Notes on the Gibbs-Markov equivalence

Tibério Caetano

August 3, 2005

This note is an attempt to describe in a detailed way how the Gibbs-Markov equivalence (also known as Hammersley-Clifford theorem) can be obtained. We start by proving the M{"o}bius inversion lemma and then proceed to the Grimmer’s proof of the theorem.

Notation: A capital letter ($A, B, \text{etc.}$) will denote a set of variables while x_i, where i is a lowercase letter, will correspond to a specific instantiation on this set. Two or more capital letters together (e.g. AB) correspond to the union of the individual sets (e.g. $A \cup B$). When indexed by more than a single lowercase letter, x represents a joint instantiation on the combined sets (e.g. x_{ab}).

Lemma 1 (M{"o}bius inversion) Let F and G be two arbitrary real-valued functions defined on every finite subset1 of a finite set A. So, $F : \mathcal{P}(A) \mapsto \mathbb{R}$ and $G : \mathcal{P}(A) \mapsto \mathbb{R}$, where $\mathcal{P}(A)$ is the power set2 of A. Then the following equivalence holds:

$$F(A) = \sum_{B : B \subseteq A} G(B) \iff G(B) = \sum_{C : C \subseteq B} (-1)^{|B|-|C|} F(C)$$ \hspace{1cm} (1)

or, equivalently:

$$F(A) \equiv \sum_{B : B \subseteq A} \left(\sum_{C : C \subseteq B} (-1)^{|B|-|C|} F(C) \right)$$ \hspace{1cm} (2)

Proof We start from (2). Swapping sums we have:

$$F(A) \equiv \sum_{C : C \subseteq B} \left[\sum_{B : B \subseteq A} (-1)^{|B|-|C|} F(C) \right]$$ \hspace{1cm} (3)

Let’s concentrate on the bracketed expression now. Notice that C is fixed in this expression, and the sum runs over B. Notice that the expression in brackets is a sum over all the subsets (B’s) of A which contain a fixed subset C of B. So, keep in mind here that $C \subseteq B \subseteq A$ always holds. As a result, $|B|$ in the bracketed expression varies from $|C|$ (when $B = C$) to $|A|$ (when $B = A$). There are $|A| - |C| + 1$ possible different sizes for the subset B in this bracketed expression (ranging from $|C|$ when $B = C$ to $|A| - |C|$ when $B = A$). For each of these sizes, and denoting $n = |A| - |C|$ and $p = |B| - |C|$, there are

$${n \choose p} := \frac{n!}{p!(n-p)!}$$

1We will assume that they are defined on the empty set as well, but we make $F(\emptyset) = 0$ and $G(\emptyset) = 0$.

2the set of all subsets. Recall that the number of elements in the power set is $2^{|A|}$.

1
As in the second, if the same growth is in which subsets. As a result, we may write (3) as
\[
F(A) \equiv \sum_{C:C \subseteq B} \left[\sum_{p=0}^{n} (-1)^p \binom{n}{p} \right] F(C).
\] (4)

Now, let’s separate the outer sum in (4), which runs over all subsets \(C \) of a fixed subset \(B \), into three parts: one in which \(C = \emptyset \), another in which \(C = A \) and another including all other \(C \)'s:
\[
F(A) \equiv \sum_{C:C=\emptyset} \left[\right] F(C) + \sum_{C:C=A} \left[\right] F(C) + \sum_{C:\emptyset \subseteq C \subseteq A} \left[\right] F(C).
\] (5)

Due to the assumption that \(F(\emptyset) = 0 \), the first of the three sums (which contains a single term) vanishes. The second sum also has a single term (for \(C = A \)): the bracketed expression of eqs. (4) and (5) in this case becomes
\[
\sum_{p=0}^{0} (-1)^{0} \binom{0}{0},
\] (6)
which is 1. Therefore, the second sum in (5) is simply \(F(A) \). The third sum in (5) is seen to be zero: simply write the bracketed expression in the form recognizable in the binomial theorem:
\[
\sum_{p=0}^{n} (-1)^p \binom{n}{p} = \sum_{p=0}^{n} (1)^{n-p} (-1)^p \binom{n}{p} = (1 - 1)^n = 0.
\] (7)

What (7) says is basically that, in the power set \(\mathcal{P}(A) \) of some finite set \(A \), the amounts of elements with odd and even cardinalities are the same. For example, if \(A = \{1, 2, 3\} \), we have that \(\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\} \) and \(|\emptyset| = 0, |\{1, 2\}| = 2, |\{1, 3\}| = 2, |\{2, 3\}| = 2, |\{1\}| = 1, |\{2\}| = 1, |\{3\}| = 1 \) and \(|\{1, 2, 3\}| = 3 \), i.e. 4 even and 4 odd.

Therefore, (5) can be rewritten as
\[
F(A) \equiv 0 + F(A) + 0 \quad \Rightarrow \quad F(A) \equiv F(A),
\]
which is true.

We will in a few moments use the Möbius inversion lemma to prove the Hammersley-Clifford theorem. Before that, we fix some definitions required in order to state this theorem:

Definition 2 (Markov property) Let \(G = (V, E) \) be a graph and \(A, S \) and \(B \) disjoint subsets of \(V \). If \(S \) separates \(A \) from \(B \) (such that any path from \(A \) to \(B \) passes through \(S \)), then \(A \) and \(B \) are conditionally independent given \(S \): \(A \perp B|S \), or \(P(x_{ab}) = P(x_a)P(x_b)/P(x) := h(x_a)h(x_b) \).

Definition 3 (Gibbs distribution, Gibbs potential) A density over a graph \(G = (V, E) \) is said to be Gibbs if it is of the form
\[
P(x_v) = \prod_{K \in K_v} \psi_K(x_k)
\]
where \(K_v \) is the set of all complete subgraphs of \(G \) and \(\psi' \)'s are arbitrary\(^3\) nonnegative real-valued functions. Equivalently, by applying logarithms in both sides, we obtain the Gibbs potential

\[
\Phi(x_v) = \sum_{K \in K_v} \phi_K(x_k),
\]

(8)

where \(\phi_K = -\log \psi_K \) are the so-called “clan-potentials” (Moussouris terminology), or potentials over subsets of cliques.

Now we state and prove the two theorems for Gibbs-Markov equivalence: the Gibbs \(\Rightarrow \) Markov and the Markov \(\Rightarrow \) Gibbs parts. The first is easier:

Theorem 4 (Gibbs \(\Rightarrow \) Markov) Every Gibbs system is Markovian.

Proof Assume \(G, A, B \) and \(S \) as in definition 2. Assume also, without loss of generality, that only the maximal complete subgraphs (cliques) are included in the factorization of the Gibbs distribution in definition 3 (this can always be done by appropriately selecting the \(\psi' \)'s to include the subsets of each clique). Since \(S \) separates \(A \) and \(B \), \(A \) and \(B \) are in two different connectivity components of \(G \), which we call \(\bar{A} \) and \(\bar{B} \), such that \(\bar{A} \cup \bar{B} \cup S = V \). However, notice that the cliques of \(G \) can only be in \(\bar{A} \cup S \) or in \(\bar{B} \cup S \), since there is no edge between \(\bar{A} \) and \(\bar{B} \). If \(C \) denotes the set of cliques in \(G \), \(C_A \) denotes the set of cliques in \(\bar{A} \cup S \) and \(C \) denotes a specific clique, then the Gibbs distribution takes the form

\[
P(x_v) = \prod_{C \in C_A} \psi_C(x_C) \prod_{C \in C \setminus C_A} \psi_C(x_C)
\]

what implies that \(\bar{A} \perp \bar{B} | S \), according to definition 2. Since \(A \) and \(B \) are subsets of, respectively, \(\bar{A} \) and \(\bar{B} \), \(\bar{A} \perp \bar{B} | S \) also holds.

\[\Box\]

Now we present the converse, i.e. the Markov \(\Rightarrow \) Gibbs relation, which is less trivial.

Theorem 5 (Markov \(\Rightarrow \) Gibbs) Every positive Markov system is Gibbsian, with clan potentials given by

\[
\phi(x_k) = \sum_{K' : K' \subseteq K} (-1)^{|K'|-|K|} \Phi(x'_k).
\]

Proof We apply here the Möbius inversion equivalence:

\[
F(A) = \sum_{B : B \subseteq A} G(B) \iff G(B) = \sum_{C : C \subseteq B} (-1)^{|B|-|C|} F(C),
\]

(11)

which in our case becomes

\[
\Phi(x_v) = \sum_{B : B \subseteq V} \Gamma(x_b) \iff \Gamma(x_b) = \sum_{C : C \subseteq B} (-1)^{|B|-|C|} \Phi(x_c).
\]

(12)

In order to prove the theorem, it suffices to show that \(\Gamma(x_b) = 0 \) whenever \(B \) is not a clan. This is so because then the sum over all subsets \(B : B \subseteq V \) in

\[^3\text{They must be such that } P \text{ integrates to 1 of course.}\]
\[\Phi(x_v) = \sum_{B : B \subseteq V} \Gamma(x_b) \]

will then become effectively a sum only over the clans, and the Gibbs potential (8) is then recovered

\[\Phi(x_v) = \sum_{K : K \in K_v} \phi_K(x_b). \]

(13)

To show that \(\Gamma(x_b) = 0 \) when \(B \) is not a clan, we start by noting that there are at least two nodes \(Z_1 \) and \(Z_2 \) that are not connected in \(B \). So let’s denote \(B \) by \(Z_1S Z_2 \) (i.e. the union of a “separator” \(S \) and the two unconnected nodes). Analogously, the joint assignment is \(x_b = x_{z_1z_2} \). Then, we note that any instantiation \(x_v \subseteq x_b \) must be obtained from \(x_{c'} \subseteq s \) by adjoining one, none of both of the instantiations \(z_1 \) and \(z_2 \). As a result, we can develop \(\Gamma(x_b) \)

\[\Gamma(x_b) = \sum_{C : C \subseteq B} (-1)^{|B| - |C|} \Phi(x_c) \]

(14)

in the following way

\[
\begin{align*}
\Gamma(x_b) &= \sum_{C : C \subseteq B} (-1)^{|B| - |C'|} \Phi(x_{c'}) + \\
&+ \sum_{C : C \subseteq S} (-1)^{|B| - |Z_1C'|} \Phi(x_{z_1c'}) + \\
&+ \sum_{C : C \subseteq S} (-1)^{|B| - |Z_1Z_2|} \Phi(x_{z_1z_2}) + \\
&+ \sum_{C : C \subseteq S} (-1)^{|B| - |Z_1C'Z_2|} \Phi(x_{z_1c'z_2})
\end{align*}
\]

(15)

The exponents of the \((-1)\)’s can be made equal by correcting the signs of the correspondent \(\Phi \)’s (since two exponents have odd and two have even parity):

\[
\Gamma(x_b) = \sum_{C : C \subseteq S} (-1)^{|B| - |C'|} [\Phi(x_{c'}) + \Phi(x_{z_1c'z_2}) - \Phi(x_{z_1c'}) - \Phi(x_{c'z_2})]
\]

(16)

Now we will show that the term in brackets is zero (what makes \(\Gamma(x_b) = 0 \) and thus proves the theorem). By exponentiating it, we obtain

\[
\exp[.] = \frac{P(x_{c'})}{P(x_{z_1c'})} \frac{P(x_{z_1c'z_2})}{P(x_{z_1c'})} \frac{P(x_{z_1z_2})}{P(x_{z_1c'})} \frac{P(x_{z_1z_2})}{P(x_{z_1z_2})} = 1
\]

(17)

(18)

So, \([.] = 0 \). Note that the Markov property was used: \(P(z_1|c'z_2) = P(z_1|c') \). Also, note that the positivity of \(P \) is essential for the Markov ⇒ Gibbs part (and not necessary for the converse part).