of the

flow field. From this, the divergence is obtained and used to regulate the velocity of a

robot arm with mounted camera attempting to dock with a fronto-parallel planar sur-

face. Fronto-parallel alignment is achieved via a combination of lateral translational

adjustments in the direction of increasing surface depth, and opposing rotations of

the camera to maintain fixation on a point on the surface. The surface depth gradi-

ent is obtained by substituting the known direction of parallel motion of the camera

into Equation 4.2. A similar alignment strategy is applied by Santos-Victor and San-

dini [1997]. The time-to-contact estimate obtained from the divergence is then used to

reduce velocity as the end effector approaches the docking surface. This is achieved by

reducing forward velocity in inverse proportion to increasing flow divergence.

Results reported by Questa et al. [1995] exhibit some sensitivity to errors in align-

ment with the docking surface. The docking strategy should, in theory, achieve fronto-

parallel alignment with the docking surface before fine motion control is required. How-

ever, average angular errors in alignment of 8o were recorded in the final stages of the

docking manoeuvre, giving rise to errors in the time-to-contact estimate. Significant

oscillation in the alignment error is also reported at close proximity.

Similar work by the same laboratory [Questa and Sandini 1996] has also demon-

strated the use of a space-variant log-polar sensor to achieve fronto-parallel docking

manoeuvres using a camera-mounted end-effector. Time-to-contact is estimated from

the component of image motion in the radial direction. (i.e., the divergence resulting

from motion along the viewing direction). To achieve docking, pure translation along

the viewing direction is assumed. While not implemented on-board, Barnes and San-

dini [2000] provide a mathematical formulation for the use of the rotational component
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of a log-polar image representation to achieve directional control in docking.

Issues with precise docking have been addressed by Mandel and Duffie [1987]. They

account for errors in positioning of a robot manipulator, thereby allowing precise in-

teractions with some allowance for imprecise docking.

In recent years, there has been interest in the use of optical flow for visuo-motor

control of in-flight landing control systems. In particular, researchers have attempted to

apply insect-inspired strategies to perform safe, repeatable landing manoeuvres using

the apparent motion of the landing surface.

Srinivasan et al. [2000] demonstrate the honeybee graze-landing model (described

in Section 2.6.4) on a robot gantry. Forward speed is reduced by holding the angular

motion of the ground plane constant, while at the same time reducing the speed of

descent proportionally. In [Chahl et al. 2004], the system is demonstrated to maintain

a preset angle of descent onboard a fixed-wing model aircraft. In both cases, the camera

is pointed vertically down towards the ground plane, and is assumed to remain at this

alignment during the approach.

Ruffier and Francheschini [2005] apply a similar landing model on a rotor-craft.

Optical flow is estimated via an EMD, the outputs of which are fed directly into visuo-

motor control schemes. Landing is achieved by tilting the rotor-craft’s nose to decrease

forward velocity. The flow-based controller then reduces the height of the vehicle so as

to maintain constant horizontal flow. The system is demonstrated to produce repeat-

able graze-landing approaches, and to operate in wind effected conditions. Green et

al. [2004] also demonstrate the graze-landing model proposed by Srinivasan et al. [2000]

using a downward pointing camera onboard an ultra-light fixed-wing model aircraft.

4.7 Issues for time-to-contact based visuo-motor control

4.7.1 Flow field approximations

An important drawback of many of these approaches is the requirement for the explicit

segmentation of a surface in order to estimate the image motion. Where closed-contour

deformation is measured, there is also the problem of reliably finding closed shapes

when in close proximity with the surface [Cipolla and Blake 1997]. EMD-based motion
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estimation, while fast, is sensitive to image contrast [Borst and Egelhaaf 1993]. As

such, the amplitude of motion detected will be greater where higher contrast exists

given the same underlying motion. It is therefore incapable of providing precise visual

motion estimates.

An alternative approach is to compute time-to-contact from general optical flow.

Methods for estimating general optical flow fields from local image regions, such as

Lucas and Kanade’s method [1981], require no a priori knowledge of scene structure,

and therefore, no segmentation. In general, for systems such as road vehicles, optical

flow is often used for other functions, such as a general sensor for salience to detect

moving hazards over the whole scene, as well as for particular functions such as obstacle

detection. Affine approximations of image motion are not adequate for this type of gen-

eral use, and having multiple methods for calculating flow is implausible on restricted

embedded hardware. There currently exists no docking or landing scheme based on

time-to-contact estimates taken from full, general optical flow.

4.7.2 Robustness during egomotion

Mobile robot ego-motion is rarely precise, and even where only translational motion

is intended, rotations will be present. Small directional control adjustments, fluc-

tuations in direction due to steering control or differing motor outputs, bumps and

undulations along the ground surface, and noisy optical flow estimation will all cause

instantaneous, frame-to-frame rotations of the robot. This subjects the optical axis to

small rotations about the predominant direction of motion. As a result, the FOE is

unlikely to be fixed with respect to the image centre. In previous work with divergence-

based time-to-contact estimation, divergence is almost always measured at the same

image location in each frame [Ancona and Poggio 1993; Nelson and Alloimonos 1989;

Coombs et al. 1998]. Ancona and Poggio, for example, use simple linear motion detec-

tors to estimate flow in orthogonal directions at locations symmetrically placed about

the image centre. This, however, ignores the effect of FOE shifts on the divergence

measure across the image.

Previous work has addressed aspects of this issue. Subbarao [1990] considers time-

to-contact with surfaces of arbitrary orientation, for a camera of arbitrary alignment
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with respect to the direction of motion. Subbarao, however, assumes the point of

interest lies along the camera’s optical axis. While a fixation-based strategy such as

that used by Questa et al. [1995] can keep the target point centred, a mobile robot

is unable to achieve this without additional hardware support. In many cases, such

hardware is unavailable to facilitate high speed fixation.

An alternative approach is to account for instantaneous rotations in the image

domain, by tracking the location of the FOE. Van Leeuwen and Groen [2002, 2000]

consider the use of FOE tracking to correct for the physical misalignment of the optical

and translational axes as a result of the camera-robot configuration. However, while

accounting for the constant physical misalignment of these axes, they do not extend the

use of FOE tracking explicitly to the removal of small frame-to-frame rotational effects

during ego-motion, nor do they apply time-to-contact directly to control the vehicle’s

velocity. In summary, while previous work has considered the use of FOE tracking for

camera stabilisation during ego-motion, no one has applied such an approach to tasks

requiring fine motion control (such as docking), nor provided a theoretical analysis

supporting the advantages of such a strategy, and its potential use for control.

4.7.3 Surface orientation and alignment

There currently exists no time-to-contact docking/landing strategy capable of perform-

ing controlled approaches to surfaces of arbitrary orientation. While systems such as

Santos-Victor and Sandini [1997] facilitate directional adjustments to achieve fronto-

parallel alignment with a docking surface, they do not support docking at non-frontal

angles.

A primary reason for fronto-parallel alignment is the need for accurate time-to-

contact estimates when in close proximity with the surface. As the approach angle

moves away from fronto-parallel, the bounds on time-to-contact increase due to in-

creased deformation of the projected surface. If motion cannot be assumed to be along

the optical axis (and in general, it cannot), then these techniques are effectively re-

stricted to fronto-parallel approaches, and time-to-contact must be measured close to

the image origin.

While Srinivasan et al. [2000] propose a scheme for performing graze landings
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Table 4.1: Summary of time-to-contact estimation scheme assumptions.

Approximation Measurement location Reference

Narrow FOV Image origin Subbarao [1990], Nelson and
Aloimonos [1989], Ancona and
Poggio [1993]

Known/recovered
surface orientation

Any image point Meyer [1994], Santos-Victor and
Sandini [1996], Srinivasan et
al. [2000]

Affine model over
segmented surface

Any image point Maybank [1987], Cipolla and
Blake [1997], Duric et al. [1999], Di
Marco et al. [2003]

Planar surface Any image point Chapter 6

(i.e., non-fronto-parallel approaches), two issues constrain its general application:

1. the estimation of time-to-contact is obtained from the first-order image motion

of the ground plane, and thus the model assumes purely translational motion (or

removal of rotation from the motion field); and,

2. the model cannot be applied to approach angles close to fronto-parallel with the

surface. In this case, the translational motion of the ground plane vanishes, and

is replaced by second-order, diverging image motion.

It is possible to have alternate strategies on-board to deal separately with grazing

and frontal approaches. However, it is preferable from both an engineering and control

design stand point to have a single docking and landing control scheme applicable to

any angle of approach, without modification.

4.7.4 Summary of time-to-contact for visuo-motor control

We have now reviewed techniques for estimating and applying time-to-contact, and dis-

cussed current issues/limitations imposed on its use for visuo-motor control. Tables 4.1

and 4.2 provide a summary of time-to-contact estimation techniques discussed in this

chapter. Table 4.1 summarises techniques for estimating time-to-contact. Table 4.2
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Table 4.2: Summary of time-to-contact schemes in the control loop

Restrictions/Assumptions References

Fronto-parallel surface
alignment

Tistarelli and Sandini [1993], Santos-Victor and
Sandini [1997], Questa and Sandini [1996]

Motion and optical
axis alignment

Ancona and Poggio [1993], Zufferey and
Floreano [2006], Green et al. [2004], Coombs et
al. [1998], Bermùdez et al. [2007], Questa and
Sandini [1996]

Assumed/recovered
egomotion and/or
surface orientation

Nelson and Aloimonos [1989], Questa et al. [1995],
Santos-Victor and Sandini [1996][1997], Lourakis and
Orphanoudakis [1999], Cipolla and Blake [1997],
Colombo [2000], Chahl et al. [2004], Ruffier and
Francheschini [2005]

Near fronto-parallel
and/or known surface
orientation

Chapter 5: Robust to motion-optical axis
misalignment, and surface orientation variation.

Planar surface Chapter 6: Unified docking/landing with planar
surfaces of arbitrary orientation.

groups work that has applied time-to-contact in the control loop according to the con-

ditions in which it can operate (as imposed by the time-to-contact estimation scheme).

This thesis proposes both new methods for estimating time-to-contact, and presents

new control schemes for applying time-to-contact in the control loop. References to

these chapters are included in the above tables, showing how this work addresses the

limitations of previous work.

4.8 Summary

We have now motivated and reviewed background theory and literature on the visual

estimation of contact from optical flow. In Chapter 2 we explored the role of vision

in navigation, focussing specifically on robot navigation. From this, we prescribed a

role for vision without global reconstruction and motivated an ecological approach to

visual navigation using optical flow. In Chapter 3 we reviewed techniques for inferring
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scene structure and self-motion from the optical flow field, providing contact estimation

under a traditional structure-from-motion framework. We discussed issues hindering

the application of structure-from-motion techniques in real-time navigation systems,

and reviewed arguments in favour of a biologically-inspired spherical projection model

over a global field of view for robust structure-from-motion recovery.

In this chapter we have considered visual contact estimation for direct perception

and visuo-motor control. We have motivated the use of time-to-contact as an impor-

tant visual cue for visuo-motor control, with significant biological support. We have

reviewed the theory, estimation and application of time-to-contact for visuo-motor con-

trol, and discussed limitations imposed on its use for robot navigation. We have argued

that existing techniques for estimating time-to-contact do not adequately account for

such limitations, thus restricting their application to tasks requiring minimal accuracy

to meet the needs of control. Through this, we have highlighted a need for improved

techniques for estimating time-to-contact with a specific focus on the needs of fine mo-

tion control under real world conditions, and in close proximity with surfaces. Chapters

5 and 6 of this thesis seek to improve on existing techniques for estimating and applying

time-to-contact to visuo-motor control.

The following chapters present the contributions of this thesis. The first of these

contributions is a proposed strategy for robustly estimating time-to-contact in the

presence of noisy on-board conditions. This forms the basis of a divergence-based

visuo-motor docking scheme for a ground-based mobile robot.



Chapter 5

Robust Visual Docking using

Flow Field Divergence

5.1 Introduction

In Chapter 4 we showed how time-to-contact may be directly measured from the ap-

parent expansion, or divergence, of optical flow vectors induced by motion towards an

object (or an objects motion towards the observer). It thus provides a directly avail-

able alternative to explicit structure-from-motion solutions for visually guiding naviga-

tion with looming surfaces. While commonly applied to obstacle avoidance tasks, few

have applied flow-based time-to-contact to tasks requiring fine motion control such as

docking. Thus, a key issue for docking is achieving sufficiently robust time-to-contact

estimates, capable of handling noisy on-board conditions throughout the manoeuvre.

In this chapter we present a novel, and robust strategy for docking a mobile robot

in close proximity with an upright planar surface using optical flow field divergence.

Unlike previous approaches, we achieve this without the need for explicit segmentation

of the surface in the image, and using complete gradient-based optical flow estimation

in the control loop (i.e., no affine models, or flow field approximations are used to

estimate the optical flow field). Central to the robustness of our approach is the

derivation of a time-to-contact estimator that accounts for small rotations of the robot

during ego-motion. This is achieved through tracking of the focus of expansion (FOE).

We provide a theoretical justification for the constant tracking of the FOE as a means

of accounting for not just the physical misalignment of the optical and translational

axes, but also frame-to-frame shifts of the optical axis due to instantaneous rotations

93
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Figure 5.1: Geometric configuration

during ego-motion.

The chapter is structured as follows. Section 5.2 provides theoretical background,

and the derivation of the proposed FOE-based time-to-contact estimator outlined

above. We derive this for the specific case of controlling forward velocity towards

a planar surface. In Section 5.3 we present a series of experiments providing quan-

titative assessment of the proposed time-to-contact estimation scheme in simulation,

and over real image sequences. In addition, we examine performance in the control

loop of a mobile robot docking with an upright planar surface. We follow this with a

discussion of the results. Section 5.5 summarises the chapter.

5.2 Theory

5.2.1 Derivation of proposed time-to-contact estimator

The analysis presented here extends on the geometric modelling used by Santos-Victor

and Sandini [1997]. We represent the docking surface as a plane in a camera centred

coordinate system:

Z(X,Y ) = Z0 + aX + bY, (5.1)

where Z0 is the distance to the surface along the optical axis, X and Y represent

points on the surface, and a and b give the slant and tilt with respect to the op-

tical axis. By introducing the perspective projection equations into Equation 5.1,

the surface plane can be expressed as a function of the image coordinates, (x, y)



§5.2 Theory 95

[Santos-Victor and Sandini 1994]:

Z(x, y) =
Z0

1 − a x
fx

− b y
fy

, (5.2)

where fx and fy are focal lengths expressed in pixels.

Given a fixed camera with respect to the robot’s direction of motion, we represent

the translational velocity of the camera, Tc, as proportions of the forward translational

velocity, Tr, of the robot:

Tc =
[

αTr βTr γTr

]

. (5.3)

The camera’s angular velocity (ωc) is given by:

ωc =
[

ωx ωy ωz

]

, (5.4)

where each component represents rotation about the axis indicated by its subscript.

Figure 5.1 shows the geometric configuration.

The optical flow induced by the apparent motion of the docking plane is defined by

the well known equations [Santos-Victor and Sandini 1997]:

u(x, y) = fx

[

γTr(
x
fx

− α)

Z(x, y)
+ ωx

xy

fxfy
− ωy(1 +

x2

f2
x

) + ωz
y

fy

]

, (5.5)

v(x, y) = fy

[

γTr(
y
fy

− β)

Z(x, y)
+ ωx(1 +

y2

f2
y

) − ωy
xy

fxfy
− ωz

x

fx

]

, (5.6)

where u(x, y) and v(x, y) are the horizontal and vertical components of motion.

Let us now consider the effects of rotation, causing the FOE to shift with respect to

the optical axis. Let (x′, y′) be an arbitrary point in the image representing the FOE.

We define the depth of the surface, Z(x, y), with respect to the FOE:

Z(x, y) =
Z(x′, y′)

1 − a (x−x′)
fx

− b (y−y
′ )

fy

. (5.7)
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Substituting (5.7) into Equations 5.5 and (5.6), we obtain:

u(x, y) =
γTr(x− fxα)

Z(x′, y′)

[

1 −
a(x− x′)

fx
−
b(y − y′)

fy

]

+ ωx
xy

fy
− ωy(fx +

x2

fx
) + ωz

y

fx
,

(5.8)

v(x, y) =
γTr(y − fyβ)

Z(x′, y′)

[

1 −
a(x− x′)

fx
−
b(y − y′)

fy

]

+ ωx(fy +
y2

fy
) − ωy

xy

fx
− ωz

x

fx
.

(5.9)

Given the optical flow at the FOE is zero, substituting for x = x′ and y = y′ provides

the following constraints on the optical flow at the FOE:

0 =
γTr(x

′ − fxα)

Z(x′, y′)
+ ωx

x′y′

fy
− ωy(fx +

x′2

fx
) + ωz

y′

fx
,

(5.10)

0 =
γTr(y

′ − fyβ)

Z(x′, y′)
+ ωx(fy +

y′2

fy
) − ωy

x′y′

fx
− ωz

x′

fx
.

(5.11)

Solving for ωx and ωy, we obtain:

ωx =
fy

x′y′

[

γTr

Z(x′, y′)
(x′ − fxα) + ωy(fx +

x′2

fx
) + ωz

y′

fy

]

,

(5.12)

ωy =
1

fxfy(1 + x′2

f2
x

+ y′2

f2
y
)

[

Tr

Z(x′,′ y′)

(

x′y′β + fyx
′+

fxfyα+
fxαy

′2

fy

)

− ωz

(

y′ +
y′3

f2
y

−
x2y′

fxfy

)

]

. (5.13)

Taking the partial derivatives of Equations 5.8 and (5.9) in their respective direc-

tions, and again substituting for x = x′, y = y′, we obtain the partial derivatives at
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the FOE, defined as:

∂u

∂x

∣

∣

∣

foe
=

γTr

Z(x′, y′)

[

1 − a

(

x′

fx
+ α

)]

+ ωx
y′

fy
− ωy

2x′

fx
,

(5.14)

∂v

∂y

∣

∣

∣

foe
=

γTr

Z(x′, y′)

[

1 − b

(

y′

fy
+ β

)]

+ ωx
2y′

fy
− ωy

x′

fx
.

(5.15)

Summing these, we obtain the flow field divergence at the FOE (Dfoe):

Dfoe =
−γTr

Z(x′, y′)

[

a

(

x′

fx
+ α

)

+ b

(

y′

fy
+ β

)

− 2

]

+ 3

(

ωxy
′

fy
−
ωyx

′

fx

)

, (5.16)

and from this we obtain an equation for the relative depth of the scene point projecting

to the FOE:

Z(x′, y′)

Tr
=

γ

Dfoe

[

a

(

x′

fx
+ α

)

+ b

(

y′

fy
+ β

)

− 2

]

−
3Z(x′, y′)

DfoeTr

(

ωxy
′

fy
−
ωyx

′

fx

)

.(5.17)

Using Equations 5.12 and 5.13, we substitute for ωx and ωy in (5.17) and thus remove

both rotations from (5.17) such that:

Z(x′, y′)

Tr

=
γ

Dfoe

[

1 + a

(

x′

fx
+ α

)

+ b

(

y′

fy
+ β

)

−
3

γx′

(

− fxα+
(x′fy + fxfyα+ x′y′β + y′2fxα

fy
)

fy(1 + x′2

f2
x

+ y′2

f2
y
)

+
ωzy

′Tr

fyZ(x′, y′)

(

fy +
y′2

fy
−
x′2

fx
− 1
)

)]

. (5.18)

Notably, the removal of ωx and ωy introduces a term involving camera roll (ωz). If

required, techniques for roll removal such as that of Hanada and Enjima [2000] can

also be applied without prior knowledge of the rotation.

Equation 5.18 gives the relative depth of the scene point projecting to the FOE.

If Tr is aligned with the FOE, then (5.18) also gives a precise measure of time-to-

contact. In the presence of rotations, however, this assumption is unlikely to hold.
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However, considering a docking scenario for a finite sized robot, the presence of small

instantaneous rotations will also mean that the precise point of impact is unlikely to

be known. Given that the FOE provides the only location in the flow field where

rotation is accounted for, we can consider (5.18) to be a reasonable approximation of

time-to-contact (referred to as τfoe) under these conditions.

5.2.2 Time-to-contact for a ground-based mobile robot

Consider Equation 5.18 for the case of a mobile robot, moving on a ground plane

towards a visible planar surface. Given a fixed, approximately forward facing camera,

ωz will be negligible and can therefore be set to zero. In addition, the camera orientation

parameters with respect to the heading direction: α, β and γ, can also be set to known

values (α = β = 0, γ = 1), thus reducing Equation 5.18 to:

τfoe =
1

Dfoe



1 +
ax′

fx
+
by′

fy
−

3

(x′2

f2
x

+ y′2

f
y2

+ 1)



 . (5.19)

Note that the only potential unknowns in Equation 5.19 are the surface orientation

parameters: a and b. If unknown, these parameters form a bound on τfoe, such that:

τfoe =
1

Dfoe

[

1 −
3

(x′2

fx
+ y′2

fy
+ 1)

]

±
1

Dfoe

[

ax′

fx
+
by′

fy

]

. (5.20)

Note that the surface orientation terms represent the deformation components of the

time-to-contact.

5.2.2.1 Constraints on rotation

We now consider the effect of rotation on both the existence of the FOE, and its

location in the image. In particular, we seek to define the range of allowable shifts of

the FOE from the image centre, given a known amplitude of expected rotations during

egomotion.

We first consider the location of the FOE. For a ground-based robot with forward

facing camera, and rotation only about the Y axis (ωy), we consider only horizontal
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shifts of the FOE. We re-examine the equation for the horizontal component of optical

flow in Equation 5.10. Solving for x′, we obtain the following solutions:

x′ =
fx

2

[

Tr

Z(x′)ωy
±

√

( −Tr

Z(x′)ωy

)2
− 4

]

. (5.21)

Notably, two solutions exist, representing the two locations where flow is zero in the

infinite image plane: at the FOE and at the FOC (focus of contraction). However, given

a forward facing camera, the FOE will always be the minimum of the two solutions

(i.e., closest to the image centre).

The square root term in Equation 5.21 defines a constraint on the maximum allow-

able shift of the FOE from the image centre. Specifically:

∣

∣

∣

Tr

Z(x′)ωy

∣

∣

∣
≥ 2. (5.22)

The term Tr

Z(x′)ωy
defines the ratio of scaled velocity and rotation. It can be seen that

as rotation grows large with respect to translation, the ratio decreases. The limit of

this decrease is given by Tr

Z(x′)ωy
= 2, after which, no real solution for the location of the

FOE exists. Substituting Tr

Z(x′)ωy
= 2 into Equation 5.21, we obtain a unique solution

for the FOE location:

x′ = fx. (5.23)

Thus, the maximum allowable displacement of the FOE from the image centre is the

same as the focal length (i.e., ±45o from the image centre). Naturally, if the horizontal

field of view is narrower than 90o, or physical limitations require it, this range may be

further restricted. Note that the unique solution for x′ obtained from this substitution

represents the convergence of the FOE and FOC to a single location in the image. As

rotation grows larger, the two points approach each other. Thus, the FOE shift limit

is equivalently defined by this convergence.

From Equation 5.22, we also note the following constraint on τ :

τ−1 =
Tr

Z(x′)
≥ 2ωy (5.24)
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The above highlights an important secondary purpose for the velocity control design.

While maintaining a safe speed of approach is the primary goal, τ−1 = Tr

Z(x′) must

also be kept sufficiently high to ensure FOE shifts remain within the required bounds.

Thus, for a given amplitude of expected rotations during egomotion, a reference τ−1

must be set to ensure that such rotations fall within these bounds.

5.2.2.2 Constraints on angle of approach (surface orientation)

If the angle of approach is roughly fronto-parallel, then a and b will be small. Thus,

the bound on τfoe should be well contained. As a and b increases, the bound on τfoe

also increases. Time-to-contact estimates are therefore unlikely to remain stable for

eccentric approach angles. Even if the angle of approach is roughly known, errors

between the assumed approach angle and actual approach angle will be exacerbated if

the approach angle is significantly away from fronto-parallel. Thus, while the proposed

time-to-contact scheme provides tolerance to deviations from the intended approach,

it is best suited to near fronto-parallel approach angles.

In order to achieve docking with an object surface, the FOE must lie within the

imaged region of the target surface area. Therefore, ensuring the FOE always exists

within the projected surface target area should maintain an approach angle that is

within stability limits. This may also be used as a means of assessing the achievability

of the task.

5.3 Experimental Results

In this section we present four sets of experiments demonstrating the performance of

the proposed FOE-based time-to-contact estimator to the task of docking. We provide

results from simulation, off-board image sequences, and from the technique’s appli-

cation to the closed-loop control of a mobile robot performing a docking manoeuvre.

We first describe each experiment and discuss issues relating to the application of the

FOE-based time-to-contact strategy. We then present the results of these experiments.
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5.3.1 Simulation experiment

A simulation was conducted modelling the motion of a ground-based mobile robot,

with camera, towards a planar fronto-parallel surface. A 2D motion model was used,

allowing only forward velocity and a single rotation in the ground plane. As such,

only the u component of flow across a single row of pixels was required to obtain

time-to-contact estimates. From this, a set of sample flow fields were obtained.

For each consecutive sample, the distance to the surface was decremented by a

constant amount. The robot was assumed to be initially aligned fronto-parallel with the

surface before a constant translational velocity, and randomly selected instantaneous

rotational velocity were applied to the scene with respect to the robot’s location. The

resulting motion vectors were then projected onto the robot’s image plane, thereby

generating the expected flow resulting from the robot’s motion with respect to the

scene. From this, the FOE (which shifts as a result of the rotation) was located, and

time-to-contact computed using (5.19). The simulation was implemented and run in a

Matlab environment.

5.3.2 Off-board time-to-contact experiments

5.3.2.1 Indoor image sequence

A real image looming wall sequence depicting the motion of a camera towards a textured

planar surface was constructed. Figure 5.2(a) shows sample frames from the sequence.

In the construction of the image sequence, the camera was moved 3cm per frame

towards a heavily textured, approximately fronto-parallel wall. Optical flow fields were

estimated for each frame of the sequence, and from this, time-to-contact estimates

obtained.

Flow divergence was estimated using four patches in the image, each centred on a

distance of 12 pixels from the FOE, and each at 45 degrees from the horizontal and

vertical axes that intersect at the FOE. Figure 5.2(a) shows this patch configuration.

For comparison, time-to-contact was also estimated by placing the four patches about

the image centre.
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 (a) Looming wall sequence (b) Looming bush sequence (c) Looming bricks sequence

Figure 5.2: Sample frames and flow fields from each image sequence used in off-board exper-

iments: (a) looming wall, (b) looming bush, and (c) looming bricks. Line intersections show

estimated FOE for frame, and boxes indicate the divergence patch configurations used for

FOE-based time-to-contact estimation.

5.3.2.2 Outdoor image sequences

To test the technique’s robustness under more natural conditions, two outdoor image

sequences were constructed, depicting the motion of the camera towards different, more

natural surfaces. In both sequences, the camera was mounted on the handle bars of

a bicycle, equipped with a speedometer to gauge the approximate speed of approach.

The bike was rolled at constant velocity towards both surfaces. Figures 5.2(b) and (c)

show sample frames from both sequences: the looming bush sequence, and the looming

bricks sequence. Note that the camera’s motion was subject to rotations induced by

the uneven terrain (including camera roll), and small adjustments of heading. The

initial distance in both sequences was 9m. The average velocity of the camera depicted

in the looming bush sequence is approximately 13cm per frame ( 6km/hr), and 20.5cm

per frame ( 8.5km/hr) for the looming bricks sequence.

Flow divergence was estimated from optical flow vectors within a single 51×51 pixel

patch centred on the estimated location of the FOE. Divergence was also measured at

the image centre using the same patch size.
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5.3.3 On-board docking experiment

To test the robustness of the FOE-based time-to-contact measure, the technique was

integrated into a simple closed-loop docking behaviour for velocity control of a mo-

bile robot. In the experiment, a robot with a single, fixed, forward facing camera

approached a heavily textured, roughly fronto-parallel wall, attempting to decelerate

and safely stop as close to the wall as possible without collision. Figure 5.3 shows the

experimental workspace.

The robot used is velocity controlled, that is, the control signal is passed to a servo

motor that controls the rolling speed of the drive wheels. Initial experimental tests

showed that direct proportional feedback of the drive wheels lead to highly aggressive

control action due to the noise in the divergence measure. By incorporating a virtual

model of robot dynamics in the control design, the closed-loop behaviour of the vehicle

was smooth and well conditioned. The discrete time realisation of the proposed control

law is

vt = ∆vt−1 +
∆Kp

m
(Dref −Dt), (5.25)

where v(t) is the velocity control input at time t, ∆ is the discretisation time, m is a

virtual vehicle mass, Kp is a proportional gain, Dt is the most recent flow divergence

estimate, and Dref is the reference set-point for flow divergence (
∆Kp

m
= 0.0325 and

Dref = 0.022 for these trials). Along with the discrete-time kinematics

zt = ∆vt−1. (5.26)

Flow divergence was estimated using two 40×40 pixel image patches, each placed

at 45 degrees on either side of the vertical axis passing through the FOE, and each

centred on a distance of 25 pixels from the FOE. The patches were placed only above

the FOE to avoid measuring divergence on the imaged ground plane. Reasons for the

variation of patch size and configuration used in the off-board experiment were based

on empirical observations of performance on-board. Due to the noisier conditions on-

board, larger patch sizes were used to obtain a more robust estimate of flow divergence

during ego-motion. In general, a range of patch sizes and configurations were found to
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obtain strong results.

5.3.4 Optical flow and FOE estimation

Throughout all experiments over real image sequences (including on-board), Lucas

and Kanade’s [1981] gradient-based method was applied. For the indoor looming wall

sequence, a standard implementation of Lucas and Kanade’s algorithm was applied,

and flow vectors were obtained for all image points. Due to significantly larger flow

experienced in both outdoor sequences, the pyramidal implementation of Lucas and

Kanade’s technique (outlined in Section 3.2.2.5) was applied. To offset the increased

computation load of this approach, flow vectors were only estimated for every fifth

pixel.

In all experiments, the FOE was calculated using a simple algorithm that requires

the imaged surface to occupy the entire viewing field (or at least, the section of the

viewing field for which the FOE is expected to lie within). To obtain x′, each row in

the image was used to count the number of positive and negative horizontal flow com-

ponents, which were then differenced, and averaged over all rows to locate the overall

zero point for x. The algorithm was applied similarly to obtain y′, using the signs of

vertical components of flow. While more sophisticated algorithms for locating the FOE

do exist, it is important to note that in many cases, pure (or close to pure) transla-

tional motion is assumed (e.g., [Sazbon et al. 2004] [Negahdaripour. 1996] [Jain 1983],

see Section 3.4.2). In contrast, the technique applied here provides a relatively high

tolerance to rotation, such that the FOE will always be located so long as it lies within

the imaged area, and other local minima in the flow field do not exist. Given only the

sign of flow vectors are used to estimate the FOE, the computation associated with

its estimation is negligible in comparison with the flow estimation itself. It should be

noted that other suitable techniques do exist, such as [Li 1992], that do not require

the segmentation of the object surface area. The algorithm employed here was chosen

primarily for its efficiency in achieving reasonably accurate FOE estimates.
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Figure 5.3: Setup for on-board docking tests.

5.3.5 Results

5.3.5.1 Simulation results

Figure 5.4 gives the simulation results, showing a direct comparison of time-to-contact

obtained using the FOE-based estimator defined by Equation 5.19, and estimates ob-

tained from the measured divergence at the image centre (using 2
div). Ground truth

time-to-contact is also provided, computed from the robot’s distance from the surface

and its known constant forward velocity towards the surface. It can be seen that the

FOE-based time-to-contact measure closely reflects ground truth. Small discrepan-

cies between the FOE-based measure and ground truth are the result of unavoidable

quantisation errors in the image, disallowing the precise location of the FOE.

In contrast, time-to-contact estimates taken along the optical axis exhibit significant

fluctuation compared with that obtained at the FOE. It is also evident that the image

centre always provides an over estimate of time-to-contact, a result of the optical axis

deviating from its fronto-parallel alignment with the surface. While errors in time-

to-contact are reduced as the distance to the surface approaches zero, it is important

to note that this is due to the robot’s constant velocity towards the surface. As the

surface draws near, the translational flow increases, thereby diminishing the effects of

the robot’s rotation in the flow field.
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Figure 5.4: Simulation results compare our FOE-based time-to-contact estimator (Equa-

tion 5.19), with time-to-contact estimates obtained at the image centre using 2
div for the sim-

ulated 2D motion of a ground-based mobile robot translating at constant speed towards a

fronto-parallel, planar surface. For each sample, the robot’s forward speed, and randomly

chosen instantaneous rotational velocity (−0.1 ≤ ωy ≤ 0.1) were used to compute the corre-

sponding horizontal flow. From this, time-to-contact estimates were obtained. Ground truth

shows the exact time-to-contact for each sample, given the robot’s forward velocity and distance

from the surface. For all samples, the camera’s focal length is set to 188px.

5.3.5.2 Indoor image sequence results

Figure 5.5(a) shows time-to-contact estimates for each frame of the indoor looming-wall

sequence for the FOE-based, and image-centre-based strategies. Ground truth time-

to-contact is also shown, obtained from the camera’s known velocity, and a best linear

fit over time-to-contact measures obtained from ground truth flow fields constructed

from camera calibration.

From these results, a significant improvement in the consistency of time-to-contact

estimates is achieved when divergence is calculated with respect to the FOE. Of par-

ticular note, the FOE-based strategy achieves a close match with ground truth from

the fifteenth frame onward. In contrast, the image centre-based method consistently

over-estimates time-to-contact, and exhibits larger fluctuations across the sequence.
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Figure 5.5: Time-to-contact estimates for: (a) indoor looming wall sequence, (b) looming

bush sequence, and (c), looming bricks sequence.
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5.3.5.3 Outdoor image sequence results

Figures 5.5(b) and (c) show time-to-contact estimates for both outdoor image se-

quences, again comparing the FOE-based, and image-centre-based strategies.

As with the indoor looming wall sequence, improvements in time-to-contact estima-

tion are achieved by the FOE-based strategy as the surface approaches. This is evident

from frame 40 onward for the looming bush sequence, and from frame 20 in the looming

bricks sequence.

Across all sequences, larger fluctuations are evident in early frames for both strate-

gies. This is unsurprising given the flow due to camera translation is unlikely to be

large enough to be reliably measured at this distance from the wall. It is also likely that

the FOE is poorly defined at this distance. In early frames of both outdoor sequences,

the FOE’s location was observed to shift significantly, and in some cases (particularly

for the looming bush sequence), fall outside the imaged area of the surface. As di-

vergence increases, however, the FOE-based strategy quickly stabilises, and begins to

outperform the image-centre-based estimator.

5.3.5.4 On-board docking results

Six trials of the FOE-based docking strategy were conducted, and data recorded. Video

5.1 on the thesis CD-ROM provides footage of a sample trial from on-board trials.

Figure 5.6 shows the velocity-distance profiles and the plotted approach of the robot

towards the surface for each trial. Also shown is the theoretically expected velocity-

distance profile based on the integrating of Equation 5.25 in discrete time for the initial

velocity, distance and tuning parameter values used in the trials. Of the six trials

conducted, the FOE-based strategy docked in close proximity to the surface five times

without collision. Only one collision, Trial 2, was observed. Results shown in Figure 5.6

suggest this was most likely due to noise effected divergence estimates obtained around

30cm from the surface.

Notably, results show an early lack of response compared with the predicted deceler-

ation. This is a likely result of divergence being too small to measure at such distances.

As the robot approaches, the measured divergence increases, and the velocity-distance
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Figure 5.6: On-board docking results showing (a) velocity-distance profiles, and (b), the

plotted paths of the robot for each trial.
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profiles begin to resemble theoretical expectations.

Figure 5.6(b) shows considerable variation in both the robot’s initial starting po-

sition, and the extent (and direction) of the lateral drift experienced during each ap-

proach. Despite the presence of rotational motion and varying angles of approach,

highly robust, close-proximity stopping distances were still achieved. The average stop-

ping distance achieved over the successful trials was 6cm, with the furthest distance

recorded being just 7cm.

An attempt was made to compare the FOE-based on-board control scheme with the

same control scheme using an image-centre based divergence measure. The raw diver-

gence estimates obtained at the image-centre, however, were found to be unworkable

for the simple proportional control scheme used. A large range of tuning parameter

values were explored.

5.4 Discussion

Among the successful trials, close proximity stopping distances were achieved with

higher than expected consistency. Recorded velocity-distance profiles, and stopping

distances are also consistent with theoretical expectation. The consistency achieved

in stopping distances is encouraging when considering the simple control law used,

and significant differences in the plotted approach path of the robot during each trial.

Notably, however, one fail case (trial 2) was recorded. More sophisticated control

schemes, and higher update frequencies would be expected to further improve the

robustness of this strategy.

The FOE-based docking strategy compares well with previous work in flow-based

docking. The final stopping distances achieved are a significant improvement on

Questa et al. [1995] (approximately 15cm), and comparable with Santos-Victor and

Sandini [1997]. Unlike previous work, we report highly consistent results over a set of

trials. In addition, we obtain these results using general optical flow estimation (no

affine approximations), and without filtering of the divergence estimates. We acknowl-

edge, however, that we are using newer and faster computers than in previous work,

thus allowing faster estimation of the optical flow.
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An acknowledged drawback of the proposed docking scheme is the necessity of the

FOE to exist within the image plane. To maintain this condition, it was necessary to

ensure sufficient translational motion existed to counter potential shifts of the FOE

beyond image boundaries (as per Equation 5.24). Across all image sequences, the FOE

was observed to shift significantly, despite the predominantly translational motion. It is

important to note, however, that constraints on rotation are a function of camera focal

length, as well as the ratio of translation and rotation. Thus, tolerance to rotations is

likely to be increased with wider angle cameras.

In addition to handling rotational effects, the FOE-based strategy was observed to

provide increased robustness to flow exceeding measurable levels in each sequence. This

effect is evident in flow fields shown in the bottom row of Figure 5.2, where peripheral

flow vectors become noisy and unreliable. While generally only in the periphery, this

region of flow becomes larger as Tr
Z

increases (i.e., Z → 0). As a result, any shifting

of the FOE when in close proximity to the surface may cause this region of large flow

to inhabit image-centre-based divergence patches. This is the likely cause of larger

fluctuations in image-centre-based time-to-contact estimates in the later frames of each

sequence (particularly for the looming bricks sequence, where forward velocity was

significantly faster). In contrast, time-to-contact estimates taken with respect to the

FOE remain stable under these conditions, and in accordance with simulation results,

appear to improve in consistency as Z decreases. This improvement appears also to

result from the FOE itself being more clearly defined, and therefore more accurately

located when Tr

Z
is large.

A key advantage of the proposed time-to-contact estimator is its improved tolerance

to surface misalignment due to rotation. While in theory, the estimator may be applied

for any known angle of approach, the results do not support its use as a general docking

solution for any surface orientation. As discussed in Section 5.2.2.2, stability degrades

rapidly as the angle of approach moves away from fronto-parallel. Most prominent

is the effect of unintentional rotations, causing greater errors as the approach angle

shallows. While increasing the translational motion component, or the field of view

should improve tolerance levels, approaches will always be less stable away from a

fronto-parallel approach.
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5.5 Summary

This chapter has presented a mobile robot docking strategy that utilises a time-to-

contact estimation that is robust to noisy, instantaneous rotations induced by robot

ego-motion. We have shown that through tracking the focus of expansion (FOE) in

the optical flow field, small rotations of the camera and misalignments of the optical

and translational axes can be accounted for by calculating flow divergence with re-

spect to the FOE. In this way, the effects of the rotation are effectively cancelled out,

and improved accuracy and stability is achieved. Based on this, we have proposed

a divergence-based visuo-motor control scheme for docking a robot with near fronto-

parallel surfaces, verified though experimental trials. These results show a significant

improvement in the consistency and robustness of time-to-contact estimates when com-

pared with common strategies that take no account of the shifting FOE during robot

ego-motion. The FOE-based time-to-contact estimator was demonstrated to be suffi-

cient for fine motion control of a mobile robot when in close proximity with the docking

surface.

In the next chapter we explore the application of flow field divergence to docking

with a surface of arbitrary orientation. In so doing, we propose a unified visuo-motor

solution for docking and landing.



Chapter 6

Unifying Docking and Landing

using Spherical Flow Divergence

6.1 Introduction

In Chapter 5 we proposed a visuo-motor control scheme for docking a mobile robot

with an upright planar surface. We showed that computing divergence at the FOE

accounts for small rotations during the approach. While alleviating strict assumptions

of alignment with the surface, the algorithm is still constrained to near fronto-parallel

approaches. These limitations are a direct consequence of the perspective projection

model employed. Addressing the need for non-fronto-parallel docking/landing, we

discussed in Chapter 4 (Section 4.7.3) a proposed insect-inspired model for performing

graze landings from optical flow [Srinivasan et al. 2000]. In this model, the speed of

approach is reduced by holding the angular motion of the ground plane constant,

allowing a safe touch-down to be achieved. However, this model cannot be applied

to fronto-parallel approaches, and assumes translational motion only. Thus, neither

approach constitutes a general solution to the docking/landing problem.

In this chapter we present a novel strategy for landing and docking with planar

surfaces of arbitrary orientation. Central to this strategy is the use of a spherical pro-

jection model, and the location of the divergence maximum on the view sphere (referred

to as the max-div point). We show that limitations imposed under a perspective pro-

jection are not present under a spherical projection model, allowing robust estimates

of τ for any angle of approach. Thus, for spherical cameras, the proposed control

scheme supersedes the FOE-based scheme presented in Chapter 5. For a view sphere

113
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approaching a planar surface, we show that the max-div point will always be located

half way along the arc connecting the direction of translation, and the planar surface

normal. While Koenderink and Van Doorn [1976, 1981] first noted this property some

time ago, subsequent interest has been constrained to the psychophysics literature and

its possible role in human self-motion perception [1982]. To our knowledge, no one

has considered the max-div point as a visual control input, or provided a formal proof

of this property. The work presented therefore represents a novel application of the

max-div point to velocity and heading control, and provides the first demonstration of

significant advantages gained through its use for visuo-motor docking and landing.

The chapter is structured as follows. Section 6.2 provides a full derivation of time-

to-contact on the view sphere, and a proof of the max-div property. Section 6.3 presents

the proposed max-div visuo-motor control scheme for unifying docking and landing.

Section 6.4 presents open-loop testing and experimental validation of the proposed

time-to-contact estimation scheme over pre-constructed image sequences. Section 6.5

examines the closed-loop performance of the control scheme in performing controlled

approaches to a surface of varying orientation. Experiments are conducted both in sim-

ulation and on-board a mobile robot. Section 6.6 provides an overall discussion of these

results. Section 6.7 briefly presents a discussion of implications and broader outcomes

for visuo-motor control schemes. Finally, Section 6.8 summarises the contributions of

this chapter.

6.2 Theory

In this section we examine divergence (and time-to-contact) under a spherical pro-

jection model. We consider this in the context of a view sphere approaching a planar

surface of arbitrary orientation. We discuss distinct advantages gained using a spherical

projection model, and provide a formal proof of the max-div property.
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6.2.1 Computing time-to-contact for planar surfaces

Recall from Chapter 3 (Section 3.3.2.3), the general equation for divergence on the unit

view sphere [Koenderink and Doorn 1975]:

D
(

p̂
)

= −
v(p̂ � t̂)

R(p̂)

[

1 +
R′(p̂)

R(p̂)

( t̂

(p̂ � t̂)
− p̂
)

]

, (6.1)

where p̂ ∈ R
3 is the direction of an arbitrary point on the sphere, t̂ is the direction of

motion of the sphere and v its velocity, and R(p̂) is a radial depth function defining

the distance to the point in space in the direction p̂, and R′(p̂) its derivative.

We now consider the case of a sphere approaching a single planar surface of arbitrary

orientation. We define the radial distance to a point on the surface of a plane, Rp,

projecting to a point p̂ ∈ R
3 by the depth function:

Rp̂(p) =
Ro

(p̂ � n̂)
, (6.2)

where n̂ ∈ R
3 gives the direction of the planar surface normal on the sphere (i.e., the

closest surface point), and Ro ∈ R is the distance to this point. Substituting (6.2) into

(6.1), we obtain:

D(p̂) = −
v

Ro

(

2(p̂ � t̂)(p̂ � n̂) − (n̂ � t̂)

)

. (6.3)

Through simple algebraic manipulation of (6.3), we obtain the following equation for

time-to-contact when approaching a planar surface:

τp(p̂) =
Ro

v(p̂ � t̂)(p̂ � n̂)
= −

1

div(p̂)

(

2 −
(n̂ � t̂)

(p̂ � t̂)(p̂ � n̂)

)

. (6.4)

6.2.1.1 Advantages of a full view sphere for robust time-to-contact esti-

mation

There exists a duality in the time-to-contact along the direction of translation, and the

time-to-contact along the direction of the closest surface point. Substituting p̂ for t̂ or
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n̂ in Equation 6.4 yields:

τp(t̂) = τp(n̂) =
1

div(t̂)
=

1

div(n̂)
. (6.5)

Thus, τp can be measured directly from the flow divergence in the direction of motion,

t̂ , and the direction of the surface normal, n̂ . This highlights significant advantages

over time-to-contact estimation under a perspective projection model. Table 6.1 sets

out these advantages explicitly.

Spherical projection Perspective projection

τ is precisely computable from di-
vergence at two distinct locations in
the image (t̂ and n̂).

τ is precisely computable from di-
vergence only along the optical axis,
(unless surface is fronto-parallel).

τ is precisely computable from di-
vergence along the direction of mo-
tion regardless of surface orienta-
tion, or location in the image.

τ is precisely computable from di-
vergence along the direction of mo-
tion only if it is aligned with the
optical axis or surface is fronto-
parallel.

Table 6.1: Comparison of constraints on time-to-contact estimation under spherical and per-

spective projection.

The advantages highlighted in Table 6.1 are significant in the context of design-

ing velocity control schemes based on time-to-contact estimates. Given the reduced

assumptions under a spherical projection framework, we may expect to obtain more

robust and accurate estimates of time-to-contact. Note also that there is no require-

ment for camera calibration (except if re-mapping to a spherical model).

6.2.2 The point of maximum divergence

For a unit view sphere approaching an infinitely large planar surface, let θnt be the

angle subtending the arc connecting the direction of translation, t̂ , and the direction

of the surface normal, n̂ (i.e., the angle of approach). For an arbitrary direction, p̂ on

the view sphere, let θpt and θpn be the angles subtending the arc connecting t̂ and p̂,

and n̂ and p̂ respectively. From these definitions we propose the following theorem:

Theorem 6.2.1. Assuming θnt ∈ [0, π
2 ], if θpt = θpn and θpt + θpn = θnt, then p̂ must
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Em

En

q̂

p̂
t̂ n̂

θqt

θqn

θpt
θpn

Figure 6.1: Geometric framework for proof of the max-div property.

be the point of maximum divergence on the view sphere. That is, for a planar surface

projecting onto the full arc connecting t̂ and n̂, the point of maximum divergence is

always located halfway between t̂ and n̂ on this arc.

Proof. We first show that the point of maximum divergence must occur on the great

circle, Em ∈ R
3 passing through n̂ and t̂ . Let p̂ be constrained to Em. Let En(p̂)

define the orthogonal great circle to Em at p̂. Let q̂ ∈ R
3 be any point on En(p̂), such

that q̂ 6= p̂ (see Figure 6.1. We seek to show that for any p̂ 6= q̂ , div(p̂) > div(q̂). The

proof is by contradiction.

Re-writing Equation 6.3 in angular form, we obtain:

div(p̂) =
v

Ro

(

2 cos(θpn) cos(θpt) − cos(θnt)
)

, (6.6)

from which we express the inequality div(p̂) > div(q̂), such that:

cos(θpn) cos(θpt) ≤ cos(θqn) cos(θqt), (6.7)
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where θqt and θqn are angles subtending the arcs connecting q̂ and t̂ , and q̂ and n̂

respectively. Further re-arrangement yields:

cos(θpn)

cos(θqn)
≤

cos(θqt)

cos(θpt)
. (6.8)

Note that q̂ is located on an orthogonal great circle to Em. Thus, q̂ is always at a

greater distance from t̂ , and n̂, than p̂ which lies on the shortest arc connecting t̂ and

n̂. Thus, θpt < θqt and θpn < θqn, from which we infer:

cos(θpn)

cos(θqn)
> 1, and

cos(θqt)

cos(θpt)
< 1.

(6.9)

It therefore follows that:
cos(θpn)

cos(θqn)
>

cos(θqt)

cos(θpt)
, (6.10)

thus contradicting the original inequality given in Equation 6.8. It therefore follows

that div(p̂) > div(q̂) for all p̂ and q̂ , and thus the point of maximum divergence must

occur on the great circle Em.

We now prove that the point of maximum divergence occurs halfway along the arc

connecting t̂ and n̂. Considering Equation 6.6 again, we constrain p̂ to locations on

the great circle passing through t̂ and n̂, and exploit the following relationship:

θpn = θnt − θpt. (6.11)

From this we may rewrite Equation 6.6 as:

div(θpt) =
v

Ro

(

2 cos(θnt − θpt) cos(θpt) − cos(θnt)
)

. (6.12)

We therefore seek to find the angle, θpt, that maximises this equation. Taking its
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t̂

ŝmax

p̂̂n

divmax

t̂

Figure 6.2: Example of max-div property on the view sphere. Increasing brightness on the

sphere surface indicates the increasing divergence.

derivative and solving for 0 we obtain:

0 =
d

θpt

(

2 cos(θnt − θpt) cos(θpt) − cos(θnt)
)

,

= cos(θpt) sin(θnt − θpt) − sin(θpt) cos(θnt − θpt),

= 2 sin(θnt − 2θpt).

Therefore:

0 = θnt − 2θpt,

θpt =
θnt

2
. (6.13)

Noting that θpn = θnt − θpt, it also follows that θpn = θnt

2 . Thus, we have proven that

the point of maximum divergence must occur halfway along the arc connecting t̂ and

n̂.

Figure 6.2 shows an example of the max-div property, as computed from simulation.
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6.2.2.1 What does max-div represent?

Substituting θpt for 1
2θnt in Equation 6.12, we obtain the following expression for the

maximum divergence quantity:

divmax = −
v

Ro

(

2 cos2
(θnt

2

)

− cos(θnt)

)

. (6.14)

Applying the trigonometric identity 2 cos2(θ) − cos(2θ) = 1, and taking its recipricol,

the expression becomes:
1

divmax
= −

Ro

v
. (6.15)

The above equation defines the scaled depth of the surface along n̂. Most significantly,

this quantity is obtainable directly from the measured maximum divergence, requiring

no knowledge of the surface orientation, the direction of egomotion, or the direction of

the surface normal.

6.3 Unifying landing and docking using max-div

The max-div property gives rise to a divergence-based control scheme for landing and

docking with a planar surface of arbitrary orientation. Moreover, this property offers

a means of regulating both the velocity of the vehicle, and its approach angle with

respect to a planar surface. Below we detail proposed control schemes that achieve

both these capabilities through the use of the max-div point.

6.3.1 Regulating approach velocity

In Chapter 5, we demonstrated that velocity towards near fronto-parallel surfaces may

be controlled by maintaining constant divergence during the approach. Equation 6.15

constitutes a general solution to the docking/landing problem as it may be applied

to regulate velocity for any angle of approach, without alteration. Moreover, Equa-

tion 6.15 shows that the maximum divergence value is invariant to the angle of ap-

proach, and is therefore equally suitable for both frontal and grazing approaches. Thus,

we may apply the same control law as proposed in Chapter 5 (Equation 5.25).



§6.3 Unifying landing and docking using max-div 121

θn
θm

n̂

t̂

θt

φ

Figure 6.3: Geometric model for approach angle control on view sphere

6.3.2 Regulating approach angle

The relationship between the point of maximum divergence, the direction of transla-

tion and the planar surface normal gives rise to a simple visual servoing strategy for

maintaining a given orientation with respect to a planar surface. This can be achieved

without explicit tracking of the direction of ego-motion and is invariant to rotational

flow.

We consider only regulation of the approach angle, θnt, defined as the angle between

the sphere’s direction of translation t̂ , and the direction of the surface normal, n̂.

Let θt, θn ∈ [0, 2π] be the angular location of t̂ and n̂ respectively, on the great

circle, Em, passing through both points. Let m̂ be the direction of the max-div point

on the great circle Em, and θm, its angular location on Em, as shown in Figure 6.3.

Given a stationary ground plane, we assume θn to be fixed during the approach, and

thus any change in θnt to be due only to changes of θt. This constraint ensures the

location of the maximum divergence point represents a unique angle of approach with

respect to the surface.

Let θm be the location of the point of maximum divergence on Em. From Theo-

rem 6.2.1, we note that θm = 1
2(θt + θn). Given θn is stationary, we may assume that

changes in θm (∆θm) will be due only due to changes in θt (∆θt), such that:

∆θm
=

1

2
∆θt

(6.16)
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Therefore, maintaining θnt during an approach towards a planar surface can be achieved

through proportional adjustments of θt, such that θm remains at a constant location

on Em.

This gives rise to a simple control law for controlling the approach angle within the

plane of Em:

θt(t) = θt(t− 1) − 2(θs − θm(t)), (6.17)

where θs is the set point for the location of the maximum divergence point, and θm(t)

is the computed location of the maximum divergence point at time t.

It is important to note that (6.17) does not consider lateral motion of the maximum

divergence point (i.e., when m̂ does not lie on Em). To maintain the sphere’s orien-

tation with respect to the ground plane, two rotations are required. One to bring m̂

back to Em, and another to adjust the angle of approach as defined in Equation (6.17).

Given, for example, knowledge of the direction of the ground plane, then both the

angle of approach, and the orientation of the sphere with respect to the ground plane

can be maintained1. Note, however, that the control scheme places no constraints on

the rotation of the sphere to maintain the angle of approach. Thus, the rotational axes

used to re-align m̂ with the reference location may be chosen arbitrarily.

6.4 Open-loop performance evaluation

In the next two sections we present experiments to validate and test the proposed

max-div landing/docking scheme. In this section, we present two sets of open-loop

experiments, over pre-constructed real image sequences. In these tests, we seek to

examine the underlying time-to-contact estimation, and the feasibility of tracking the

max-div point for direction control.

6.4.1 Omni-directional cameras employed

All experiments presented (both open and closed-loop) employ one of two cameras

providing hemispherical projections of the scene. We describe both cameras below and

1such information may be available from observations of the horizon, or gravity sensors.
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Figure 6.4: Sample frame from indoor landing sequences. For each sequence, the camera was

incrementally lowered towards the ground plane at a preset angle of approach.

simply refer to the appropriate camera by the specified name in subsequent experiment

descriptions.

Omni-tech Robotics Unibrain Fire-i BCL 1.2 lens provides an approximately spher-

ical projection over a 190o field of view, The image is projected onto a standard

CCD sensor array. The central region of the visual field provides a close approx-

imation to a spherical projection, and is thus deemed suitable for use in testing

the time-to-contact estimator. A mapping of each pixel to the unit sphere was

obtained from calibration using Kannala and Brandt’s [2006] method. We cap-

ture images from the camera at a resolution of 320× 240 pixels. We refer to this

camera as the omnitech camera.

Point Grey Research Ladybug camera provides an almost global view of the scene

from six mounted cameras within the device. In this work, we make use of in-

built image stitching which provides a 180o domed view of the scene. We capture

images of this domed view at a resolution of 512 × 512 pixels. We refer to this

camera as the ladybug camera.
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(a) (b)

Figure 6.5: Sample frames taken from: (a) the grass-landing sequences, and, (b) the cement-

landing sequence.

6.4.2 Indoor image sequences (controlled environment and motion)

Using the omnitech camera, four indoor image sequences were constructed, each de-

picting the motion of the camera towards a heavily textured, planar surface. The four

sequences depict discrete angles of approach towards the surface: 0o (i.e., a frontal

approach), 22.5o, 45o and 67.5o. In all sequences, the camera was positioned such that

the image centre was approximately aligned with the surface normal. Figure 6.4 shows

a sample frame from one of the indoor landing sequences. The camera’s velocity was

5mm per frame in the direction of approach for each trial. Note that while conditions

were highly controlled, the camera’s motion was subject to errors in its alignment with

the surface due to imprecision in camera movement which was performed by hand.

Using these image sequences, we assess the feasibility of applying the proposed

control scheme. For velocity control, we consider the accuracy and stability of time-

to-contact estimates taken from the measured divergence at the max-div point. For

directional control, the validity of the relationship between the max-div point and the

approach angle is examined. The estimated location of the max-div point is recorded

for each frame and mapped to the unit view sphere from calibration data. The angular

displacement of the max-div point with respect to the image centre is then computed.
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6.4.3 Outdoor image sequences - hand-held camera in uncontrolled

environments

Outdoor image sequences were constructed using the ladybug camera. The camera was

mounted on a tripod which was then hand-held horizontally, and extended out in front

of the body, pointing towards the ground. In all sequences, the camera was walked

through the environment, while simultaneously being lowered towards the ground by

hand. Three outdoor sequences were constructed:

1. the straight grass-landing sequence, depicting a predominantly straight and grad-

ual descent towards an unevenly grassed ground plane;

2. the rotating grass-landing sequence, depicting the camera’s descent towards the

same grassed surface, while simultaneously being swept across the scene from

right to left; and,

3. the cement-landing sequence, depicting a predominantly straight and more rapid

descent towards a significantly less textured, smooth cement surface.

Sample frames from each sequence are shown in Figure 6.5.

In all sequences, the camera’s velocity and trajectory are approximately constant,

though the less precise conditions of their construction unavoidably introduce varia-

tions. To avoid the influence of other objects in the periphery of the scene, divergence

was measured only within a ninety pixel radius of the image centre. Assuming the sur-

face normal is in the approximate direction of the image centre, this region encompasses

the range of possible max-div locations for any descent angle.

6.4.3.1 Optical flow and divergence estimation

In all experiments (open and closed-loop), optical flow was computed for every eighth

pixel using a pyramidal implementation of Lucas and Kanade’s gradient-based tech-

nique (discussed in Chapter 3, Section 3.2.2.5). Divergence was computed using a

linear size five Sobel kernel for gradient estimates, providing divergence estimates for

each defined flow vector location. Time-to-contact estimates were obtained from the

recipricol of the average of divergence estimates within a 5 × 5 vector patch, centred
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approach angle max div loc std dev
(deg) (deg) (deg)

0o 5.8o 1.5o

22.5o 16.7o 2.5o

45o 19.6o 8.6o

67.5o 31.3o 15.2o

Table 6.2: Results for indoor landing sequences showing average radial distance from image

centre of max-div point

on the estimated point of maximum divergence. The divergence maximum was defined

simply as the location associated with the highest divergence in the image.

6.4.4 Open-loop results

6.4.4.1 Indoor landing sequence results

Figures 6.6 through 6.9 show sample frames from each indoor sequence, showing also

the estimated optical flow field, the location of the max-div point (indicated by the

white cross), and the divergence as measured across the image. Video footage show-

ing results for the 0o and 45o landing sequences is provided on the thesis CD-ROM

(Videos 6.1a and 6.1b). Figure 6.10 shows time-to-contact estimates obtained at the

point of maximum divergence for each of the four approach angles. To account for

scaling differences between the estimated time-to-contact and ground truth, time and

time-to-contact have been normalised using the following normalisation equation:

τ̂i =
τi − τmax

τmax − τmin
,

where τ̂i is the normalisation of τi from the trial, and τmax and τmin are the maximum

and minimum time-to-contact estimates from the trial respectively. Ground truth,

after normalisation, is the line passing through τ = 1 and t = 1.

In general, time-to-contact estimates remain stable, and provide a close match with

ground truth. Accuracy and stability degrades as the angle of approach increases, as

is evident for the 67.5o sequence in Figure 6.10(d). In all cases, however, fluctuations

appear to diminish as time-to-contact decreases.
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Figure 6.6: Sample frames from indoor landing sequence for 0o approach. Also shown is

the estimated optical flow field, and the estimated location of the max-div point (white cross).

Right column shows divergence maps estimated for each corresponding frame. Greater intensity

represents larger divergence.
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Figure 6.7: Sample frames from indoor landing sequence for 22.5o approach. Also shown is

the estimated optical flow field, and the estimated location of the max-div point (white cross).

Right column shows divergence maps estimated for each corresponding frame. Greater intensity

represents larger divergence.
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Figure 6.8: Sample frames from indoor landing sequence for 45o approach. Also shown is

the estimated optical flow field, and the estimated location of the max-div point (white cross).

Right column shows divergence maps estimated for each corresponding frame. Greater intensity

represents larger divergence.
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Figure 6.9: Sample frames from indoor landing sequence for 67.5o approach. Also shown is

the estimated optical flow field, and the estimated location of the max-div point (white cross).

Right column shows divergence maps estimated for each corresponding frame. Greater intensity

represents larger divergence.
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Figure 6.10: Time-to-contact results for open-loop, indoor landing sequences using the max-

div estimation scheme. Ground truth (the dotted line) is also given for each angle of approach.
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Table 6.2 shows the average angular displacement of the max-div point with respect

to the image centre for each sequence, as well as the standard deviation of the estimated

angle. Results appear consistent with theoretical expectations, showing average angular

displacements of the max-div point to be approximately half the angle of approach.

While standard deviations in the estimated location of the max-div point increase

with the angle of approach, mean max-div locations (i.e., the direction of the surface

normal) still provide an accurate gauge of the approach angle.

6.4.4.2 Outdoor landing sequence results

Figures 6.11, 6.12 and 6.13 show the computed optical flow field, including the esti-

mated location of the max-div point, and grayscale images representing divergence

levels computed from the flow field, for each outdoor image sequence. Increasing

brightness indicates higher divergence (i.e., decreasing time-to-contact). Video footage

of these results for both grass landing sequences is provided on the thesis CD-ROM

(Videos 6.2a and 6.2b). Sample frames are approximately one second apart. Distinct

regions of positive divergence around the estimated max-div point are evident in the

divergence maps of all sequences.

Figure 6.14 shows time-to-contact estimates obtained at the max-div point for the

last 30 frames of each sequence. As in indoor image sequence experiments, results are

normalised. As expected, all outdoor sequences exhibit increased noise levels, and less

conformity with ground truth compared with indoor experiments. Closer inspection of

time-to-contact estimates in regions of deviation from ground truth shows, however,

that local temporal consistency is generally still apparent. This suggests that such

deviations are not likely a result of erroneous time-to-contact estimates, but rather a

response to genuine changes in the hand-held camera’s motion during the approach.

This is particularly evident in Figure 6.14(c) between t = 0.3 and t = 0.7, but also

between t = 0.2 and t = 0.45, and t = 0.6 and t = 1 in Figure 6.14(a), and between

t = 0.2 and t = 0.5 in Figure 6.14(b). Instances of large fluctuations are rare (only

once in each sequence). Notably, consistency in time-to-contact estimation appears to

improve over the smoother, less textured cement surface than the grassed surface. The

inclusion of camera rotation in the rotating grass-landing sequence does not appear
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Figure 6.11: Sample frames from open-loop, outdoor grass landing sequence (straight ap-

proach). The left column for each shows the estimated flow field, and the estimated location

of the max-div point (white cross). Right column shows divergence maps estimated for each

corresponding frame. Greater intensity represents larger divergence.
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Figure 6.12: Sample frames from open-loop, outdoor grass-landing sequence (rotating ap-

proach). The left column for each shows the estimated flow field, and the estimated location

of the max-div point (white cross). Right column shows divergence maps estimated for each

corresponding frame. Greater intensity represents larger divergence.
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Figure 6.13: Sample frames from open-loop, outdoor cement landing sequence. The left

column for each shows the estimated flow field, and the estimated location of the max-div

point (white cross). Right column shows divergence maps estimated for each corresponding

frame. Greater intensity represents larger divergence.
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Figure 6.14: Outdoor open-loop time-to-contact results for: (a) grass-landing sequence

(straight), (b) grass-landing sequence (rotate), and (c) cement-landing sequence Results are

shown for the last 30 frames of each sequence. Note that camera was hand-held during the

construction of each sequence.
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Sequence max div pos estimated appr angle
(mean and std dev) (2× max div pos)

grass (straight) 37.8o, σ = 8.6o 75.6o

cement 21.1o, σ = 13.5o 40.8o

Table 6.3: Approach angle data for straight outdoor landing sequences.

to significantly effect time-to-contact estimates compared with the straight motion

approach. Most significantly, the linear downward trend of time-to-contact estimates

is preserved across all sequences.

Table 6.3 shows the estimated location of the max-div point on the view sphere

with respect to the image centre (the approximate direction of the surface normal) for

the straight grass-landing and cement-landing sequences. Given the imprecise nature

of the experiments, it is difficult to quantitatively assess the accuracy of the esti-

mated approach angles. However, the estimated approach angles clearly distinguish

the sharper descent angle of the cement-landing experiment from the shallower descent

of the grass-landing sequence.

6.4.5 Open-loop results discussion

Open-loop testing results appear to support the viability of the max-div docking

scheme, and support the generality of the proposed time-to-contact estimator for any

angle of approach. While some loss of consistency in time-to-contact estimation is

apparent in the 67.5o indoor sequences, this may be due to the camera’s velocity be-

ing small with respect to the distance. Closed-loop trials will provide further insight.

Notably, workable time-to-contact estimates are obtained at similar descent angles in

outdoor image sequences.

Some loss of consistency in time-to-contact estimation is apparent in outdoor ex-

periments. However, reduced surface texture, and the inclusion of camera rotation

do not appear to adversely effect time-to-contact estimation performance, suggesting

the unevenness of the grassed-surface has the most impact on divergence estimation.

Discontinuities on the surface were observed to occasionally give rise to false max-div

estimates. While the pyramidal estimation of the optical flow field provides some ro-
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bustness to this, it was observed that robustness could be improved further by smooth-

ing divergence estimates before estimating the location of the max-div point. Most

significantly, however, a linear downward trend in time-to-contact estimates is retained

across all sequences, providing strong support for the feasibility of the max-div control

scheme.

6.5 Closed-loop performance evaluation

In this section we consider the performance of the max-div control scheme in the

context of a closed-loop control system. Specifically, we assess the control scheme’s

ability to robustly perform controlled approaches towards a planar surface of arbitrary

orientation. We first describe the experiments conducted, before presenting results.

6.5.1 Closed-loop simulation testing

A simulation was constructed depicting the motion of a vehicle in 3D space towards an

infinitely large planar surface. To control the vehicle’s velocity and angle of approach,

the max-div control scheme was implemented for use in the vehicle’s control loop. The

vehicle model was assumed to be equipped with a spherical vision sensor of unit radius,

providing a spherical projection of the ground plane. Optical flow vectors induced by

the vehicle’s motion with respect to the ground plane were computed from the vehicle’s

known motion parameters, and its distance from the surface. Flow field divergence was

then computed from discrete samples of the flow field on the local tangent plane about

the given region of interest.

Trials were conducted for angles of approach ranging from 0o (a frontal approach),

to 67.5o with respect to the surface normal. In each trial, the max-div point was used

to maintain the desired angle, while also regulating the vehicle’s velocity to maintain a

constant maximum divergence value. To simulate real-world conditions, Gaussian noise

was added to the intended direction of motion, and velocity, thus forcing correctional

adjustments of heading and speed at each iteration of the control loop.



§6.5 Closed-loop performance evaluation 139

Figure 6.15: Side view of on-board experimental workspace, and robot, used for closed-loop

on-board trials of the max-div docking/landing control scheme.

6.5.2 Mobile robot landing/docking experiments

The max-div control scheme was implemented for closed-loop control of a mobile robot.

For comparison, the graze-landing model proposed by Srinivasan et al. [2000] was also

implemented for closed-loop control of the robot.

The omnitech camera (described in Section 6.4.1 was attached to the front of the

robot, providing a forward-facing, approximately hemispherical field of view. The robot

drive system provided omni-directional motion on the ground plane, thus allowing

instantaneous translation in any direction.

Across all trials, the robot was required to perform a controlled approach towards

an upright surface, attempting to stop as close as possible to the surface without

collision. As in previous experiments, trials were conducted for a range of approach

angles: 0o, 22.5o, 45o, and 67.5o. Five trials were conducted for each angle of approach.

For all trials, the robot’s initial direction of motion was parallel to the surface, thus

requiring explicit adjustments of direction to achieve the desired approach angle. The

robot’s initial pose was facing the docking surface, at a distance of 100 cm for 67.5o

trials, and 125 cm for all others2. In each trial, the robot’s path on the ground plane

2Physical space constraints forced 67.5o trials to be started closer to the docking surface.
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Figure 6.16: View from onboard camera of closed-loop on-board experimental workspace.

was plotted via tracking software and footage captured from a calibrated overhead

camera. The robot’s initial velocity was set to 20cms−1. Figure 6.15 shows the robot,

and the experimental workspace used for on-board landing/docking trials. Figure 6.16

shows the view from the onboard camera. We discuss the implementation of both the

max-div, and graze-landing strategies below.

6.5.2.1 Implementation of max-div control scheme

Optical flow and divergence estimation were computed as in indoor open-loop experi-

ments, however, the field of view was restricted to the central third strip of the image

to avoid competing divergence maximum points from other surfaces such as the ground

plane. Velocity control was achieved via a simple Proportional-Derivative (PD) control

law. The discrete time realisation of the control law applied is:

v(t) = ∆v(t− 1) +
∆

m

(

Kp(Dref −Dt) −Kd(Dt −Dt−1)
)

, (6.18)

where v(t) is the velocity control input at time t, ∆ is the discretisation time, m is a

virtual vehicle mass, Dt is the estimated max-div value at time t, Dref is the reference

max-div location set-point, and Kp and Kd are proportional and derivative control

gains respectively. A proof of stability for divergence-based velocity control is provided

in [McCarthy et al. 2008]. Note that the stability proof contained within this paper is

not a contribution of the author of this thesis.
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Directional control was constrained to angular adjustments of the translation di-

rection on the ground plane. This was achieved using a variant of the proposed control

law defined in Equation 6.17:

θδ(t) = 2Dp(θs − θm(t)), (6.19)

where θs is the desired location of the max-div point, θm(t) is the current estimated

location of the max-div point, and Dp is a proportional gain. All control gains used

were tuned empirically over a set of pre-experiment trials and used for all angles of

approach. The same time-to-contact reference value was used for all trials of the max-

div control scheme.

6.5.3 Implementation of graze-landing model

Estimates of time-to-contact were obtained using a single 2×10 vector horizontal strip

centred on the image centre. Motion of the ground plane was measured by taking

the average of the horizontal components of optical flow vectors within the patch, and

from this, time-to-contact was calculated using the equation proposed by Srinivasan et

al. [2000]:

τ =
1

tan(θ)f
, (6.20)

where θ is the angle of descent, and f is the translational image velocity. By keeping f

constant during the descent, Srinivasan et al. proposed the following model of velocity

reduction:

Tx(t) = fZoe
−fB(t−to),

Tz(t) =BTx(t), (6.21)

where Zo is the initial height above the ground at time to, and B = tan(θ) (i.e., the

ratio of Tz to Tx). Figure 6.17 shows example curves of this model for approach angles

(i.e., 90o − θ) of 67.5o and 45o. In implementing this model for closed-loop control,

Equation 6.20 was fed into the same PD control scheme as applied in max-div on-board

experiments.



142 Unifying Docking and Landing using Spherical Flow Divergence

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

time

sp
ee

d 
of

 a
pp

ra
oc

h

Graze landing model − speed versus time

 

 
67.5 deg
45 deg

Figure 6.17: Sample curves showing theoretically predicted velocity decay (Equation 6.21)

during graze landing approaches, as proposed by Srinivasan et al. [2000].

Unlike the max-div control scheme, the graze-landing model requires explicit knowl-

edge of the angle of approach to the surface. As a result, it was not possible to apply

the same control parameters across all trials. To maximise the model’s ability over the

range of approach angles examined, it was necessary to tune the control parameters for

each angle of approach. While for grazing approaches, this required only an adjustment

of the τref, more frontal approaches also required scaling down of the proportional and

derivative gains.

6.5.4 Results

6.5.4.1 Closed-loop simulation results

Figure 6.18 shows velocity profiles for each of the simulation trials conducted. Each

profile shows recorded velocities from each trial, along with the theoretically expected

velocity curve. From these results it can be seen that the recorded velocity profiles

exhibit the same exponential behaviour as proposed by Srinivasan et al. [2000] for

landing honeybees (shown in Figure 6.17). Note that the noise amplitude was kept

constant throughout each trial, and thus has greater effect as the velocity decreases.

Figure 6.19 shows sample trajectories of approach for each simulation trial. Results
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Figure 6.18: Velocity-time profiles for each sample angle of approach: (a) 0o approach, (b)

22o approach, (c) 45o approach, and (d) 67o approach. In each sequence, Gaussian noise with

standard deviation 0.2 was added to the output velocity of the control.
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Figure 6.19: Trajectory profiles for each sample angles of approach. In each sequence, Gaus-

sian noise with standard deviation 0.2 was added to the vehicle velocity, and its direction of

heading at each time step.
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(a)

(b)

Figure 6.20: Sample overhead images from closed-loop onboard experiments: (a)0o trials, (b)

67.5o trials. Blue line shows the plotted path of the robot from overhead tracking.

for all angles of approach show the control law successfully maintaining an average

approach angle close to the intended angle.

6.5.4.2 Mobile robot landing/docking results

Across all angles of approach, the max-div control scheme was observed to consistently

achieve a safe and stable approach towards the surface, and final stopping distances

in close proximity with the surface. Figure 6.20 shows sample overhead images taken

during trials of the each discrete angle of approach examined. Video footage from trials

of the 0o and 67.5o approaches are provided on the thesis CD-ROM. Videos 6.3a and

6.4a show images from the onboard camera, along with the max-div point (white cross)

and reference max-div location (blue cross), and the divergence image for both trials.

Sample images from both videos are provided in Figures 6.21 and 6.22 respectively.

Videos 6.3b and 6.4b show footage of the robot performing both trials.

Figure 6.23 shows the plotted paths taken by the robot in each trial. Position

coordinates refer to the image location of the centre of the robot in rectified images

taken from the overhead camera. Tracking results clearly distinguish each desired angle

of approach, and in general, exhibit consistency across each trial set.

Table 6.4 shows the average angle of approach and stopping distances recorded

(measured from the docking surface) for each trial. Stopping distances grow marginally
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(b)

(a)

Figure 6.21: Sample output images taken from the 0o max-div trials for (a), the beginning of

the trial, and (b) towards the end. Left image shows the view from the onboard camera, and the

optical flow used to compute divergence. The right image shows the divergence image, where

greater intensity represents increasing divergence. The blue cross in both images represents

the reference max-div location. The white cross shows the current estimated location of the

max-div point. For complete footage of trial from the onboard camera, see Video 6.3a on the

thesis CD-ROM.

Trial Mean approach angle Mean stop distance

0o −4.8o 11.7 cm
22.5o 23.4o 12.4 cm
45o 30.3o 14.0 cm

67.5o 53.3o 14.6 cm

Table 6.4: Performance statistics for closed-loop, on-board trials of max-div control scheme
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(b)

(a)

Figure 6.22: Sample output images taken from the 67.5o max-div trials for (a), the beginning

of the trial, and (b), towards the end. Left image shows the view from the onboard camera, and

the optical flow used to compute divergence. The right image shows the divergence image, where

greater intensity represents increasing divergence. The blue cross in both images represents the

reference max-div location. The white cross shows the current estimated location of the max-

div point. For complete footage of trial from the onboard camera, see Video 6.3a on the thesis

CD-ROM.
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Figure 6.23: Plotted paths taken from overhead tracking of robot for each trial using max-div

approach angle control.

with increasing approach angles, but are contained to within a 3cm range. Variation

in the approach angle, and final stopping location, is more apparent for near frontal

approaches (0o and 22.5o). Table 6.4, however, indicates greater accuracy in achieving

the desired angle of approach for near frontal approaches.

To examine the distribution of max-div locations during each trial set, Figure 6.24

provides histograms of the relative frequency of plotted max-div locations in the image

recorded over each set of trials of the max-div. Across all approach angles, the control

scheme appears to successfully maintain maximum divergence about the reference lo-

cation. Some widening of the distribution is apparent for the near frontal approach,

however, it should be noted that the required heading adjustment was greatest for

these trials given the initial direction of motion.

Figure 6.25 shows velocity-time profiles obtained from closed-loop onboard trials

of the max-div control scheme, and for comparison, the graze-landing model. Velocity

curves obtained from the max-div trials, in general, resemble the exponential decay

proposed by the graze-landing model (over grazing approaches). During the max-div

trials, velocity often begins to fluctuate in the final stages of docking. At this point,
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during closed-loop onboard trials. Dotted line shows the reference max-div location used for

direction control in each trial set.
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Figure 6.25: Velocity-time profiles recorded during all on-board trials for: (a) the max-div

model, (b) the graze-landing model. Note that no meaningful results were obtained at 0o using

the graze-landing model. Instead we show results for a 100 approach, the observed fail case of

the graze-landing model.
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the robot often performed a series of small thrusts towards the wall before coming to

a final halt.

Similar effects are also apparent in graze-landing model trial results. As expected,

the graze-landing model provides high stability and consistency for shallow approach

angles. Successful trials of the graze-landing model were recorded for approach angles

greater than 100 (12.5o being the last trial set for which five successful trials were

recorded). However, trial performances were generally observed to degrade from 22.5o.

From this point, control became increasingly sensitive to parameter tuning in order

to achieve successful docking performances. At 22.5o, for example, Figure 6.25 shows

velocity profiles with a significantly reduced maximum velocity, a direct consequence

of the reduced proportional gain. At 10o, no control parameters were found to achieve

a consistent performance using the graze-landing model. Thus, 10o was deemed the

model’s fail case.

Figure 6.26 shows time-to-contact estimates recorded during trials of both models.

To facilitate proper comparison of time-to-contact estimates, scaling is applied to time-

to-contact estimates obtained during graze-landing model trials to account for the

different time-to-contact set-points applied. The time-to-contact set-point value is

successfully maintained across all trials of the max-div control scheme, and time-to-

contact estimates appear to reflect the consistency of performance exhibited in the

velocity profiles. Time-to-contact results for the graze-landing model are also consistent

with velocity profile results. A clear loss of stability is apparent for the 10o fail case of

the graze-landing model.

6.6 Discussion

6.6.1 Generality of max-div docking scheme

Open and closed-loop results provide clear evidence of the proposed max-div docking

scheme’s ability to perform controlled approaches to surfaces of arbitrary orientation.

In particular, the consistency of velocity curves and stopping distances provide strong

validation of the generality of the proposed landing model.

It is important to note that the max-div control scheme required no alteration to
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Figure 6.26: Time-to-contact values recorded during all on-board trials for: (a) the max-div

model, (b) the graze-landing model. Note that no meaningful results could be achieved at 0o

using the graze-landing model. Instead we show results for a 100 approach, the observed fail

case of the graze-landing model.
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control parameters to achieve these results. This is in contrast to the graze-landing

model which required tuning adjustments for each discrete angle of approach examined.

Sensitivity to this control tuning increased as the angle of approach became near-

frontal. In contrast, no significant degradation in performance was observed in the

max-div control scheme over the range of approach angles examined.

Across all angles of approach, the max-div control scheme provides reasonable sta-

bility in maintaining the time-to-contact set-point. In contrast, instability becomes

increasingly evident for the graze-landing model as the surface alignment becomes

frontal, eventually failing at 10o. This instability is reflected in velocity curves shown

in Figure 6.25(b) for 12.5o trials. Step-wise fluctuations in velocity, and general incon-

sistency in the profiles appear to be the result of noisy time-to-contact estimates.

6.6.2 Robustness of time-to-contact estimation

In open-loop experiments, robust time-to-contact estimates were achieved from spher-

ical flow divergence across a wide range of approach angles. While some loss of ac-

curacy was observed in time-to-contact estimates for shallow approaches (e.g., 67.5o),

this increased error appears to be well contained and within workable levels. Notably,

on-board 45o and 67.5o trials indicate no significant impedance in performance com-

pared with the more frontal approach angles. Improved tuning of the control should

reduce fluctuations observed in the final stages of docking for each trial set.

The ability of the max-div scheme to operate in noisy, real-world conditions is well

supported by results obtained from outdoor open-loop experiments. These results show

that time-to-contact estimates remain workable under both varying lighting conditions,

and where surface texture is minimal. While some loss of temporal consistency in time-

to-contact estimates is apparent, it is important to note that both sequences depict the

motion of a hand held camera, and thus are subject to significant variation in their

trajectory. Notably, no loss of accuracy was apparent when rotation was introduced.
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6.6.3 Robustness of velocity control

Velocity curves shown in Figure 6.25(a) for the max-div control scheme indicate high

stability and consistency in performance was achieved across all trials. The robustness

of the scheme is further supported by overhead tracking plots in Figure 6.20, showing

consistent performances despite significant variation in approach angle during each

trial. Final stopping distances from the wall were also highly consistent. No collisions

were recorded in any trials of the max-div control scheme.

These results highlight the invariance of the max-div control scheme to the angle of

approach. While better stability in velocity control is evident from the graze-landing

model for non-frontal approach angles, this is assisted by the explicit tuning of control

parameters for each angle of approach examined. In contrast, the max-div control

scheme requires no such tuning adjustments to achieve stable velocity control for each

angle of approach. The removal of any explicit representation of approach angle in

the max-div control scheme appears to reduces control tuning demands, allowing its

more general application. This is in contrast to both the graze-landing model, and

the FOE-based docking control scheme presented in Chapter 5, both of which require

knowledge of the surface alignment when applied to velocity control.

6.6.4 Robustness of heading control (approach angle regulation)

The robustness of heading control is supported by the underlying stability of the max-

div point, as shown in histograms presented in Figure 6.24. The max-div location in the

image was successfully maintained across each trial set. Quantitatively, errors between

the set and maintained approach angles increase as the surface orientation with respect

to the camera moves away from fronto-parallel. Such errors are a likely result of initial

alignment errors. The imprecise conditions of these experiments prevented any means

of ensuring alignment was accurate. During egomotion, any initial alignment of the

camera and surface was subject to variation as a result of unintended robot rotations.

Such errors accumulate over time, therefore having greatest influence on trials involving

longer travel distances (i.e., 45o and 67.5o trials).

In examining quantitative results, it should also be noted that the angular resolution
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used in on-board trials ranged from 7.2o about the image centre, to 8.5o in the periphery.

This places a lower bound on the error of the estimated angle of approach. All results

shown in Table 6.4 fall within their respective error bounds.

The emphasis on heading control is to maintain a constant angle of approach, rather

than a specific angle. In this regard, the control scheme successfully achieves highly

robust, and consistent trajectories towards the surface.

6.6.5 Max-div model limitations and issues

6.6.5.1 Existence of a global divergence maximum

The max-div model assumes the existence of the global divergence maximum in the

image. Where only a restricted field of view exists, or where the finite landing surface

does not occupy the full image area, the global maximum may not lie within the image.

Assuming some surface patch projecting onto a portion of the arc connecting t̂ and n̂

(if the surface were to extend this far), then the local maximum will occur at a point

closest to the location of the global divergence maximum. Thus, maintaining constant

divergence at the local maximum within the projected area of the looming surface

should still provide the best input for velocity control. Assuming continuous motion

towards the surface, the local maximum will continue to move towards the global

maximum, and thus become more accurate as proximity with the surface increases.

However, for such a scenario, use of the max-div point to regulate heading direction

would not be appropriate as the divergence maximum will not be stable. This constraint

highlights the advantages of employing a full view sphere for navigation tasks.

6.6.5.2 Divergence estimation

The overall stability of the max-div scheme suggests the underlying divergence estima-

tion was consistent and accurate enough to support the underlying control. This was

achieved with minimal post-filtering. Unsurprisingly, divergence estimates were nois-

iest when measured during shallow approaches, at large distances. However, results

from all experiments show that the reliability and consistency of divergence estimates

improves as the surface nears. This suggests the control itself can be used to maintain
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visual conditions suitable for obtaining robust divergence estimates. It was also ob-

served that large spatial support for optical flow estimation, and subsequent divergence

estimation improved the consistency of results significantly. This was particularly ap-

parent in both outdoor environments examined in open-loop trials. Low resolution

divergence estimates computed over large overlapping patches were found to provide

the most stable time-to-contact estimates. This was observed to provide robustness to

reduced texture, surface inconsistencies, and local flow field errors.

The results presented provide compelling support for the viability of a divergence-

based time-to-contact estimation strategy for performing controlled approaches to pla-

nar surfaces of any orientation. The proposed model unifies previous approaches to the

problem and eliminates the need for any distinction between near fronto-parallel and

grazing approaches.

6.7 Implications for visuo-motor navigation

Based on the contributions presented in both this chapter and the previous, we briefly

compare both approaches and discuss broader outcomes for the use of optical flow

under a visuo-motor framework.

6.7.1 Global flow field invariants

The docking/landing schemes presented suggest robust, simple and efficient visuo-

motor control schemes can be developed if frame-to-frame system dynamics are handled

in the image domain. This can be achieved by computing visual control inputs, such

as time-to-contact, with respect to global invariants of the flow field. (e.g., the FOE,

max-div, etc.). This design feature is central to the demonstrated robustness of both

docking schemes presented in this thesis. In the context of time-to-contact estimation,

the use of global invariants improves overall system performance in two ways:

1. the shifting location of global invariants directly reflects frame-to-frame changes

in camera motion with respect to the looming surface. Thus, noisy onboard

conditions are largely handled in the image domain, reducing the need for complex

control schemes.
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2. global invariants provide stable locations in the flow field from which to estimate

time-to-contact. Both the FOE (in the fronto-parallel case) and max-div points

mark locations where divergence is maximal, and local flow estimates are well

defined. Both locations therefore provide the most accurate locations in which

to estimate time-to-contact.

Notably, these improvements relate to different aspects of the control design, and

thus are likely to have a compounding effect on overall system performance. This

appears evident in the highly robust performances achieved using relatively simple

control schemes, and with minimal tuning requirements.

6.7.2 FOE versus max-div for docking and landing

While the proposed FOE-based estimation scheme presented in Chapter 5 relaxes limi-

tations on time-to-contact estimation and surface alignment, the scheme is still limited

to fronto-parallel approaches, and small frame-to-frame rotations.

Such limitations are not present using the max-div control scheme and a spherical

projection model. In contrast to perspective projection, spherical projection allows the

max-div scheme to circumvent issues of misalignment between the optical and motion

axes present under perspective projection. The result is a more general and robust

solution to the docking problem.

6.7.3 Visual input choices

As discussed in Section 4.4, other cues such as flow magnitude and closed-contour area

provide alternative cues for estimating surface proximity. The implied existence of

looming surfaces during the approach, however, provides ideal conditions for the esti-

mation of divergence directly from the flow field. Moreover, these conditions continue

to improve during the approach, as looming increases. The result of this is a control

scheme that is most stable when most needed (i.e., when impact is imminent).

Notably, the control scheme itself also has a direct influence on the quality of its

own visual control inputs. Controlling motion to maintain a sufficiently high diver-

gence level, for example, ensures visual conditions remain well suited for subsequent
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divergence estimates during the approach. Integrating this bi-directional relationship

between control and input through appropriate visual cue choices reduces the reliance

of the system on the quantitative accuracy of algorithms used for visual cue extraction.

6.8 Summary

In this chapter we have presented a visuo-motor control scheme for docking and landing

with planar surfaces of arbitrary orientation. This solution is based on two analytically

proven properties of the divergence on a view sphere approaching a planar surface:

1. the magnitude of the divergence maximum provides a rotation and surface ori-

entation invariant cue of surface proximity; and,

2. the location of the divergence maximum on the view sphere encodes the camera’s

angle of approach with respect to a planar surface.

By combining these properties, we have provided a general solution to the dock-

ing/landing problem. Simulation and a comprehensive set of real image sequences

(indoor and outdoor), have demonstrated the viability of the approach for closed-loop

use, and for providing robust estimates of time-to-contact under real-world conditions.

Based on the presented results, we have highlighted a number of broad implications

for contact estimation in rapidly changing visual conditions. In particular, we have

argued that a wide field of view, spherical projection simplifies the extraction of visual

quantities like time-to-contact by removing the constraint of alignment with an optical

axis. In addition, we have demonstrated the importance of exploiting global invariants

of the flow field when computing visual quantities such as time-to-contact. These

features are central to the success of the unified landing model presented in this chapter.

In the next chapter we examine visual contact estimation under a structure-from-

motion framework. We examine the use of an insect-inspired global spherical view to

support real-time depth map recovery from dense optical flow. We also contrast this

approach to contact estimation with the visuo-motor based approaches proposed thus

far.
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Chapter 7

Real Time Biologically-Inspired

Depth Maps from Spherical Flow

7.1 Introduction

In the previous two chapters we proposed novel strategies for achieving robust visuo-

motor control directly from time-to-contact. In this, we considered visual contact

estimation without the requirement for full structure and egomotion recovery. How-

ever, perceiving scene structure across the visual field is often a prerequisite to higher

level navigation tasks such as mode selection, or the coordination of lower-level visuo-

motor behaviours. This motivates further consideration of how structure-from-motion

techniques may best serve the needs of navigation and visual contact estimation.

In Section 3.7 we discussed a number of issues impeding the application of full

structure-from-motion algorithms to real-time navigation tasks. Addressing these is-

sues, researchers have considered the use of an insect-inspired spherical projection

model over a global view of the scene. In particular, we noted Nelson and Aloi-

monos [1988], who derive a potentially real-time egomotion estimation algorithm on

the view sphere. Currently, however, there exists no thorough examination of the algo-

rithm’s performance under real-time constraints, or under real-world conditions. While

such techniques offer potential support for real-time structure-from-motion recovery,

the rapid recovery of dense depth maps across the visual field is yet to be demonstrated.

In this chapter we propose a scheme for obtaining real-time 3D relative depth maps

from a spherical sensor. We present experimental results examining the accuracy and

robustness of the strategy, and discuss its potential application to real-time autonomous

159
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navigation. In addition, we assess the performance of the Nelson and Aloimonos ego-

motion estimation algorithm in terms of accuracy, and as a basis for recovering dense

3D relative depth maps in real-time.

The chapter is structured as follows. Section 7.2 presents the proposed depth

map recovery scheme, incorporating the egomotion estimation algorithm proposed in

[Nelson and Aloimonos 1988]. Section 7.3 presents all experiments conducted to assess

performance of the scheme, and results obtained. A discussion of these results is

then given in Section 7.4. Section 7.5 provides a discussion of implications for flow-

based navigation in general, based on the work presented in this chapter, and previous

chapters. A chapter summary is provided in Section 7.6.

7.2 Estimating depth maps from spherical flow

To compute a 3D depth map, we first consider the estimation of egomotion parameters

from optical flow on the full view sphere. The Nelson and Aloimonos algorithm proposes

the use of one dimensional flow in the direction of great circles on a unit view sphere,

about each rotation axis. It is therefore necessary to first decompose the flow field

into components along three orthogonal great circles. Nelson and Aloimonos do not

explicitly show this step, and so we provide it here.

7.2.1 Decomposition of flow about orthogonal great circles

The position of any point p̂ on a view sphere is defined in terms of its angular location

along each great circle such that:

p̂ =
[

θx θy θz

]

, (7.1)

where θx, θy and θz ∈ [0, 2π] are angles in the direction of each orthogonal great circle,

Ex, Ey and Ez as shown in Figure 7.1.

Considering optical flow under this decomposition, we recall the equation for flow
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Figure 7.1: Optical flow on the view sphere.

on the unit sphere, S ∈ R
3:

f(p̂) =
v

|R(p̂)|

(

t̂ − p̂(t̂ � p̂)
)

+ p̂ × Ω, (7.2)

where t̂ is the direction of translation, Ω is the axis of rotation, and R(p̂) is the radial

distance of the point projecting to p̂ on the unit sphere.

We seek to define the 1-dimensional flow in the direction of a great circle on S. Let

ê be the unit vector normal to a plane passing through the centre of S. The intersection

of points on S with the plane defined by ê corresponds to a great circle on S. We define

the scalar flow field in the direction of this great circle as as:

fe(p̂) = q̂ � f(p̂), (7.3)

where

q̂ = ê × p̂. (7.4)

The geometric interpretation of this relationship is shown in Figure 7.2.
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fe(p̂) = q̂ � f(p̂)

Figure 7.2: Optical flow at a position p̂ on the view sphere, projected onto the tangent, q̂, of

the great circle about the rotation axis ê.

Expanding the right side of Equation 7.3, we obtain:

fe(p̂) =
v

R(p̂)

(

(q̂ � t̂) − (q̂ � p̂)(t̂ � p̂)
)

+ q̂ � (p̂ × Ω), (7.5)

and noting that p̂ is orthogonal to q̂ , we reduce the equation to:

fe(p̂) =
v(q̂ � t̂)

R(p̂)
+ ωe, (7.6)

where ωe is the rotational velocity about ê (i.e., in the direction q̂).

The first term in Equation 7.6 defines the translational component of motion. We

decompose the projection of t̂ onto q̂ into two sub-projections. Firstly, a projection of

t̂ into the plane of the great circle about ê, followed by a projection onto q̂ , such that:

v(q̂ � t̂) = v
(

1 − cos(γet)
)(

1 − cos(φe − θe)
)

,

= v sin(γet) sin(φe − θe), (7.7)

where γet is the angle between ê and t̂ , and θe and φe are the angular positions of the

projected locations p̂ and t̂ on the great circle about ê respectively.

Substituting Equation 7.7 into Equation 7.6, we obtain the scalar flow in the direc-
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tion of the great circle about ê, such that:

fe(p̂) =
v

R(p̂)

(

sin(γet) sin(φe − θe)
)

+ ωe. (7.8)

From this representation, we may express any optical flow vector on the sphere in

terms of the components of motion in the direction of each orthogonal great circle, such

that:

fx(θ) =
v

R(θ)

(

sin(γxt) sin(φx − θx)
)

+ ωx, (7.9)

fy(θ) =
v

R(θ)

(

sin(γyt) sin(φy − θy)
)

+ ωy, (7.10)

fz(θ) =
v

R(θ)

(

sin(γzt) sin(φz − θz)
)

+ ωz, (7.11)

where subscripts indicate the axis about which flow and related parameters are defined.

It is important to note that the above equations are defined for any three great

circles lying on orthogonal planes, and are not limited to equators about the X, Y and

Z axis. As such, the above equations show that in addition to the translation, flow

in the direction of any great circle is effected by only a single rotation about the axis

perpendicular to the great circle’s plane. This observation has lead to the development

of a full egomotion algorithm for optical flow on the sphere.

7.2.2 Egomotion estimation

In Section 3.8.2 we discussed the key geometric properties of optical flow on the sphere

exploited by Nelson and Aloimonos to recover full 3D rotational velocities from spher-

ical flow. For convenience, we outline them again here:

1. the component of flow parallel to any great circle is effected only by the rotational

component about its perpendicular axis, thus decoupling it from rotations about

orthogonal axes.

2. under pure translation, both the FOE and FOC will co-exist at antipodal points

on the sphere, and will evenly partition flow along any great circle connecting
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Figure 7.3: After de-rotation (or during pure translation), flow vectors follow great circles

passing through the FOE and FOC.

these two point, into two distinct directions of motion (i.e., clockwise and counter-

clockwise).

3. the existence of any rotational motion along a great circle causes the FOE and

FOC to converge, thus ensuring the two points will only lie at antipodal locations

under pure translation.

From these observations, Nelson and Aloimonos propose an algorithm for recovering

the rotational component of flow, ω, about any great circle of flow e(θ). Again for

convenience, we reproduce the algorithm in Figure 7.4. By applying this algorithm to

great circles about each rotational axis, the complete recovery of the sphere’s rotation

is achieved. After de-rotation, the direction of translation is also given by the line

passing through the FOE and FOC. Figure 7.3 shows an example of this.

The algorithm’s run time performance is dictated primarily by the quantisation of

discrete locations on the great circle, and the range of possible rotations for each great

circle. Given reasonable choices, the algorithm can provide fast execution.

7.2.3 Egomotion estimation under planar motion

Nelson and Aloimonos make use of the full view sphere to estimate egomotion under

general motion. We note, however, that if camera motion is constrained to the plane,
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1: for ωc = ωmin to ωmax do
2: D[ωc] = 0
3: for θc = 0 to 2π do
4: a = e(θc) − ωc

5: β = φ− θc

6: if a < 0 and 0 ≤ β < π then
7: result = −a
8: else if a > 0 and π ≤ β < 2π then
9: result = a

10: else
11: result = 0
12: end if
13: D[ωc] = D[ωc] + result
14: end for
15: end for
16: ω = min index(D[ωmin : ωmax])
17: return ω [Nelson and Aloimonos 1988]

Figure 7.4: Nelson and Aloimonos egomotion algorithm. In words, for each discrete point,

θc, on a circle of flow, e(θ), test a range of rotations by de-rotating flow along the circle. The

sum of the residual flow on the circle, after de-rotation, is taken. The chosen rotation is that

which yields the smallest sum of flow on the circle after derotation.

rotation and translation parameters may be recovered from any concentric circle of flow

on the view sphere centred on the rotation axis (i.e., it need not be the great circle).

We show this explicitly below.

Let ê be the rotational axis, and t̂ be the direction of translation within the plane

perpendicular to ê containing the great circle about ê. Let R be the arc on the view

hemi-sphere (we need only consider a hemisphere for planar motion) passing through

a point p̂ on the great circle and ê (see Figure 7.5). We note that R defines the

set of all projected locations of p̂ on concentric circles about ê. Let r̂ be an arbitrary

location on R, representing a concentric circle from which egomotion will be estimated.

Substituting p̂ for r̂ in Equation 7.5, we obtain an equation for flow in the direction of

the concentric circle passing through r̂ :

fe(r̂ ) =
v

R(r̂)

(

(q̂ � t̂) − (q̂ � r̂)(t̂ � r̂)
)

+ q̂ � (r̂ × Ω). (7.12)

From this we note two observations:
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ωe

r̂

q̂

R

ê

p̂

q̂
θr

Figure 7.5: Under planar motion, egomotion estimation can be applied to any concentric

circle about the axis of rotation. See text for details.

1. q̂ is orthogonal to all points along R, and thus (q̂ � r̂) = 0; and

2. given ê is the rotational axis, (r̂ ×Ω) = ωe sin(θr), where θr is the angle between

ê and r̂ .

The first observation allows the same reduction of the translational motion term as

applied for the great circle case (noting also that t̂ is constrained to the plane of

the great circle and thus sin(γet) = 1). The second observation indicates that the

rotational velocity along a concentric circle differs from the true rotational velocity by

a scale factor sin(θr). Thus, we reduce Equation 7.12 to:

fe(θe, r̂ ) =
v

R(r̂)

(

sin(φe − θe)
)

+ ωe sin(θr). (7.13)

The scale factor sin(θr) is obtainable from camera calibration. Thus, assuming planar

motion, egomotion recovery may be applied equivalently using any concentric circle

about the rotation axis perpendicular to the plane. We exploit this property when

implementing the egomotion estimation algorithm for all ground-based experiments

reported later in this chapter.
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7.2.4 Generating relative depth maps

After the removal of rotation components from optical flow on the view sphere, all

optical flow vectors follow great circles passing through the FOE and FOC (as shown

in Figure 7.3). Thus, we may express the magnitude of the residual translational optical

flow at a discrete location θe on such a great circle as:

fe(θe) =
v

R(θe)

(

sin(φe − θe)
)

. (7.14)

Note that sin(θe) is now set to 1, as t̂ lies in the plane of all great circles passing through

the FOE and FOC.

Assuming a static environment, we may define an equation for obtaining the radial

distance to any scene point projecting onto a great circle passing through the FOE and

FOC as:

R(θe) =
v

f(θe)

(

sin(φe − θe)
)

. (7.15)

Given egomotion recovery provides φ, the only remaining unknown is the sensor’s

translational velocity. In general, however, this is unavailable, and so depth can only

be estimated up to a scale factor such that:

R(θe)

v
=

1

f(θe)

(

sin(φe − θe)
)

. (7.16)

While not an absolute measure, this provides a relative depth map which is sufficient

for most navigation tasks.

It is important to note that Equation 7.16 is only defined where optical flow exists

(i.e., fe(θe) 6= 0). Thus, range cannot be reliably measured where a lack of texture

exists, or where flow magnitude tends to zero such as at the FOE and FOC. Given a

spherical view of a sufficiently textured environment, however, enough features should

exist away from these singularities to obtain workable depth maps for scene structure

recovery.
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Table 7.1: Simulation error measures
noise t̂ Ω error Depth
(std dev) error ωx ωy ωz rel error

0o 3.82o 1.49o 1.63o 1.58o 3.7%
2o 3.96o 1.86o 2.62o 3.25o 6.0%
4o 8.68o 1.88o 2.33o 1.40o 11.7%
8o 10.99o 1.26o 1.48o 1.16o 17.0%

7.3 Performance evaluation

In this section we examine the performance of the proposed depth map recovery scheme

from optical flow under spherical projection. We first present results from simula-

tion testing. We then present a series of experiments examining the performance of

the scheme over real image sequences. These experiments provide both quantitative

evaluation under controlled conditions, and qualitative assessment in more realistic,

real-world scenarios.

7.3.1 Simulation experiment

7.3.1.1 Method and implementation

The proposed depth map recovery scheme was implemented and tested in a Matlab

environment. A model of a full unit sphere undergoing general motion in a virtual

3D boxed space was constructed. In each iteration of the simulation, optical flow was

computed on the view sphere for varying 3D translation directions and rotations about

each principle axis of the view sphere. Random number generation was used to assign

values to each motion parameter. Rotational velocities were restricted to the range

[−0.5, 0.5] radians per iteration. Translation direction changes were unrestricted. On

each equator, 112 discrete points, and 100 possible rotations were used for derotation.

Each simulation run consisted of ten iterations. To avoid singularities along the axis

of translation, depth map values were not computed for points within a 10o angular

distance about the estimated translational direction (and its antipodal point on the

view sphere). To examine robustness, increasing levels of Gaussian noise were added

to the angular component of each flow vector estimate for each simulation run.
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7.3.1.2 Simulation results

Table 7.1 provides mean errors obtained during each simulation run. Rotational errors

are given as the mean of the absolute difference between the estimated and true rota-

tional velocities (given in degrees) for each simulation run. The translational direction

error is given as the mean of the angular error between the estimated translational

direction and ground truth. Depth map estimation errors are given as the mean of

relative errors against ground truth.

Of note in Table 7.1 are the errors obtained for rotational velocities. These remain

largely unchanged as noise increases. This is in contrast to other errors, which exhibit

a steady increase as noise levels grow larger. These errors, however, remain largely

contained. Increases in the translational direction error, for example, appear to dimin-

ish as noise grows larger. This is most likely the combined result of the Gaussian noise

model applied and the robustness of the egomotion estimation. Depth map relative er-

ror appears to grow linearly with noise. This increased error rate is unsurprising given

depth estimates will be subject to local flow noise as well as egomotion estimation

errors.

While real-world conditions are noisy, for navigation involving predominantly for-

ward motion, translational velocity should remain high with respect to rotation. This

should improve both the translation estimates obtained, and the stability of relative

depth estimates, subject to flow estimation accuracy.

7.3.2 Real-world experiments

We first provide details of the implementation of the depth map recovery scheme applied

in all real-world experiments. We then describe each experiment before presenting the

results obtained.

7.3.2.1 Implementation of depth map recovery

The 3D depth map algorithm was implemented for use with a single camera (Unibrain

Fire-i BCL 1.2), with fish-eye lens providing a 190o field of view. The image centre was

aligned approximately along the axis of rotation, allowing egomotion estimation to be
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performed on a circle of flow vectors about the image centre. The fish-eye camera’s

wide field of view provides a suitable approximation to a hemispherical projection

of the scene. Its use of standard CCD hardware provides a simple and relatively

cheap alternative to mirror configurations, or more specialised (and expensive) omni-

directional camera systems.

Egomotion estimation

Assuming ground-based motion, egomotion recovery was implemented for a single ro-

tation, using a circle of evenly distributed image points (radius 110 pixels) around the

estimated projective centre of the camera. Due to limitations imposed by the size of

the camera’s image plane, the true great circle could not be used, however, as explic-

itly shown in Section 7.2.3, any concentric circle within the great circle is sufficient

for de-rotation. Camera calibration was used to determine the rotation scale factor

corresponding to the chosen concentric circle (i.e., sin θr in Equation 7.13).

Depth map estimation

Depth maps of the environment were generated from the estimated flow field and

egomotion parameters. For each image location of interest, relative depth was obtained

by first computing its angular displacement from the direction of translation about the

image centre (i.e., φe − θe, assuming the image centre roughly coincides with the axis

of rotation). Depth is then computed as per Equation 7.16. No post-filtering of flow

estimates, translational direction or relative depth estimates.

Robot platform

The mobile robot employed for on-board experiments provides an omni-directional

drive-system. Motion of the robot was assumed to be constrained to the ground plane,

with only a single axis of rotation normal to the ground plane (i.e., the Y axis). The

camera was placed centrally on top of the robot facing upward along the rotation axis

for all on-board experiments.

7.3.2.2 On-board controlled environment experiment

An artificial workspace of upright planar surfaces was created in a laboratory envi-

ronment. Surfaces consisted of varying levels of texture. The robot was placed in-

side the workspace and manually guided through the environment under joystick con-
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(a)

(b)

Figure 7.6: Images of workspace for controlled environment experiment showing (a) an over-

head view from the camera used for tracking, and (b) an on-board view using the omni-

directional camera.
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trol. Figure 7.6(a) shows the robot and the experimental workspace. Images from

the on-board camera were captured and used to estimate egomotion, and recover rel-

ative depth in the scene. On-board frames were captured at approximately 15Hz,

at a resolution of 320 × 240 pixels. Optical flow was computed at full resolution,

using a two level pyramidal implementation of Lucas and Kanade’s gradient-based

method [Lucas and Kanade 1981].

To obtain ground truth data, images of the robot’s movement were recorded from

a calibrated overhead camera placed approximately four metres above the workspace.

Tracking software was used to extract the robot’s position, velocity and heading from

overhead images. Coloured markers were placed on top of the robot to assist tracking.

Tracking data was computed at 6Hz. The image coordinates of all upright surfaces

on the ground plane were recorded and used to construct 2D ground truth depth

maps with respect to the robots tracked position each frame. Video 7.2 on the thesis

CD-ROM provides overhead footage showing the ground truth construction process.

Figure 7.6(b) shows a sample overhead image acquired during tracking of the robot as

it moves in the workspace. The figure also shows where surfaces in the environment

have been marked, and used for ground truth depth map generation.

Figure 7.7 shows the plotted path and orientation of the robot across the sequence.

Figure 7.8(a) and (b) show the translational and rotational velocities of the robot as

computed from overhead tracking. Note that translation and rotation are subject to

significant variation across the sequence, thereby allowing an examination of robustness

under varying conditions.

7.3.2.3 Real-world navigation experiments

Two additional image sequences were constructed to examine performance in more

realistic environments. In both sequences, the camera’s forward velocity was kept

approximately constant, while rotation about the axis perpendicular to the ground

plane was introduced. Optical flow estimation was run at a single pyramid level only

for faster execution. Image resolution was 320× 240 pixels for both sequences. Frames

were captured at approximately 15Hz. To recover 3D structure, depth maps were

generated across the image, within a 110 pixel radius of the image centre. We describe
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Figure 7.7: The tracked position and orientation of the robot during the controlled environ-

ment experiment.

the two sequences below.

On-board corridor navigation sequence: To examine performance in a typical in-

door office environment, the robot was manually guided through a series of cor-

ridors in our lab. As in the controlled-environment experiment, images were

acquired from an on-board camera fixed as close as possible to the robot’s rota-

tion axis, facing upwards. Figure 7.9 shows sample images from the sequence.

Hand-held cluttered fly-through sequence: A second sequence was constructed

depicting the camera’s motion through a cluttered kitchen environment. The

camera was hand-held, facing toward the ground plane as it was walked through

the kitchen. The motion of the camera is therefore less constrained than in on-

board experiments, and the environment less structured. Sample frames from

this sequence are given in Figure 7.10.
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(a) robot translation, and (b) robot rotation. For reference, the dotted line in (b) indicates

zero rotation.
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Figure 7.9: Sample frames from the corridor navigation sequence

Figure 7.10: Sample frames from the hand-held cluttered fly-through sequence

7.3.3 Results

7.3.3.1 On-board controlled environment results

Egomotion estimation

Estimates of robot translation direction and rotation were recorded for each frame ac-

quired during the robot’s motion. This data was compared with corresponding ground

truth egomotion data, computed from overhead tracking data at approximately the

same time instant. Figures 7.11(a) and 7.11(b) compare estimated translation direc-

tions and rotational velocities with overhead tracking data across the sequence.

Translation direction estimation generally follows overhead tracking results closely.

While fluctuations are evident in the early frames of Figure 7.11(a), these correspond to

a period of low translational velocity (as shown in Figure 7.8(a)) and high rotation (as

shown in Figure 7.11(b)) as the robot begins its motion. Rotation estimation provides

a similarly close correlation with overhead data. Fluctuations become more significant

when rotations grow larger. This is a likely result of small frame-to-frame variations
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Figure 7.11: Egomotion estimation from controlled environment sequence: (a) camera trans-

lation direction, (b) camera rotation.
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in on-board frame capture. Such variations over small time intervals are unlikely to

be detected in the slower capture rate used for overhead tracking. Occasional dropped

frames were also evident in on-board frame capture. The resulting increase in time

delay between frames effectively doubles the estimated rotational velocity.

Depth map recovery

Depth maps of the environment were generated from flow vectors in the image periph-

ery, along rays originating from the image centre. For each ray of interest, a single

depth estimate was obtained from the average of relative depth estimates measured

along the ray, between a radius of 110 and 130 pixels. Depth rays were distributed

evenly, 1o apart. Figure 7.12 shows a sample onboard frame from the sequence.

Figure 7.13 shows sample depth maps estimated across the controlled environment

experiment. Samples are given for every ten overhead frames of the sequence. Note

that both estimated and ground truth depth maps are scaled by the average depth of

their respective maps to allow direct comparison. Figure 7.12 shows the correspond-

ing overhead image, onboard image (with depth map region of interest marked), and

a grayscale representation of the estimated depth map (brightness indicating relative

closeness of proximity) for each sample. The robot’s orientation and estimated trans-

lation direction are also shown in both figures. Depth estimates are shown across a

120o field of view on either side of the axis of translation.

Varying levels of accuracy are evident in Figure 7.13 results. In general, depth

estimates for surfaces close to the robot correlate well with ground truth. This is most

evident in the top left portion of Figure 7.13(a), and more generally about the right

angle surface corners across most of the samples. Accuracy declines rapidly as surface

depth increases, as can be seen in the bottom right region of depth maps shown in

Figures 7.13(a), (e) and (f).

7.3.3.2 Onboard corridor navigation results

Figure 7.14 shows sample depth maps obtained during the corridor navigation exper-

iment. The first column shows the central image from the buffered frames used to

compute the optical flow for the corresponding depth map. The second column shows

an intensity map of the relative depths of objects in the scene (brighter is closer) esti-



178 Real Time Biologically-Inspired Depth Maps from Spherical Flow

Figure 7.12: Sample overhead frames (left), onboard frames (middle) and intensity depth

maps (right) from controlled environment experiment. Depth maps are computed in 120o

regions of interest on either side of the estimated translation direction (given by the yellow

line). Increasing intensity represents the closer proximity of surfaces.
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Figure 7.13: Sample depth maps (taken every 10 overhead frame intervals) for controlled envi-

ronment experiment. Both estimated and ground truth depth values are scaled by the average

depth of their respective depth maps. The short black arrow indicates the robot’s orientation,

which is always aligned with the X axis in the above figures. Note that an obstruction on the

robot’s hull obscures depth map estimation in this direction. The long blue arrow indicates

the robot’s estimated translation direction. Depth maps were computed across 120o fields on

either side of the translation direction.
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Figure 7.14: Sample depth maps obtained on-board the mobile platform (camera facing up).

The left column shows the original image, and estimated direction of translation obtained

from derotation. The middle column shows grayscale relative depth maps computed from the

translational flow. The right column shows structure maps, obtained by projecting relative

depth estimates into 3D space, and then orthographically onto the ground plane. Increasing

brightness in intensity depth maps indicate closer proximity of surfaces.
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Figure 7.15: Sample frames and depth maps from the cluttered kitchen fly-through sequence

(hand held camera facing towards ground plane). The left column shows the original image,

and estimated direction of translation obtained from derotation. The middle column shows

intensity depth maps computed from the translational flow. Increasing brightness indicates the

closer proximity of surfaces. The right column shows structure maps, obtained by projecting

relative depth estimates into 3D space, and then orthographically onto the ground plane.
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mated from the de-rotated flow field. The third column provides a top-down view of

the relative depths of scene points, projected onto the ground plane (we refer to these

as structure maps). The centre of the structure map gives the location of the camera.

For this, thresholding was applied to extract only the closest surfaces in the scene (and

thus omit depth estimates from the ceiling). On a 2.1 GHz machine, depth maps were

generated at rate of 1.2 updates per second over circular image regions of radius 110

pixels (i.e., an area of approximately 38, 000 pixels).

The relative depth maps obtained over the corridor navigation sequence provide a

good qualitative representation of the environment. An abundance of clear structural

cues resulting from the motion of surface boundaries such as corners, doorways and

windows can be seen. In addition, there appears to be good visual evidence of objects

in close proximity being detected. This is particularly evident in Figures 7.14(c) and

(d) where the wall edge in (c), and column (and fire hydrant) in (d) show up as the

brightest areas in the intensity depth maps.

Structure maps in the third column of Figure 7.14 further support the accuracy

of the relative depth measures for inferring basic scene structure. Most evident is

the extraction of free space from obstructed space in the local area about the robot.

This is evident in all samples. It is important to note, however, that space marked as

unobstructed may also be the result of a lack of measurable flow in the area. Thus,

some surface areas have only a few depth measures associated with them.

Notably, the sequence involves significant variation in lighting conditions as the

robot travels beneath fluorescent lights, and past sun lit rooms. While optical flow

estimates in these regions are generally unreliable, the wide field of view ensures enough

features exist to extract overall scene structure, despite the noise inevitably introduced

by these effects.

7.3.3.3 Cluttered environment fly-through results

Figure 7.15 shows results obtained for the cluttered kitchen fly through experiment.

It can be seen that depth maps exhibit less structural definition than the corridor

sequence, reflecting the relatively unstructured nature of the environment, and the

greater abundance of objects in close proximity to the camera.
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The camera’s orientation towards the ground plane appears to significantly improve

the extraction of free space from obstructed space. While evident in depth map results,

this is made clearer in structure maps, particularly Figure 7.15(a), where the structure

map provides a highly detailed map of free space over a considerable portion of the

viewing area. In addition, the structure map shows an abundance of structural cues.

Other samples from the sequence also exhibit clear and accurate extractions of free

space.

These results are particularly encouraging when considering the camera was hand

held and walked through the scene. While motion was predominantly in the horizontal

plane, the camera was subject to both rotational motions off the plane, and changes in

height throughout the sequence. Despite this, egomotion estimation appears to provide

workable de-rotation for depth mapping in real world conditions.

7.4 Discussion

Qualitatively, results suggest the estimated depth maps provide a reasonable approxi-

mation of basic 3D depths in the scene. Across all image sequences, clear distinctions

between free and obstructed space are obtained, and appear to be consistent with over-

all scene structure. Notably, ground truth comparisons suggest accuracy is reduced as

surface depth increases. This is a likely result of the reduced flow magnitude generated

from the slower apparent motion of distant surfaces. Increasing translational motion or

image resolution should improve the depth estimates of distant surfaces. Alternatively,

thresholding based on flow magnitude may also be applied, thereby ignoring distant

surfaces posing no immediate threat of contact.

Egomotion estimation was generally observed to provide good robustness under

varying camera motions and environmental conditions. This is made evident in ground

truth comparisons from simulation and onboard testing. Notably, depth map results

appear to reflect the underlying accuracy of egomotion estimation. For example, depth

maps exhibiting highest correlation with ground truth in Figure 7.13 (e.g., depth maps

for frames 20, 30 and 40) generally correspond to accurate egomotion estimates in

Figure 7.11. Conversely, less accurate depth maps in Figure 7.13 (e.g., frames 50 and
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60) correspond to periods of less accuracy in Figure 7.11. This egomotion estimation

error appears most prevalent when rotational velocity is high with respect to translation

velocity. Errors in translation direction are also most evident at these locations.

Qualitative results from the corridor and cluttered fly-through sequences suggest

egomotion estimation is performing well over real-world images. Both sequences depict

significant rotations, yet little ill-effects appear in the depth maps obtained. While

no ground truth comparison is available for these sequences, it is evident from both

image sequences, and the depth maps generated, that the algorithm provides sufficient

accuracy to facilitate the real-time recovery of both the direction of ego-motion, and

basic 3D structure.

Computing global 3D depth maps at full image resolution cannot be achieved in

real-time at current CPU speeds without specialised hardware-specific programming

(e.g., GPU). For most navigation applications, however, this level of accuracy and

coverage is not required. In the case of robot navigation, considerations of both the

robot’s physical height, and constraints on its motion may be exploited to limit the

depth map generation field of interest. For typical structured environments, depth map

resolution may also be reduced without significant impact on navigation support.

The Nelson and Aloimonos egomotion algorithm provides opportunities for signif-

icant speed-ups in execution. In particular, parameter choices associated with the

search-based de-rotation of flow about each rotation axis. These choices include the

search space size, as determined by the bounds on rotational velocities, and its quan-

tisation. Reducing the size and/or resolution of this space can reduce execution time

significantly. Naturally, this represents a trade-off of speed and accuracy. The loss

of accuracy in depth maps obtained during high rotation in the onboard controlled

environment experiment appears to reflect this trade-off. Notably, accuracy improves

when translational motion is dominant. A possible improvement is to search over a non-

uniform sampling of the rotation space, providing higher resolution for large rotations,

thereby improving rotation estimation when rotation is most influential. Alternatively,

where continuous depth map generation is not crucial or where motion is predomi-

nantly rotational, it may be appropriate to avoid depth map generation. However, this

would not be a viable option if used as a direct input to motion control.
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Overall, results suggest the depth map generation scheme is best suited to condi-

tions where translational velocity is high. These conditions suit both the Nelson and

Aloimonos egomotion estimation algorithm, which requires adequate translational ve-

locity to find an even partition, and the accurate estimation of scene depth from local

flow estimates.

7.5 Implications for general flow-based navigation

7.5.1 Structure-from-motion versus visuo-motor control

While results are encouraging, issues associated with the application of flow-based

structure-from-motion algorithms for real-time contact estimation remain evident. To

support tasks such as landing and docking, the scheme requires an adequate distribution

of features in the scene to accurately estimate egomotion. However, it also requires

sufficient density of features within local image patches to support motion control in

close proximity with surfaces. Visuo-motor based approaches typically require only the

latter, and may actively select regions within the image that provide the best possible

measure of proximity with surfaces. For example, the divergence maximum or FOE

provide task-meaningful locations from which to measure surface proximity for landing

and docking. While structure-from-motion techniques may exploit features such as the

FOE (for egomotion estimation), they lack the context of task in which to apply such

cues more usefully.

Efficiency concerns also remain prevalent for full egocentric depth map recovery.

While the scheme presented provides efficient recovery of dense global structure, it is

unlikely to provide adequate support for operation in the control loop of tasks such as

landing and docking. For navigation subsystems in direct control of motion, it makes

sense to revert to visuo-motor control.

7.5.2 Towards systems of visual control

Visuo-motor schemes such as those presented in this thesis require specific visual condi-

tions to exist prior to their invocation. Structure-from-motion recovery may therefore

be used to monitor conditions, and invoke appropriate visuo-motor behaviours when
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environmental priors are satisfied. For example, use of the divergence maximum to

guide a landing manoeuvre assumes the max-div point lies within the projected area

of a target planar surface. Structure-form-motion recovery may therefore be used to

identify planar surfaces in the scene, select the target surface and invoke the max-

div scheme. Estimates of surface orientation parameters may also be used to assist

visuo-motor approach angle regulation, which as discussed in Section 6.3.2, is under

constrained using the max-div point alone. Defining such a role for structure-from-

motion removes it from the control loop, thereby alleviating the need for highly ac-

curate, rapidly obtainable solutions. Under this framework, structure-from-motion

techniques such as that presented in this chapter can be effectively applied. We note,

however, that classically derived structure-from-motion techniques such as [Nister 2005]

and [Pollefeys et al. 2008] offer potential real-time structure-from-motion alternatives,

providing increasing structural detail. Thus, classical structure-from-motion in the

control loop will soon be possible, and for certain applications, may provide a viable

alternative to the biologically-based approaches described in this thesis.

7.6 Summary

We have presented a strategy for generating 3D relative depth maps from optical flow in

real-time. In so doing, we have demonstrated for the first time, the use of the Nelson and

Aloimonos egomotion algorithm over real images, depicting real-world environments.

Results from simulated full general motion of a sphere, and from a series of real-

world experiments suggest this strategy may be a useful base for many navigational

subsystems. The results, however, suggest its use is most appropriate for high-level

navigation tasks where accuracy and efficiency is less critical.

In addition, these results further support theoretical arguments in favour of a spher-

ical projection when attempting to infer scene structure and self-motion from optical

flow. This, in conjunction with advantages identified for time-to-contact estimation in

Chapter 6, provide compelling support for the use of a spherical projection model for

flow-based navigation and perception.

We have now examined the two dominant approaches to visual contact estimation
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for robot navigation: via direct perceptual visuo-motor control schemes, and through

the recovery of full structure-from-motion. In the remaining chapters we consider visual

contact estimation in the context of self-moving objects. We present preliminary work

in the development and application of new flow-based visual cues for threat perception

and avoidance.
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Chapter 8

Time and location of impact

prediction based on primate

vision

8.1 Introduction

In the previous chapters we have considered visual contact estimation in the context of

robot navigation and control. These techniques, however, are designed for use in a pre-

dominantly static environment. Another important capability of any system (robotic

or biological) working in a dynamic environment is the ability to perceive potential

contact with independently moving objects. This is particularly important when the

object poses an imminent threat of collision with the observer. Detection of the threat

must occur with sufficient time to allow evasive actions to be taken. This may involve

movement away from the threat to avoid collision, or the invocation of motor responses

to intercept its course (e.g., catching or deflecting prior to impact). In either case, the

ability to predict where a potential threat exists, and where it is heading, is essential.

In this chapter we explore the use of optical flow to realise both capabilities. We

present preliminary work examining the use of optical flow, under spherical projection,

to predict the time and location of impact of an incoming object about a station-

ary camera. The proposed contact estimation scheme is modelled on the observed

behaviour of bi-modal neurons in the F4 region of the pre-motor cortex in primates.

The chapter is structured as follows. Section 8.2 presents the motivations and a

brief discussion of relevant background literature. Section 8.3 presents our approach.

189
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Section 8.4 describes preliminary experiments conducted and results obtained. Sec-

tion 8.5 provides a discussion of these results and future directions for this research.

Finally, Section 8.6 provides a chapter summary.

8.2 Background and motivation

Neuroscience researchers have recently identified specific neurons in the pre-motor cor-

tex of primates specifically responsible for the sensory guidance of reaching and in-

tercepting incoming objects [Fogassi et al. 1996]. Evidence suggests neurons in the

F4 region of the pre-motor cortex are critically involved in the control of reaching

movements. Area F4 contains a representation of head, torso and arm movements. A

subset of these neurons, referred to as bimodal neurons, have been shown to be spa-

tially mapped to regions about the upper body [Fogassi et al. 1996]. These neurons

discharge when contact is made with the region of the body to which they are mapped.

Notably, however, the same neural response is generated when visual stimuli in the 3D

space adjacent to the mapped body region suggests impact is likely to occur at that

location. Moreover, the depth of the receptive field of these neurons has been shown

to be sensitive to the speed of approaching stimuli, allowing faster moving objects

to be detected earlier [Fogassi et al. 1996]. This suggests the apparent motion of the

object, as represented by the optical flow, may provide the primary visual cue upon

which predictions of the impact location are based. It has been proposed that this

neural encoding is achieved by associating specific patterns of flow with corresponding

localised tactile stimuli. These associations are most likely learnt in the early years of

development (See Zako et al. [2009] for a recent review of neuropsychological studies

on trajectory estimation and interception in humans).

Computationally, it is of interest to consider the use of optical flow as a primary

cue for predicting the course of incoming objects. A fundamental question, however,

is whether current optical flow estimation techniques provide adequate support for

such applications. To obtain fast impact predictions, and to maintain relevance to the

underlying biological model, we compute time and location of impact from instanta-

neous local patterns of optical flow (i.e., we do not perform temporal integration). We
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therefore regard this as an impact detector, upon which more complex systems may be

built.

8.2.1 Previous work

The detection of independently moving objects in a scene has been an active field of

research in computer vision for some time. Given two or more time-separated views of

the scene, the problem becomes one of motion segmentation, whereby regions of homo-

geneous motion are grouped together. Geometric methods such as those described by

Li [2007] and Vidal and Hartley [2004], attempt to optimally recover the motion of all

objects in the scene from matched points in two or more views. While often highly ac-

curate, these techniques are currently not feasible for real-time use. Other approaches

examine the apparent motion of objects in the scene via explicit tracking of feature

points [Yamaguchi et al. 2006; Cohen and Medioni 1998], or via the optical flow field

generated by the motion of objects [Mitiche and Sekkati 2006; Weber and Malik 1997].

A particularly challenging problem is the segmentation of optical flow due to inde-

pendently moving objects from flow due to self-motion. Despite much attention, the

problem remains difficult, and an active area of research in computer vision.

In Chapter 4 we extensively reviewed the literature on estimating time-to-contact

with looming objects from local flow field differential invariants. Such approaches

provide a direct means of estimating the rate of approach of objects without explicitly

computing the object’s motion parameters. Such work, however, does not attempt to

predict the location of impact of incoming objects.

Numerous active vision and tracking systems have been proposed for estimating the

trajectory of moving objects in the scene. Kundur and Raviv [1999] obtain proximity

estimates for incoming objects from the measured blur of fixated texture-patches. No

prediction of impact location is provided, however, time varying changes in fixation

direction should provide some indication of this. Hong and Slotine [1997] describe

active vision systems for tracking and catching tossed balls. While active vision systems

such as these support object interception and threat avoidance, they require tracking

over time. They do not make predictions from instantaneous visual cues.

The work presented in this chapter is similar to research by Ogino et al. [2006], who
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make use of a neural network to predict the arrival time and location of an incoming

ball from learnt patterns of visual motion. Using a humanoid soccer playing robot,

the neural network is trained to identify different trajectories of the ball, from which

a motor response to trap the ball with the robot’s foot is invoked. The ball is first

identified in the image, from which the causal relationship between the ball’s position

and the optical flow is learnt. The emphasis of this work is on learning globally defined

patterns of optical flow over a wide field of view to predict the ball’s incoming trajectory.

The prediction scheme we propose here considers the underlying use of optical flow

in realising such behaviours. In contrast to Ogino et al. [2006], we do not attempt to

explicitly predict a trajectory or learn patterns of motion associated with trajectory

data. We base predictions of time and location of contact on the examination of

local instantaneous flow field patterns resulting from the motion of arbitrary incoming

objects. We do not consider the use of machine learning techniques, temporal filtering

or tracking. Instead, we focus specifically on how spatial differential properties of the

instantaneous flow field may be exploited to predict time and location of impact.

8.3 Proposed method

As stated, the current work aims at verifying the quality of measurements obtained

from optical flow. In so doing, we make the following assumptions: a stationary camera,

predominantly translational motion of a single incoming object, and a roughly planar

surface facing towards the camera. We derive the scheme under a spherical projection

model. However, a narrow field of view about the optical axis should also provide

adequate results. Given object fixation (such as in primate vision), such an assumption

is reasonable.

We seek to predict the relative impact location of an incoming object on a planar

body centred on the image origin (i.e., the projective centre of the image). Thus, we

may regard the planar body as the infinite extension of the image plane in all directions.

We refer to this plane as B.

The approach adopted applies principles introduced in Chapter 6. Given optical

flow under spherical projection, we consider both the optical flow field, and the flow
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field divergence for a local tangent plane. Assuming translational motion only, we omit

the rotational component of Equation 3.7 to obtain:

f(p̂) =
−v

R(p̂)

(

(p̂ � t̂)p̂ − t̂

)

, (8.1)

where p̂ ∈ R
3 is the viewing direction, t̂ ∈ R

3 is the direction of object translation with

respect to the camera and v, its velocity, and R(p̂) is the depth of the surface point in

the viewing direction.

Let q̂ ∈ R
2 be the direction of the object’s translational motion in the tangent plane

to p̂ on the view sphere. We wish to obtain the component of motion in this direction,

such that:

f(p̂) � q̂ =
−v

R(p̂)

(

(p̂ � t̂)(p̂ � q̂) − (t̂ � q̂)

)

. (8.2)

Noting that q̂ is perpendicular to p̂, we simplify the above to:

f(p̂) � q̂ =
v(t̂ � q̂)

R(p̂)
. (8.3)

We consider now the flow field divergence. For convenience, we recall the divergence

equation on the view sphere:

div(p̂) =
v(p̂ � t̂)

R(p̂)

[

1 +
∆R(p̂)

R(p̂)

( t̂

(p̂ � t̂)
− p̂
)

]

. (8.4)

As discussed in Section 3.3.2, the presence of the unknown depth gradient term, ∆R(p̂),

introduces a deformation component into the divergence estimation, denying a precise

estimate of time-to-contact. It can be seen, however, that the depth variation term is

scaled by the distance of the object. Thus, if the object is sufficiently far away, the

contribution of this component is likely to be small. We therefore make the assumption

that depth variation will be small with respect to the distance of this variation from

the sensor, and set the depth gradient term to zero. As a consequence, significantly

inclined surfaces may result in less accurate predictions of impact time and location.
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Setting ∆R(p̂) = 0, we reduce the divergence equation to:

div(p̂) =
v(p̂ � t̂)

R(p̂)
, (8.5)

and thus the time-to-contact along the viewing direction p̂ is given by:

τp =
R(p̂)

v(p̂ � t̂)
. (8.6)

8.3.1 Computing angle of approach

We seek to estimate the angle of approach of the object with respect to the viewing

direction, p̂. This may then be used to obtain a constraint on the location of impact

within the planar body B. Dividing Equations 8.3 and 8.5 we obtain the ratio of

motion parallel to the tangent plane of p̂, and the component of motion along p̂, such

that:
f(p̂) � q̂

div(p̂)
=

(t̂ � q̂)

(t̂ � p̂)
. (8.7)

Thus, the angle of approach with respect to p̂ is defined as:

θp = tan−1
( (t̂ � q̂)

(t̂ � p̂)

)

. (8.8)

8.3.2 Estimating location of impact

We now compute the location of impact in B. Specifically, we compute the direction

û ∈ B, and the scaled radial distance du of the impact point, I, with respect to the

centre of B (i.e., the origin, O). To assist these derivations, we first define the plane

containing O, P , and the yet to be determined I (see Figure 8.1). Note that this plane

contains t̂ , and thus defines the object trajectory plane. We refer to this triangular

region as OPI.

8.3.2.1 Direction of impact

We first consider û. The line defined by û in B is given by the intersection of OPI

with B. Thus, given knowledge of p̂ with respect to B (from camera calibration), and
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p̂

τp

O

θp

B

û

I

P
surface normal

OPI

Figure 8.1: Geometric representation of impact point (I) prediction of an incoming object P ,

on the planar body B. O is the camera-centred origin.

q̂ from the optical flow, û may be determined by translating q̂ along p̂ to the origin,

and projecting it into B. This intersection defines a line of possible impact locations

(see Figure 8.1). We refer to this line as the line of impact.

8.3.2.2 Camera-centred location of impact

To recover du, it is necessary to first determine the current projected location of P

on the infinitely extended line defined by û. Note that û exists in both B and OPI,

thus allowing du to be recovered without regard for the relative orientation of B and

OPI. We therefore consider only the plane of OPI in the remainder of this derivation.

Figure 8.2 shows this graphically.

Let n̂ ∈ R
2 define a vector orthogonal to û in OPI, and φ be the angle between

the directions p̂ and n̂. Let N denote the current projected location of P on the line

of impact (i.e., the projection of P along n̂), and dn be the scaled radial distance of N
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p̂

τp

d

du
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τn
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N
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τ

P

Figure 8.2: Figure shows geometric relationships exploited to predict the scaled distance of

the point of contact along the line of impact with respect to the origin.

from the the origin. We solve for dn by projecting τp onto the line impact such that:

dn = τp sin(φ) (8.9)

Let d be the total scaled distance between N and I, and θn be the angle of approach

of the object with respect to n̂, such that:

θn = θp + φ, (8.10)

To solve for d we first project τp, along n̂ such that:

τn = τp cosφ, (8.11)

from which we obtain:

d= τn tan θn,

= τp cosφ tan θn. (8.12)
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Given dn and d, we may easily determine the radial distance, du:

du = d− dn. (8.13)

Expressing this in terms of directly measurable (or known) quantities:

du = τp

(

cosφ tan(θp + φ) − sin(φ)
)

. (8.14)

As can be seen, the distance, du, is defined as a proportion of τp. Thus, the

estimated radial distance of impact is defined in temporal units, scaled by the measured

time-to-contact along the viewing direction.

8.3.3 Estimating time-to-impact with the plane

To infer the incoming object’s time-to-impact, τ , with I we compute the temporal

distance along the angle of approach. This can be obtained directly from τn and d such

that:

τ =
√

τ2
n + d2 (8.15)

Substituting for τn and d, we obtain:

τ = τp

√

cos2 φ+ (cos2 φ tan2(θp + φ)),

= τp cosφ sec(θp + φ). (8.16)

8.4 Performance assessment

8.4.1 Implementation

The algorithm is applied in the following steps:

1. Identify regions of movement in the image, and compute flow divergence across

region.

2. Compute time-to-contact with respect to the camera (i.e., τp) at the divergence

maximum within the segmented region.
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3. Estimate the angle of approach of the object (discussed further below).

4. Compute location and time-of-impact with the camera plane via Equations 8.11,

8.14, and 8.16.

The first step of the algorithm identifies regions in the image where object motion

exists. This is achieved using simple image differencing of image intensity values, and

applying an appropriate threshold to account for noise. The optical flow within each

region is then used to compute the divergence, from which the region of maximum

divergence is selected. In addition, the segmentation strategy grows regions of mo-

tion where positive flow divergence is above a set threshold, and spatially consistent.

Thresholding is performed on the average divergence computed in 5 × 5 pixel regions.

Neighbouring regions above the threshold are then combined. Regions of negative

divergence are ignored.

The most crucial step in algorithm is the estimation of the angle of approach. We

achieve this by first estimating the predominant direction of motion of the segmented

object in the image plane. Taking the point of maximum divergence, we convolve eight

discrete templates of unit flow vectors, each depicting a discrete direction of motion in

the image plane (i.e., up, down, left, right, up-left, up-right, down-left, down-right).

Based on the relative scores, a direction of most support is identified as the direction

of tangential motion.

To estimate the angle of approach with respect to the viewing direction, we divide

the magnitude of the optical flow in the identified dominant translational direction

(as given by the score), by the average of divergence estimates taken within the same

region. We then compute θp directly from this ratio (Equation 8.8), and from this, the

angle of approach with respect to the objects current location on the line of impact,

θn (Equation 8.10). Time-to-impact with the plane is computed using Equation 8.16.

8.4.2 Initial controlled-conditions testing

We first tested a basic implementation of the impact prediction scheme to assess the

accuracy of approach angle estimates, and the impact location. For this, we assume

the object of interest lies along the camera’s viewing direction. We thus skip the first
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step of the algorithm, and compute the impact point for the surface projecting to the

image centre.

The modified algorithm was run over two image sequences. Both sequences de-

pict the controlled motion of a camera descending towards a planar surface, along a

predetermined angle of approach, and at constant velocity. Note that these landing

sequences are the same as used in Chapter 6. We tested the algorithm over sequences

depicting a 22.5o and 67.5o approach, thereby providing test cases for a near frontal

and significantly angled object trajectory. Figure 8.3 shows sample frames, and the

central region used for estimating angle and location of impact.

Figure 8.4 shows results obtained for the estimated angle of approach of the surface

in the central image patch. In both cases, a reasonable approximation to ground-truth

is obtained. The 67.5o approach deviates further from the ground truth, however, these

estimates are more consistent than the 22.5o approach. It should be noted that the

angles of approach reported for both sequences are subject to some error due to the

imprecise nature of the image construction process.

Figure 8.5 shows the estimated location of impact for each frame of both sequences.

The origin of the coordinate system is the camera location. The location of impact

is given in units of the estimated time-to-contact of the surface towards the camera.

Thus, we expect the location to remain constant across each sequence. The dashed lines

indicate the ground truth horizontal distance of the impact point from the camera. It is

evident that the impact prediction is significantly more accurate for the 22.5o approach

than the 67.5o approach. However, both sets of results achieve reasonable consistency

in the estimated location.

To assess the accuracy of time-to-contact estimates with the impact location, we

compare the ratio of time-to-contact estimates obtained along the direction of motion,

and along the camera’s central axis. This allows an assessment of accuracy against

ground truth without the need for absolute values of time-to-contact, which are subject

to scale factor differences. Accurate time-to-contact estimates should yield a constant

ratio across the sequence. Figure 8.6 shows the time-to-contact ratio results. It is clear

that high accuracy and consistency is achieved across the 22.5o trial. Consistency and

accuracy degrade for the 67.5o trial, although in general, the estimated ratios remain
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(a) 22.5 degree landing (b) 67.5 degree landing

Figure 8.3: Sample frames from both the 22.5o and 67.5o landing sequences, showing the

central region for which the angle of approach, and impact location are estimated. The camera’s

known angle of approach and constant velocity towards the surface provides ground truth data

for comparison.
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Figure 8.4: Estimated angles of approach for landing sequences depicting a 22.5o and 67.5o

approach. Dotted line indicates ground truth for both approach angles.
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Figure 8.5: Estimated location of impact for each frame of the 22.5o and 67.5o landing

sequences. Note that the camera centre is located at the origin of the coordinate system

(middle left of graph). The predicted location of impact is given in units of the surfaces time-

to-contact with the camera. The dashed line indicates the ground truth horizontal distance of

the impact point from the camera centre.
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Figure 8.6: The estimated ratio of object time-to-contact with the infinite image plane along

the direction of motion (τ), and along the viewing direction (τp). The ground truth ratio is

also shown, as determined from the camera’s known angle of approach. We compare ratios to

avoid scale factor differences in absolute time-to-contact estimates.

stable.

8.4.3 Live impact prediction test

The full algorithm was implemented for real-time use with a stationary digital camera.

Frames captured from the camera were fed directly into the impact prediction algo-

rithm. The predicted impact point, and time-to-contact were both computed for each

frame, and displayed in an adjacent image. The output of a live test of the system was

written to a video file, and is included in the supplementary CD-ROM to this thesis

(Video 8.1). Figures 8.7 and 8.8 show sample frames from the video output, showing

both the detection of the incoming object (in the left image), and the predicted location

of impact about the plane surrounding the camera (right image). Impact predictions

for an object of interest are represented by rectangular markers, and are shown for all

predictions prior to and including the current frame. Increasing brightness in impact

point markers represents decreasing time-to-contact.

Sample output presented in Figures 8.7 and 8.8 show the development of impact lo-

cation predictions as the object of interest approaches the impact plane. In both cases,
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early predictions appear to be outliers compared with later predictions, which appear

to stabilise on a local region of probable impact. The accuracy of impact predictions

appear stronger for the open hand than for the closed-fist, suggesting the approximate

planar surface of the open hand yields better predictions. This is unsurprising given

the algorithm assumes depth variation within the region of interest is zero. This is

clearly not the case for the closed fist, where it can be seen that the max-div location

(about which impact predictions are made) exhibits significant depth variation. This

variation is likely to contribute to the divergence in the region, thereby biasing impact

location prediction towards the viewer direction. This effect appears evident in later

impact predictions for the closed-fist example. The fist’s trajectory suggests impact

markers should be further to the left of image centre than shown in the right column

of Figure 8.8.

8.5 Discussion

These preliminary results provide quantitative and qualitative support for the feasibility

of the proposed impact prediction algorithm. Results obtained across the experiments

suggest that while accuracy may degrade for impact locations away from the cam-

era, they remain stable and consistent. On this basis, the scheme appears to provide

workable accuracy, suitable for a wide range of approaching object trajectories.

Impact predictions for more eccentric approach angles appear to be biased towards

the direction of the object’s origin. This is evident for the 67.5o landing sequence,

as well as the punching sequence in Figure 8.8. While more image sequences are

needed to be conclusive about this, such a bias is consistent with results reported

from human trials [Neppi-Mòdona et al. 2004], where subjects were asked to predict

the location of impact of looming visual stimuli about their face. Similar assumptions

to those stated here were applied in the experiments conducted. It is unclear from

these preliminary experiments what the cause of this bias is. One possibility is that

the estimated motion towards the camera is disproportionately represented by the

divergence. The contributions of local deformation due to the apparent motion of

non-fronto-parallel surfaces can increase the divergence estimate. Neppi-Modona et
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Figure 8.7: Sample output frames from live impact prediction test for an incoming open

hand. Left image shows the optical flow in the segmented region of motion, and the estimated

direction of translational motion in the plane. The red box represents the region of maximum

divergence. Right image shows estimated location of impact about the camera. Increasing

brightness in impact markers represents the estimated time-to-contact. Complete output from

the impact prediction algorithm is given in Video 8.1 of the supplementary CD-ROM to this

thesis.
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Figure 8.8: Sample output frames from live impact prediction test for an incoming closed

fist. Left image shows the optical flow in the segmented region of motion, and the estimated

direction of translational motion in the plane. The red box represents the region of maximum

divergence. Right image shows estimated location of impact about the camera. Increasing

brightness in impact markers represents the estimated time-to-contact. Complete output from

the impact prediction algorithm is given in Video 8.1 of the supplementary CD-ROM to this

thesis.



206 Time and location of impact prediction based on primate vision

al. [2004] suggest this bias may be an evolved defensive adaptation to protect near

peri-personal space in humans.

Impact locations are expressed in temporal units, scaled by the time-to-contact

of the incoming object with respect to the camera. A potential drawback of this

representation is that it denies an absolute mapping of incoming objects to a body

centred coordinate frame (although the inclusion of depth information would resolve

this). However, an absolute coordinate frame is not necessary to support actions to

either avoid, or intercept an incoming object. For example, the act of intercepting an

incoming object may be achieved by moving the camera to minimise the estimated

temporal distance of the object’s predicted impact location with respect to the camera

(assuming the camera is the desired point of interception). As a by-product of this

action, better estimates of the impact location are also likely to be achieved. Actions

to avoid impact with an incoming object can be achieved simply by moving in an

opposing direction to the object’s estimated trajectory. The level of urgency for such

an action is expressed through the time-to-contact itself.

The use of a temporal scale also provides a natural means in which to mimic the

velocity-determined variation of the depth of bimodal neuron receptive fields. The ini-

tial detection is therefore based on the incoming object’s time-to-impact, rather than

its crossing of a physically defined threshold. In this way, faster moving objects are de-

tected at a further distance away, as observed in primate experiments [Fogassi et al. 1996].

8.5.1 Future work

The current implementation assumes a stationary camera. It is important to note,

however, that this assumption is a choice of convenience to simplify the segmentation

of incoming object motion. Subsequent steps of the algorithm are applicable to a

translating camera. Future work will consider the use of fast motion segmentation

techniques to distinguish regions of self-motion induced flow from regions of flow due

to self-motion.

A more biologically plausible model is likely to incorporate learning into the pre-

diction model. Evidence suggests that predictions of impact trajectories are identified

in learnt patterns of flow [Ogino et al. 2006]. Localised tactile responses resulting from
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the impact of visible objects with the body provide instant feedback to a training loop.

Patterns of flow in particular regions of the observer’s viewing area may then be asso-

ciated with specific mappings to the body coordinate frame. The incorporation of such

learning strategies is beyond the scope of the present study, but will be considered in

future work.

The work presented here has considered impact about the infinite camera-centered

plane. A significantly more complex problem is how predictions of impact may be

obtained for body parts moving independently of the viewing direction. Future work

will consider how the proposed scheme may be applied to the more general problem.

The underlying neural encoding of trajectory prediction in primates remains an active

area of research. The evidence generally supports the view that full trajectory pre-

diction to support object interception tasks is likely to require more than visual cues

alone [Zako et al. 2009].

8.6 Summary

Based on neuroscience evidence in primate vision, we have presented preliminary work

in developing a scheme for predicting the location of impact for an incoming object,

based on the object’s instantaneous pattern of optical flow. The scheme estimates the

location of impact on a planar body, centred on the location of the camera. We achieve

this by examining both the translational component of the object’s optical flow, and

the divergence. We do not apply tracking, or any learning algorithms to achieve this.

Quantitative testing over real image sequences have demonstrated the scheme’s ability

to achieve a workable accuracy over a range of approach angles. Live testing has also

demonstrated the algorithm’s real-time use, and its ability to qualitatively distinguish

between different approach trajectories. While accuracy appears to degrade for impact

points significantly away from the camera, results remain stable and consistent. Future

work will consider the problem for a moving camera, and in closed-loop control of a

threat avoidance and/or object interception strategy.

In the next chapter we consider the detection of self-moving objects for on-road

hazard detection. We consider contact estimation in the context of a moving camera
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with known motion, and for the detection of non-looming threats (i.e., side-entering).



Chapter 9

On-road hazard detection for

driver assistance

9.1 Introduction

In the previous chapter we considered the use of optical flow to estimate the time

and location of impact with an incoming self-moving object. However, for a moving

observer, potential hazards may also occur when the path of a self-moving object

crosses the future path of the observer. Such hazards are unlikely to appear as looming

objects, but rather, as objects with a component of motion in the direction of the

observer. Thus, divergence-based contact estimation is unlikely to be sufficient for

perceiving such hazards.

In this chapter we explore the use of optical flow to detect side-entering hazards. We

consider this in the context of a system providing on-road hazard perception assistance

for older drivers. This work forms part of a larger collaborative project studying the

effects of visual ageing on hazard perception, with an aim towards developing poten-

tial interventions to assist older drivers [Horswill et al. 2008]. We present preliminary

results of the proposed heuristic-based side-entering hazard detector, tested using real

unscripted video footage of potential traffic conflicts as identified by road safety experts.

The same footage is to be used in clinical trials with human participants.

The chapter is structured as follows. Section 9.2 discusses background and motiva-

tion for this work. Section 9.3 presents the proposed method for detecting side-entering

hazards from the optical flow. Section 9.4 provides details of the detectors implemen-

tation and describes the methodology of assessment employed. Section 9.5 reports

209
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results obtained from the application of the hazard detector over real video footage.

Section 9.6 provides a discussion of these results, and future work for the project.

Section 9.7 summarises the chapter.

9.2 Background and motivation

There is growing evidence that a driver’s ability to perceive hazards declines with

age. The likely cause of this is age-related decreases in cognitive and visual func-

tions [Horswill et al. 2008]. Population and case-control studies have found that reac-

tion time, speed of processing, visual selective attention, executive function, eye dis-

ease and poor contrast sensitivity are associated with increased crash risk and poorer

on-road driving performance [Anstey et al. 2005]. Increased response time for hazard

perception in older drivers has been most strongly linked to a loss of contrast sensitiv-

ity, and a reduced useful field of view [Horswill et al. 2008]. Such visual and cognitive

deficits can force older adults to cease driving, despite being otherwise capable. Forced

cessation of driving can be especially difficult where public transport is not readily avail-

able (particularly rural and outer-suburban communities) and has also been linked to

depression in older adults [Marattoli et al. 1997].

A possible alternative is to develop intervening hazard detection technologies that

may compensate for the specific visual deficits which cause decreased hazard perception

ability. This in turn may allow otherwise capable drivers to keep driving safely, longer.

To this end, the work presented in this section forms part of a collaborative project

investigating the effects of cognitive and visual ageing on hazard perception in older

drivers1 . An aim of this project is to pilot possible automated hazard perception

interventions that may alert a driver to specific classes of hazards in the scene. Such

interventions may then be tested and validated via clinical trials.

1Clinical study conducted by the Centre for Mental Health Research, the Australian National Uni-

versity, Canberra and the School of Psychology, University of Queensland, Brisbane.
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9.2.1 Previous work

Section 8.2.1 discussed general methods for estimating the motion parameters of self

moving objects. As noted, such techniques are currently not feasible for real-time

use and thus are not applicable to the work presented here. In the context of road-

based hazard detection, constraints on observer and object motion as well as a priori

knowledge of the camera-vehicle configuration has allowed the inclusion of heuristics

to simplify the problem for on-road applications.

A common approach is to apply models of the expected optical flow due to self-

motion, thereby identifying regions of the flow field that violate this model. This is often

achieved via motion models of the road plane [Braillon et al. 2006; Suzuki and Kanade 1999].

Braillon et al. [2006], for example, derive a motion model for the ground plane from

odometric information obtained from the vehicle. Using this, they extract the ground

plane via a correlation-based generative method. Suzuki and Kanade [1999] apply a

parametric estimation model to obtain a camera-mounted vehicle’s ego-motion param-

eters. Song and Chen [2007] propose a system for detecting moving vehicles entering

regions on either side of a car. They detect objects that lie on the road plane via

feature-based motion estimation and segmentation of flow on the road plane. An issue

with road-based motion models is that local intensity variation is often too small to

reliably compute optical flow, or extract feature points. In addition, obstacle detection

based on the violation of motion models of the road plane ignores the possibility of

objects entering from the side.

Previous work in road-based hazard detection typically reports performance results

using specific hand-picked scenarios. While advances have been made in the detection

of moving obstacles, there has not been any significant study of how such subsystems

may actually address the specific needs of a hazard perception assistance systems.

Results reported typically do not consider performance over large video sequence sets

depicting real, unscripted hazardous scenarios.
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Figure 9.1: Geometric framework for side-entering hazard detection.

9.3 Proposed method

To facilitate a more general framework for hazard detection, we do not incorporate

contextual information such as the road plane, or other environmental assumptions.

Instead, we focus specifically on the use of early vision cues such as optical flow.

Through the estimation and subtraction of optical flow due to self-motion, we identify

side-entering hazards with respect to the current direction of motion, from the residual

motion due to independently moving objects. Through this, we seek to identify regions

of heightened crash risk in the periphery of the image.

We assume a forward facing camera undergoing predominantly translational mo-

tion. While we do not apply de-rotation to the flow field, previous chapters have

outlined efficient techniques for eliminating rotational flow. We first consider the case

of a stationary camera. We then extend this to the case of a moving camera, and

present a heuristic-based detection method for identifying side-entering hazards.
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9.3.1 Identifying side-entering hazards with a stationary case

Let H be an independently moving object with velocity ḣ = [hx hy hz ]. Let θh be the

direction of motion of H on the ground plane, with respect to the Z axis, such that:

θh = arctan(
hx

hz

). (9.1)

We consider H to be a side-entering hazard if hx < 0 and 0 ≤ θh ≤ π
2 , or hx > 0

and −π
2 ≤ θh ≤ 0. That is, H is a side-entering hazard if there exists a component of

horizontal motion towards the Z axis. Figure 9.1 shows the geometric framework used.

We seek to infer the direction of motion of H in the X−Z plane from the projection

of its apparent motion in the image plane. Let P = [px py pz ] be a point on H.

Assuming a pinhole camera model with unitary focal length, we project P into the

image plane and, considering only translational motion in the X −Z plane, obtain the

following equations for the image velocity of P :

up =
hz

pz
(
hx

hz
− px), (9.2)

vp =−
pyhz

pz
, (9.3)

where (up, vp) are the horizontal and vertical components of the image velocity.

Notably, up and vp provide a linear system of equations relating the unknown object

velocity direction components: hx and hz. While obtaining hx and hz directly from

these equations is not possible, the ratio of these components can be obtained. Re-

arranging (9.3) such that:
hz

pz

= −
vp

py

, (9.4)

and substituting into (9.2), we obtain:

up = −
vp

py

(hx

hz
− px

)

, (9.5)
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and after simple algebraic manipulation:

hx

hz
= −

pyup + pxvp

vp
. (9.6)

Thus, we obtain the ratio, hx

hz
in terms of known and measurable visual quantities.

Substituting back into (9.1), we obtain an equation for the direction of motion of H:

θh = tan−1(−
pyup + pxvp

vp

). (9.7)

From this we can identify regions of motion corresponding to side-entering hazards,

as defined earlier. Notably, there exists a singularity where vp = 0. This situation,

however, can be easily identified, and with added spatial support, should not pose any

problems in the computation of θh.

9.3.2 Identifying side-entering hazards during forward translation

Let ṫc = [tx ty tz ] be the velocity of a camera-mounted vehicle. Assuming translational

motion only, the optical flow produced by the motion of the camera is given by:

uc =
tz
Z

(fxtx
tz

− x
)

,

vc =
tz
Z

(fyty
tz

− y
)

, (9.8)

where fx and fy are focal lengths (in pixels), and (x, y) is the projected image location

of a point P = [x y z ] in a camera-centred coordinate system. Assuming motion is

predominantly on the ground plane, and is approximately along the optical axis, we

set tx and ty = 0.

Consider again an independently moving object, H, observed by the moving camera

described above. The optical flow field, f = (u, v), induced by the movement of H and
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movement of the camera, is given by the sum of both contributions, such that:

u= up + uc (9.9)

=
1

Z

(

hx − x(hz − tz)
)

v= vp + vc

=
1

Z

(

− y(hz − tz)
)

(9.10)

It can be seen from the above that the contribution of hz is diminished by tz. We

therefore seek to remove the components of flow due to self motion of the camera, such

that we obtain Equations 9.2 and 9.3. A true model of self motion, however, requires

knowledge of the depth of points in the scene. A common strategy is to estimate self-

motion models from the ground plane, where knowledge of the cameras height above

the surface may be used to compute a motion model. For the purposes of developing

a fast executing first stage hazard detector, however, we do not attempt to compute

such models. Rather, we consider only the direction of flow vectors in the image, from

which a heuristic-based detector is derived.

Let f̂ = (u′, v′) be the unit vector in the direction of the optical flow vector f , such

that:

f̂ =
f

|f |
, (9.11)

where |f | is the magnitude of the flow vector. Dividing through by this value, we obtain

the following directional components for the flow vector:

u′ = h′x − x(h′z − t′z),

v′ =−y(h′z − t′z), (9.12)

where h′x, h
′
z and t′z are the velocity components scaled by |f |.

To approximate the effects of self-motion, we generate an expected pattern of flow

directions induced by self-motion in the viewing direction. Considering only the direc-
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tion, we obtain the simple motion template:

u′c =
x

√

x2 + y2
,

v′c =
y

√

x2 + y2
(9.13)

and subtract (u′c, v
′
c) from Equation 9.12 to obtain:

u′ − u′c = h′x − x
(

h′z − t′z +
1

r

)

, (9.14)

v′ − v′c =−y
(

h′z − t′z +
1

r

)

, (9.15)

where r =
√

x2 + y2.

Substituting hz for h′z − t′z + 1, and (up, vp) for (u′ − u′c, v
′ − v′c) in Equation 9.7 we

obtain the following equation for the approximation to θh (θ̃h):

θ̃h = tan−1
( h′x
h′z + α

)

= tan−1
(y(u′ − u′c) + x(v′ − v′c)

v′ − v′c

)

(9.16)

where α = 1
r
− t′z.

As noted, Equation 9.16 provides only an approximation to θh. The normalisation

of the estimated optical flow field, and the self-motion template, effectively assumes

a uniform depth for all points in the scene. It is therefore not possible to correctly

account for self-motion in the resulting residual flow. The result of this is an additional

contribution to the Z component of the hazard’s velocity, represented by α in Equation

9.16. Considering this term, it can be seen that where t′z is under compensated for

(i.e., t′z > 1
r
), a bias in θ̃h is introduced towards the centre of view. Conversely,

where t′z is over compensated for, a bias towards the direction of observer motion is

introduced. We note, however, that for a side-entering hazard to pose an imminent

threat of collision, its velocity must be close to, or faster, than observer motion at

the point of entry in the visual field. Its apparent motion will therefore be directed

towards the centre of view, and always in conflict with self-motion flow directions.

Thus, Equation 9.16 will identify all side-entering hazards in the image. Moreover,

for threats moving predominantly side-ways, any bias introduced by α is likely to be
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small with respect to h′x. Thus, θ̃h should provide a reasonable approximation to θh

for side-entering hazards posing an immediate threat.

9.4 Implementation of side-entering detector

We implement the side-entering hazard detector by first computing the optical flow

field in peripheral regions of the image. These side-hazard regions are placed on either

side of the estimated location of the focus of expansion (FOE), at a preset horizon-

tal distance, d, from the FOE. For the trials presented here, d = 0.1 × image width.

While we assume motion is, on average, in the direction of the optical axis, track-

ing of the FOE accounts for rotational effects inevitably introduced under real-world

conditions. This was also found to be useful for handling uneven motion on the road

(e.g., speed bumps). To estimate the location of the FOE, we employ a Hough-based

voting [Duda and Hart 1972] approach to find the intersection point of computed op-

tical flow vectors.

9.4.1 Generating the self-motion template

To generate the self-motion template, we also incorporate the FOE location. Direc-

tional flow vectors are generated, moving radially away from the estimated location

of the FOE. We assume lens distortion is negligible or accounted for through pre-

calibration of the camera. In the current implementation, we suppress the output of

the detector if the FOE is seen to shift significantly away from the image centre. This

template is then subtracted from the estimated unit vector flow field, thus leaving the

residual motion defined by Equations 9.14 and 9.15.

9.4.2 Hazard detection

Taking the residual motion field, we convolve a 5 × 5 weighted window over up and vp

separately to obtain the relative support of visual motion in both directions. This is

then used to compute θ̃h as defined in Equation 9.16. By considering the computed

θ̃h at each image location, side-entering hazard regions are constructed via a simple

region-growing technique, whereby neighbouring pixels also classified as side-entering
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(a) (b) (c)

Figure 9.2: A sample side-entering hazard scenario showing from left to right: (a), the com-

puted self-motion template and estimated location of the FOE, (b), the estimated optical flow

for the segmented region, and the peripheral regions of interest, and (c), the marked hazard,

and estimated direction of motion in the image plane.

hazards are grouped together. From this, a bounding box is computed. Figure 9.2 gives

a sample frame showing the estimated FOE, the peripheral regions used for detection,

and a region of the image identified as a potential hazard (with optical flow).

To improve robustness to false positives, temporal support is also included. A

hazard detection alert is not issued unless the region associated with the possible hazard

has been identified as a hazard in the last two updates. If no additional support is

received after three frames, the hazard region is considered invalid, and thrown away.

Optical flow is computed using the pyramidal version of Lucas and Kanade’s [1981]

optical flow method as described in Section 3.2.2.5. To improve the quality of flow esti-

mates, thresholding is applied to the smallest eigenvalue obtained from local covariance

matrices computed over 5 × 5 pixel windows. This eliminates regions of low intensity

variation from the optical flow computation, where flow is unlikely to be computed

accurately. Flow vectors were computed for every 8th pixel, over images of resolution

360 × 288 pixels.

9.4.3 The Hazard Perception Test

The hazard perception test is a video test incorporating local road hazards. The test

is an adaptation of a previously used technique developed by Horswill et al. [2004].

Participants view video footage of a driver’s eye view of various genuine traffic hazards.

They are instructed to press a response button when they detect a potential traffic
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conflict (where the camera car might have to brake or take evasive action to avoid a

collision). Reaction times to selected incidents on the video are measured and averaged

to give an overall hazard perception reaction score.

The hazard perception test for older drivers was designed in consultation with focus

groups and road safety experts who provided information used to identify scenes to be

included in the video footage [Horswill and McKenna 2004]. All footage was filmed in

normal traffic conditions around areas of the Australian Capital Territory, Australia.

Whenever a potential traffic conflict was encountered, its time-code was recorded and

indexed. It is important to emphasise that all the clips depict genuine, unstaged

hazardous events.

9.5 Performance assessment

9.5.1 Testing procedure

Six video segments from the clinical hazard perception trials were used to assess the

accuracy and robustness of the proposed hazard detector. From the set of all indexed

hazards across the video segments, those fitting the description of side-entering were

marked as hazards to detect. Start and end time-codes listed for each of the indexed

side-entering hazards were used to define the duration of time in which the detector

must locate the hazard. The detector indicated the existence of a potential side-

entering hazard by drawing a bounding box around the image region associated with

the potential threat. A hazard was deemed to be detected if the centre of the bounding

box hazard region was within the image area of the object causing the hazard.

Table 9.1 provides a full list of all indexed side-entering hazards. A brief description

of the side-entering scenario is given, along with the time interval defined for the hazard.

Note that the time interval is the same as that used in human trials with the same

footage.

9.5.2 Results

The right two columns of Table 9.1 provide results obtained from the application of the

hazard detector over the hazard perception test videos. Where the detector successfully
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Indexed Hazards Detector Results

Hazard description Time duration Time detected Response time
start end (sec) (sec) (sec)

Video segment 1

merge in front from right 2.96 11.75 2.80 -0.16

merge in front from right 21.60 32.00 24.39 +2.79

car turns out from left 49.72 55.96 51.91 +2.19

pedestrians crossing road 140.84 157.36 153.85 +13.01

bus pulls out 161.839 178.05 178.32 +16.92

truck merges from left 251.04 283.60 271.45 +20.41

Video segment 2

pedestrian crossing from right 8.95 20.20 15.72 +6.77

van swerves right from left 56.24 64.94 57.47 +1.23

pedestrian crossing from right 145.83 156.76 – –

car turns out from left 202.80 209.16 205.08 +2.28

bus turns out from left 253.16 264.14 255.21 +2.05

Video segment 3

car merges right 22.91 39.65 16.67 -6.24

pedestrians crossing from left 130.82 141.88 – –

pedestrian crossing from right 240.86 245.52 243.59 +2.73

Video segment 4

truck pulling out from right 0 13.08 9.25 +9.25

car turns out from left 75.64 83.24 80.17 +4.53

car merges from left 153.793 169.24 152.92 -0.87

car on round-about from right 170.28 179.36 172.18 +1.9

pedestrian moving from left 261.73 274.04 – –

Video segment 5

car merges from left 23.79 39.08 26.64 +2.85

pedestrian crossing from right 54.88 63.61 – –

pedestrians crossing from left 98.69 105.93 101.78 +3.09

car crosses road from right 107.32 114.60 109.84 +2.52

pedestrian crossing from right 157.32 165.13 162.20 +4.88

pedestrian crossing from right 204.20 215.6 – –

Video segment 6

car turns out from right 11.32 19.18 13.40 +2.08

bus starts pulling out from left 65.49 77.20 75.21 +9.72

pedestrians crossing from right 84.05 96.30 91.36 +7.31

van pulls out from left 126.16 139.68 138.46 +12.3

bus pulls out from left 152.84 174.5 166.93 +14.09

truck enters round-a-bout from left 186.72 226.39 – –

Table 9.1: Results obtained using the side-entering hazard detector across all video segments

used in hazard perception testing of older drivers. The first three columns provide a description

and time interval of all indexed hazards fitting the description of side-entering. The right two

columns provide results for the detector in identifying each indexed hazard. Where successful,

both the time-code and the response time with respect to the indexed time-code are given.
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(c)(a) (b)

(d) (e) (f)

Figure 9.3: Sample hazard detections from video segment (vs) testing: (a) merge from right

(vs 1, 29.36 sec), (b) car turns out from left (vs 1, 52.79 sec), (c) truck merges from left (vs 1,

271.45 sec), (d) pedestrians crossing (vs 5, 101.78 sec), (e) bus pulls out from left (vs 6, 166.93

sec), (f) car crosses road from right (vs 5, 109.84 sec)

identified the hazard, both the time-code of the initial detection, and the time difference

of this detection with respect to the indexed time-code are given. Figure 9.3 shows

a sample of side-entering hazard detections recorded over the video segments. Each

corresponds to a successfully detected indexed hazard in Table 9.1, as indicated by the

video segment number and time-code listed with each sample.

Across the six video segments, the hazard detector successfully identified 24 of the

30 (80%) indexed side-entering hazards. In addition, the detector was observed to

detect a significant number of other side-entering scenarios, not marked for detection.

Hazard class Detections Avg response time (secs)

Vehicle side road entry 7/8 +2.27
Vehicle merge (or swerve) to front 6/6 +3.4
Pedestrian(s) crossing 6/11 +6.3
Vehicle pull out from curb 5/5 +12.47

Total 24/30 +5.65

Table 9.2: Hazard detection results broken down to major side-entering hazard classes.



222 On-road hazard detection for driver assistance

Of the total number of hazard alerts issued, 41% were observed to be false positives.

A false positive was deemed to be any hazard alert not involving a self-moving object

(in practise a moving vehicle or person).

9.6 Discussion

Overall, results from the hazard perception trial are encouraging. Table 9.2 shows a

breakdown of performance statistics into the major classes of side-entering hazards.

The strongest results achieved for speed of detection involve situations where a vehicle

enters the field of view moving. This is in contrast to the worst performing scenario for

detection time involving vehicle’s pulling out from an initially stationary position. It

should be noted, however, that the indexed start time of these hazards is significantly

earlier than when the vehicle starts to move. Arguably, these hazards constitute a

stopped vehicle in lane hazard rather than side-entering when they initially enter view.

Notably, however, all such hazards were detected within the allotted time.

Pedestrian-related hazards posed the greatest challenge where only 6 from 11 were

identified. This is in contrast to the strong results achieved for side-entering vehicles,

a result that is also reflected in average response times. Successful pedestrian-related

detections took, on average, twice as long as side-entering vehicle detections. The

likely cause of this discrepancy is the relatively slow apparent motion, and small size of

pedestrians as compared with vehicles. Pedestrians were generally only detected once

the camera-mounted vehicle came to a halt. Another observed difficulty in detecting

pedestrians was that in many cases, pedestrians entered the field of view as stationary

objects, often waiting to cross the road. This suggests motion-based cues are unsuitable

for early pedestrian detections. Rather, specifically designed pedestrian classification

techniques such as that outlined by Overett et al. [2009], are more appropriate for this

class of detection.

While the number of recorded false positives is significant, their occurrence was

predictable, and limited to specific environmental scenarios. Of the total number of

false positives recorded, 83% were found to be the result of lines, shadows, and other

features on the surface of the road. In many cases, these features would remain for
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a significant time, thus causing repeated detections. Given an extraction of the road-

plane, such false detections should easily be filtered out, thus reducing false-positives to

7%. Other false positive detections were typically associated with cars in the distance,

driving toward the camera on a curved section of road. Such scenarios were often

observed to generate almost identical apparent motion to side-entering hazards.

In general, the use of low-level visual cues like flow direction will always be sus-

ceptible to noise and ambiguities in the scene. It is therefore unlikely that such a

system would be applied without higher-level contextual information. As stated in the

introduction, the goal of the current system is to identify image regions of heightened

threat risk. The inclusion of other visual cues would further improve the robustness

and effectiveness of the system.

9.6.1 Future work

Future work will consider other classes of hazards, and the use of other visual informa-

tion to detect hazards. Cues such as flow field magnitude and divergence (or looming)

provide a direct measure of the relative proximity of objects in the scene. Such cues may

also provide a means of gauging the level of threat posed by environmental conditions

in general. For example, increasing flow magnitude in the periphery would suggest

conditions are narrowing, thus increasing the risk of pedestrians or other objects en-

tering from the side. Such a cue may be used to lower thresholds for the detection of

such hazards, and adjust the size of search regions in the image. To facilitate more

pre-emptive hazard perception, the inclusion of subsystems to detect more contextual

cues such as road signs, flashing indicators and stop lights could be considered.

9.7 Summary

In this chapter we have explored visual contact estimation for non-looming objects and

a moving observer. We have reported on preliminary work towards the development

of a potential hazard perception intervention to assist older drivers. A class of hazard

identified as a cause of heightened crash risk are those involving side-entering objects

entering the field of view in the periphery. We have proposed a simple and efficient
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strategy for identifying regions of the image where the likelihood of such hazard is

high. Unlike previous approaches, we assess the performance and effectiveness of the

detector over six video segments also being used in concurrent clinical trials of older

drivers. In this study, we aim to adapt what is learnt through clinical trials, and pilot

an intervention to improve hazard perception in older drivers. Such a system may allow

older drivers to keep driving safely, for longer.

We have now presented all contributions of this thesis. In the next chapter we

present the conclusions of this thesis, and summarise the major contributions and

implications of the work presented.



Chapter 10

Conclusion and Future Work

This thesis has proposed new visual cues for estimating contact with surfaces in the

environment. We have focussed specifically on techniques for extracting visual in-

formation from the optical flow field, as motivated by ecological studies of biological

vision systems. As a primary focus, we have considered visual contact estimation for

the purposes of vision guided robot navigation. In particular, we have proposed novel

visuo-motor control schemes suitable for tasks requiring fine motion control in close

proximity with looming surfaces such as landing and docking. We have also applied

directly available cues from the optical flow field to perceptual tasks such as on-road

hazard detection and egocentric time and location of impact prediction. To contrast

with these direct perceptual techniques, we have also explored visual contact estimation

under a more traditional structure-from-motion framework. In so doing we have exam-

ined the implications of employing a spherical projection model (as an approximation

to the eye geometry of flying insects) for structure-from-motion recovery, as well as for

visual contact estimation using directly perceived visual cues such as time-to-contact.

Through this work, we have gained new insights into the role of vision in navigation

and perception, and how vision algorithms may best support the needs of visuo-motor

control. In this chapter, we summarise these insights, and the novel contributions of

this thesis. We also discuss future directions for this research.

225
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10.1 Key insights for visual contact estimation

Visual contact estimation under imprecise conditions

Global invariants of the optical flow field express relationships between the moving

observer and its environment. Understanding these relationships, and extracting visual

information with respect to changes of such invariants allows system dynamics to be

handled in the image domain. This alleviates restrictions on observer motion, and

reduces the demands on subsequent processes to filter visual inputs. This thesis has

demonstrated that such an approach may lead to simpler, more robust and generally

applicable visual control schemes.

Projective geometries

The choice of camera projection model determines how visual information is expressed,

and as a consequence, how it is extracted. The results presented in this thesis support

the view that a spherical projection model over a wide field of view is well suited

to flow-based navigation and surface contact estimation. Moreover, this thesis has

shown that this projection model provides an inherent advantage for estimating time-

to-contact and applying it to visuo-motor control schemes. The geometric equivalence

of image points under this model alleviates assumptions and restrictions imposed under

a perspective projection model when estimating time-to-contact. Results also support

previously noted geometric advantages for recovering real-time structure-from-motion

from spherical optical flow. However, inherent issues associated with structure-from-

motion recovery remain evident, and problematic for use in the control loop.

Qualitative cues for visual control

Robust visual control does not require explicit estimation of egomotion and structure

parameters. Moreover, the results presented in this thesis support the view that vi-

sual control systems that avoid a direct need for egomotion estimates (or an assumed

direction of motion) may perform better when visual conditions are changing rapidly.

In this context, direct visual cues reflecting frame-to-frame changes in the relationship

between observer motion and scene structure provide a reliable and stable control in-
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put. This reduces potential sources of measurement error introduced by egomotion

estimation. Under real-world conditions, such errors are difficult to model, and thus

necessitate complex control schemes to account for changing conditions.

10.2 Core contributions of this thesis

This thesis has contributed the following:

A robust strategy for docking a mobile robot using optical flow field diver-

gence

We have proposed a mobile robot docking strategy that utilises a time-to-contact esti-

mation that is robust to noisy, instantaneous rotations induced by robot ego-motion.

We have shown that through tracking the focus of expansion in the optical flow field,

small rotations of the camera and misalignments of the optical and translational axes

can be accounted for by calculating flow divergence with respect to the FOE. Based

on this, we have proposed a divergence-based control law for docking a robot with

near fronto-parallel surfaces, verified through experimental trials. The accuracy and

stability achieved is demonstrated to be sufficient for fine motion control of a mobile

robot when in close proximity with an upright surface.

A unified strategy for landing and docking from spherical flow divergence

We have proposed a unified landing and docking strategy using flow field divergence

under spherical projection. We have derived a divergence-based velocity and direction

control strategy that can be applied for any angle of approach, and without restric-

tion on the motion of the camera (or the need for explicit de-rotation of the flow

field, or egomotion estimation). Central to this strategy is the use of the point of

maximum divergence. Analytically, and experimentally, we have shown that the di-

vergence maximum always occurs halfway along the arc connecting the surface normal

and the direction of translation. We have demonstrated that such a strategy is viable

for closed-loop use, and provides robust estimates of time-to-contact under real-world

conditions.
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A real-time strategy for estimating 3D depthmaps from spherical flow

We have presented an insect-inspired structure-from-motion strategy for generating 3D

relative depth maps from optical flow, in real-time. In so doing, we have demonstrated

the advantages of a spherical projection model over a full view sphere (or hemisphere

for planar motion) when recovering egomotion parameters. We have shown for the

first time, the application of an egomotion algorithm first proposed by Nelson and

Aloimonos [1988], over real images, depicting real world environments. Results suggest

this strategy may be a useful base for high-level navigation tasks.

A time and location of impact estimator for incoming self-moving objects

Based on primate vision, we have presented work towards the development of a flow-

based scheme for predicting the impact location of an incoming object about an ex-

tended camera-centred plane. The proposed method bases predictions on the exami-

nation of local instantaneous flow induced by the motion of an incoming object. We

have presented both off-line quantitative testing, as well as live testing of the system.

Results provide encouragement for future work.

A flow-based hazard alert system for classes of on-road hazards

We have presented preliminary work towards the development of an on-road hazard

alert system to compensate for visual ageing in older drivers. We have proposed a

simple and efficient strategy for identifying regions of the image where a heightened

risk of collision exists. We have focussed on the detection of peripheral side-entering

hazards, which have been identified to be particularly problematic. Unlike previous

approaches, we have assessed the performance of the detector over video segments used

in concurrent clinical trials of older drivers. Results showed the detector successfully

identified almost all of the indexed hazards.

10.3 Further work

Here we discuss future research directions and extensions in the estimation and ap-

plication of visual contact estimation. Note that future work for some contributions
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of this thesis have already been discussed in the corresponding chapter, and are not

repeated here.

Extended uses of divergence maxima

In Chapter 6 we demonstrated the use of the divergence maximum within the projected

area of a planar surface for docking and landing. The exploration of extended uses and

alternative applications offers potential direction for further work. Given a global field

of view, for example, multiple local divergence maxima (and minima) are likely to be

present in the image, each associated with different surfaces. Such cues offer potential

new approaches to visuo-motor navigation in structured environments. Examination of

divergence within the neighbourhood of local maxima may also provide a useful cue for

local plane fitting using models of planar divergence. Divergence maxima and minima

over a wide field of view may also provide a useful constraint for egomotion recovery

under certain visual conditions.

Optical flow estimation

This thesis has applied a single class of optical flow estimation techniques in all reported

experiments. While this choice is well supported by previous benchmarking and com-

parison studies (discussed in Chapter 3), there remains scope for further consideration

of which technique best serves the needs of visual contact estimation. Discrete feature

matching techniques such as SIFT may also be used in place of differential optical

flow estimation. While computationally expensive to compute, sparse feature-sets may

provide sufficient information to infer visual information such as divergence across sur-

faces.

Alternative sensory inputs

This thesis has considered visual contact estimation using optical flow. However, perfor-

mance in sparsely textured, featureless environments, or where lighting conditions may

significantly change, represent conditions in which optical flow (and feature-matching)

are unlikely to perform well. Visual cues such as surface shading, object boundaries
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(via edge detection), and closed-shape tracking provide alternative cues for perceiving

the changing proximity and orientation of surfaces in the scene. Future work may

seek to employ such cues separately, or in conjunction with the flow-based techniques

proposed in this thesis.

Extended closed-loop verification

More extensive closed-loop trials of all proposed techniques are required. In particular,

closed-loop verification of the depth map estimation scheme, and time and location

of impact detector are yet to be conducted. Across all visuo-motor control schemes

proposed, closed-loop performance in real-world conditions remains untested. While

open-loop experimental results have demonstrated robustness in the underlying control

input signal, demonstration of closed-loop performance under such conditions would

provide confirmation of this. Restrictions imposed by the robotic platforms used in

this thesis disallowed closed-loop outdoor experiments to be conducted.

Embedding visual contact estimation in visual behaviours

Several techniques proposed in this thesis are yet to be applied to specific visual be-

haviours, and this remains future work. More generally, this thesis has not considered

how any of the proposed contact estimation schemes may be embedded in goal driven

navigation and perceptual systems. A possible direction of future research is to con-

sider how visuo-motor control schemes may be combined with structure-from-motion

techniques to support a broad array of navigation and perceptual capabilities.

Biologically-inspired versus conventional structure-from-motion

This thesis emphasises the importance of biological approaches to visual navigation. We

acknowledge, however, that alternative solutions exist, and in many cases, may provide

superior performance. Classical structure-from-motion approaches are beginning to

realise real-time performance, and provide increasingly detailed scene reconstructions.

It will be of interest to compare such approaches with those presented in this thesis (and

elsewhere) in the control loop. How classical structure-from-motion may be integrated



§10.3 Further work 231

with low-level visuo-motor schemes is also a topic for future work.

Biological implications

Much of the work presented in this thesis has been broadly based on principles of vision

in biology. While the focus has been on the design of robust vision algorithms for real-

time, real-world applications, outcomes of this work may offer potential insights into

the visuo-motor control capabilities in animals. Of particular interest is the proposed

unification of docking and landing, which offers an alternative and more general model

for graze-landing honeybees than currently exists in the literature. From a broader

perspective, further research may consider the possible role of the divergence maxima

for other visuo-motor animal behaviours, including fixation-based primate vision for

which rotationally invariant cues are particularly useful. Development of the time and

location of impact prediction scheme presented in Chapter 8 will also provide a base

for modelling visuo-motor strategies for threat avoidance and interception in primates.



232 Conclusion and Future Work



Bibliography

Adiv, G. 1985. Determining three-dimensional motion and structure from optical

flow generated by several moving objects. IEEE Transactions on Pattern Analysis

and Machine Intelligence 7, 4, 384–401.

Adiv, G. 1989. Inherent ambiguities in recovering 3-d motion and structure from

a noisy flow field. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence 11, 5, 477–489.

Akbarzadeh, A., Frahm, J.-M., Mordohai, P., Clipp, B., Engels, C., Gallup,

D., Merrell, P., Phelps, M., Sinha, S., talton, B., Wang, L., Yang, Q.,

Stewenius, H., yang, R., Welch, G., Towles, H., Nistèr, D., and Polle-
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