
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 1

Graphical Models and Point Pattern Matching

Tibério S. Caetano, Terry Caelli, Fellow, IEEE, Dale Schuurmans

and Dante A. C. Barone

Abstract

This paper describes a novel solution to the rigid point pattern matching problem in Euclidean

spaces of any dimension. Although we assume rigid motion, jitter is allowed. We present a non-iterative,

polynomial time algorithm that is guaranteed to find an optimal solution for the noiseless case. First

we model point pattern matching as a weighted graph matching problem, where weights correspond

to Euclidean distances between nodes. We then formulate graph matching as a problem of finding a

maximum probability configuration in a Graphical Model. By using graph rigidity arguments, we prove

that a sparse Graphical Model yields equivalent results to the fully connected model in the noiseless

case. This allows us to obtain an algorithm that runs in polynomial time and is provably optimal for exact

matching between noiseless point sets. For inexact matching, we can still apply the same algorithm to

find approximately optimal solutions. Experimental results obtained by our approach show improvements

in accuracy over current methods, particularly when matching patterns of different sizes.

Index Terms

Point pattern matching, graph matching, graphical models, Markov random fields, Junction Tree

algorithm

I. INTRODUCTION

Point pattern matching (or point set matching) is a basic problem in Pattern Recognition

that is fundamental to Computer Vision (stereo correspondence, image registration and model-

based object recognition [3]–[6]), Astronautics [7], [8], Computational Chemistry [9], [10] and

The basic ideas in this paper were first presented in [1] and in the thesis [2]

T. S. Caetano is with National ICT Australia and the Australian National University

T. Caelli is with National ICT Australia and the Australian National University

D. Schuurmans is with the Department of Computing Science, University of Alberta

D. A. C. Barone is with the Instituto de Informática, Universidade Federal do Rio Grande do Sul

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 2

Computational Biology [11], [12]. Here we consider the (possibly noisy) rigid body case: when

one pattern differs from a subset of the other by an isometry, but where position jitter may be

present.

A. Problem Description and Related Problems

In general terms, the problem consists of finding a correspondence between elements of two

point sets in R2 or R3 (or in Rn, n ∈ N, for general—not necessarily visual—patterns). In

the case of exact matching, one point set differs from a subset of the other by an isometric

transformation. In the inexact case, there is position jitter in one point set with respect to the

other. This occurs in practical application domains like those cited above, so matching algorithms

need to take this into account.

A related, but more general problem, is that of graph matching, which consists of finding

correspondences (one-to-one [13], many-to-one [14] or many-to-many [15], [16]) between the

nodes of two graphs so as to achieve some form of global consistency. In this case, nodes and

edges may have vector attributes or labels. There is a vast literature addressing the graph matching

problem in pattern recognition, which can be divided generally into work on search methods [14],

[17]–[23], and work on non-search methods, such as probabilistic relaxation [24]–[35], spectral

and least-squares methods [5], [36]–[40], graduated assignment [13], genetic optimization [41]

and other principles [15], [16], [42], [43]. For a recent comprehensive review on graph matching

for pattern recognition, see [44]. We have shown how ideas similar to those presented in this

paper can be applied to the graph matching problem in [14] and [45], however in this paper we

focus specifically on the point pattern matching problem.

B. Potential Applications

Isometric point pattern matching (allowing for jitter) is encountered in several application

domains.

In Computer Vision, two sets of interest points extracted from two stereo images are ap-

proximately related by an isometry when the stereo pair has a narrow baseline. An accurate

correspondence between the features results in an accurate depth map or the recovery of the

3D geometry of the scene [46]. This form of stereo correspondence constitutes one of the

fundamental point pattern matching problems of Computer Vision.

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 3

In Astronautics, the attitude of sounding rockets or satellites can be estimated by matching

stellar images acquired from the onboard star sensor (a CCD camera) to those in an empirical

star catalog [47]. Images acquired from the same region of the sky but from different viewpoints

reveal sets of stars whose coordinates are related by an isometric transformation [7]. In this way,

the star matching problem can be posed as a rigid point pattern matching problem.

In Computational Chemistry, rigid point pattern matching is a recurrent problem in drug

design, specifically in the identification of pharmacophores—common subsets of molecules that

systematically interact with some receptor (i.e. that perform some specific task). By matching a

set of molecules (called ligands) that activate (“bind”) a given receptor, one can identify whether

there is a common sub-conformation among the ligands. If this is the case, the structure encoun-

tered becomes a candidate pharmacophore, which is a distillation of the functional attributes of

ligands that accomplish some specific task. The pharmacophore can then be used in the design

of a new drug which is expected to systematically interact with the given receptor [10].

Finally, a similar problem arises in Computational Biology, when the interest is to detect

specific structural motifs within a family of proteins (or DNA sequences). Identification of these

motifs contributes to uncovering the mechanism of the proteins’ operation [12].

In all these problems, rigid point pattern matching is a reasonable assumption, but small

stochastic deviations in the point positions must be accommodated (jitter). This latter condition

excludes methods that only apply to exact point pattern matching problems (like [48]). The

technique proposed in this paper is precisely designed for this case: we make the rigid body

assumption (isometric assumption) but jitter is allowed.

C. Related Literature

Several approaches have been proposed to solve the inexact point pattern matching problem.

Major classes of solutions are based on spectral methods [4], [5], [37], relaxation labeling [28]–

[30], [33]–[35], and graduated assignment [13], [49]. The first compares the eigen-structure of

proximity matrices of the point sets. The second defines a probability distribution over mappings

and optimizes using a discrete relaxation algorithm. The third combines the “softassign” method

[50] with Sinkhorn’s method [51] to optimize the mapping. All these approaches can be seen

as using optimal representations (complete data models) and approximate inference procedures.

Spectral methods use the spectrum of the full adjacency matrix, but it is well-known that different

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 4

graphs can be co-spectral [52]; probabilistic relaxation labeling typically uses compatibility

functions defined over all points, but the optimization procedure is iterative and known to be

convergent to local minima [29]; graduated assignment also uses the entire set of pairwise

compatibilities, being a continuous relaxation of the original combinatorial problem which aims

at tractability, but is also only convergent to local minima [13]. These sources of approximation

impact on performance in various ways. For example, it has been frequently reported that spectral

methods are not robust to structural corruption nor to matching patterns of very different sizes

[4], [5]. Relaxation methods degrade with significant increases in point set sizes [13]. Graduated

assignment, although extremely robust with respect to jitter, has a number of heuristic parameters

that need to be tuned and, more importantly, is very sensitive to matching sets of significantly

different sizes [13], [53]. All these methods are polynomial time approximations that do not

guarantee global optimization.

D. The Proposed Technique

In this paper, we propose a conceptually different approach that overcomes many of the

limitations of previous techniques. Rather than using a complete data model and an approximate

inference algorithm, we do the opposite: we approximate the representation but show how

optimal polynomial time algorithms can be applied to the approximated data model. However, the

hallmark of this approach is that the “approximated” data model can be proven to be equivalent

to the complete data model in the limit case of exact matching. This will ultimately allow us

to obtain optimal polynomial time solutions in representations that are themselves optimal. This

translates directly to optimal solutions to the original problem itself.

More specifically, our formulation is based on first posing the problem of deriving the best

assignment as a graph matching problem and then solving, with an optimal algorithm, “approx-

imate” versions of this graph matching problem which only include a particular subset of the

edge weights. This is indeed an abstraction from the original point matching task, but at the

end there will be a one-to-one correspondence between solutions of the abstracted and original

problems. The motivation for this particular type of abstraction comes from the fact that such

“approximations” to the graph matching problem have a strong theoretical justification. Many

edge weights in the resulting graphs are in some sense “redundant”, which allows us to prove—

in a key part of this paper—that in the limit case of no jitter there is no approximation at all: the

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 5

weights which are thrown away are completely irrelevant. It turns out that such redundancies

can be naturally formulated in mathematical terms as conditional independence assumptions

if the nodes of the first graph are seen as random variables (thus inducing a probabilistic

Graphical Model in the first graph [54]). If the nodes of the other graph are seen as possible

realizations for these random variables, the graph matching problem becomes a problem of

finding the optimal joint realization for the random variables in the Graphical Model, or the MAP

estimate. Remarkably, the resulting “sparse” Graphical Model—without redundant edges—has

sufficient structure to permit exact MAP computation in polynomial time—a computation that

is intractable in the fully connected model. This allows us to obtain an optimal algorithm that

runs in polynomial time over an optimal representation. The result is a globally optimal solution

to the original problem which is computable in polynomial time.

The resulting technique will be shown to be robust with respect to size increases in the

point patterns, as well as with respect to significant differences in their sizes. It is also robust

to moderate point jitter. Moreover, contrary to heuristic formulations, it is derived from first

principles using Markov random field theory: the technique is non-iterative and has a single

parameter to be tuned (the only parameter involved being inherent to all techniques that aim

to cope with jitter). To the best of our knowledge, this constitutes the first provably optimal

polynomial time algorithm for exact point set matching in Rn that is also applicable to inexact

matching (optimal algorithms which are exclusive to the unrealistic exact case do exist [48]). For

the realistic problem of matching noisy point patterns, we present experimental results comparing

the proposed algorithm with well-known alternative methods. Our results show that the proposed

technique offers accuracy improvements, particularly when matching patterns of different sizes.

II. POINT MATCHING AS A WEIGHTED GRAPH MATCHING PROBLEM

We start by showing how point pattern matching can be formulated as a weighted graph

matching problem. Assume we have two point sets in Rn (n ∈ N), named T for “template” and

S for “scene”, with cardinalities T and S, respectively. The idea is that some noisy instance

of T (denoted T ′) is present in S, up to an isometric transformation. Our goal is to find this

instance T ′ in S and, moreover, determine a map f : T 7→ S that maximizes some “global

similarity measure” between T and T ′. The only restriction we impose on f is that it must be

a function: every point in T must map to some point in S. This is in contrast to the one-to-one

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 6

mapping [13], which considers a smaller class of solutions. We find this assumption of many-

to-one mappings to be required in the present formulation, for reasons to be explained later in

the next section. It is natural to understand T as the point set corresponding to a “model” and S

as the point set obtained from a “scene” wherein we want to find some instance of the model.

Here we will refer to the template pattern as a “domain pattern” and the scene pattern as a

“codomain pattern”, in analogy to their role played with respect to the mapping function f . The

ith point in the domain pattern is denoted by di, whereas the kth point in the codomain pattern

is denoted by ck. The Euclidean distance between di and dj is denoted by ydij , and between ck

and cl is denoted by yckl.

The key idea for modeling point pattern matching as a weighted graph matching problem

is as follows. Recall that an isometry exists between two point sets if and only if they have

the same Euclidean Distance Matrix [55] (EDM) under some permutation [56]. Consequently,

an isometry can be tested by comparing all the permutations of two EDMs entry-wise. In our

case, we would like to handle inexact matching, which means we must also accommodate noisy

situations and sets of different sizes. Thus, we define the matching problem as finding the map

f that minimizes the cost

UT (f) =
T∑
i=1

T∑
j=1

D(ydij, y
c
f(i)f(j)) (1)

under the constraint that the map is a function (many-to-one mapping). Here UT (f) is the “total”

cost to be minimized (the reason for calling it “total” will be clear later), and D(·, ·) is some

dissimilarity measure between distances. Note that the arguments of D(·, ·) represent the entries

in the EDMs under the permutation induced by f .

This definition is equivalent (apart from f being many-to-one instead of one-to-one) to that of

the weighted graph matching problem of [13], where edge weights are restricted to be relative

Euclidean distances between points corresponding to the respective vertices embedded in Rn.

(Note that since all distances are taken into account, the graphs are fully connected.) Eq. (1)

actually represents an instance of the quadratic assignment problem which, in general, is known

to be NP-complete [13]. Due to this graph matching formulation, we will refer to the “domain

graph” Gd and the “codomain graph” Gc as the graph abstractions of the point sets. This gives

the formulation of our problem as a “Euclidean” weighted graph matching problem.

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 7

III. WEIGHTED GRAPH MATCHING AS A MAP PROBLEM IN A GRAPHICAL MODEL

This problem can be further reformulated as finding a maximum probability (MAP) configura-

tion in a probabilistic Graphical Model [57]–[60]. Before presenting our formulation, we briefly

review the main ideas about Graphical Models that will be required in our exposition.

A. Graphical Models

Graphical Models are graphical representations for families of probability distributions [54],

[57], [59], [61]. We will be considering exclusively undirected Graphical Models, sometimes

referred to as Markov random fields in certain application domains. (In this paper, “Graphical

Models” and “Markov random fields” are complete synonyms.) A Graphical Model is essen-

tially a graph where nodes represent random variables and the edge pattern represents a set of

conditional independence assumptions made among the random variables.1 If a subset of nodes

B separates (in the graph-theoretic sense) the set of nodes A from the set of nodes C, then this

means, in the Graphical Model formalism, that A and C are conditionally independent on B;

that is p(AC|B) = p(A|B)p(C|B). For examples of Graphical Models that induce different sets

of conditional independence assumptions among their variables, see Figure 1.

X1

X2

X3

X4

X5
X6

X1

X2

X3

X4

X5
X6

X1

X2

X3

X4

X5
X6

Fig. 1. Example of three undirected Graphical Models. Left: every conditional independence assumption holds. Middle: some

conditional independence assumptions hold, some do not. Right: there are no conditional independence assumptions.

Figure 1 shows three Graphical Models. Each node, Xi, in a model corresponds to a random

variable, which can assume a set of different realizations (in our context this set will be dis-

crete). A fundamental result about Graphical Models is the Hammersley-Clifford (HC) theorem,

which states that any strictly positive probability distribution that respects the set of conditional

1All our statements about Graphical Models in this paper will be restricted to discrete random variables.

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 8

independencies implied by a graph can be written in a factored form, namely as a product of

functions over the maximal cliques2 [57], [59]:

p(x) =
∏
c∈C

ψc(xc)/Z, (2)

where c is a maximal clique, C is the set of all maximal cliques and xc is the restriction of x

to the clique c. Z is the normalization constant that renders
∑

X p(x) = 1. The non-negative

function ψc(xc) is called the potential function which, in our case, will be a table with the

dimensionality of xc. From this theorem, it is clear that all we need to specify a probability

distribution is a connectivity pattern for the Graphical Model and a set of potential functions.

The basic “query” that we are then interested in answering about a Graphical Model is the

following: what is the most likely joint realization of all the random variables? In other words,

what is the mode of the joint probability distribution defined by a Graphical Model and its

potential functions? This is known as the MAP (maximum a posteriori) problem in a Graphical

Model. For fully connected models, like the one in Figure 1-Right, this problem is intractable

(for discrete random variables). For completely independent models, like that in Figure 1-Left,

this problem is trivial: the joint mode can be obtained by computing each of the individual modes

independently. Models that lie between these two extremes, of which the one in Figure 1-Middle

is an example, can be either tractable or not.

At this point, it is important to state what determines the tractability of the model. The

fundamental algorithm for exact inference in Graphical Models is the Junction Tree algorithm

[54], [57]–[59]. It works by creating a hypergraph (a “Junction Tree”) from the original graph

and then running a dynamic programming algorithm on this hypergraph. However, Junction

Trees can only be created for triangulated3 (i.e. chordal) graphs [57], [59], so the effective

computational complexity depends on triangulated versions of the original graph.4 In general,

there are many possible triangulations for a given graph. The exponential complexity of the MAP

computation for a given Graphical Model will be determined by the minimum size, taken over

2Recall that a clique is a complete subgraph and a maximal clique is a clique which is not a proper subset of another clique.
3A graph becomes triangulated (or, equivalently, chordal) by adding edges in such a way that all cycles of length greater than

three have a chord. A chord is an edge that does not belong to the cycle but connects two nodes in the cycle.
4Note that “transforming” a graph by triangulating it is not restrictive, since triangulation can only add edges and therefore

only reduces the set of conditional independence assumptions implied by the original graph.

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 9

all possible triangulations, of the maximal clique in the triangulation. If this exponent grows

with the size of the graph, then the model is intractable, otherwise it is tractable. For example,

a fully connected graph is triangulated with maximal clique size equal to the size of the graph

itself, which immediately implies intractability. Naturally, in practice one requires the exponent

to be not only fixed but also small. Notice also that, if a graph is already triangulated, other

triangulations will only potentially increase the size of the maximal clique, so the exponential

complexity will be given directly by the size of the maximal clique of the graph, without any

need for triangulation. Since the problem of finding a triangulation that has a minimal maximal

clique size is NP-complete [59] (one calls it an “optimal triangulation”), the “ideal” scenario

would be one in which the graph is already triangulated. We exploit this fact below by identifying

a triangulated Graphical Model structure for our problem that has a small maximum clique size.

Next we show how the point pattern matching problem can be formulated as a MAP problem

in a Graphical Model. Although in the initial formulation the Graphical Model will be fully

connected (and thus intractable) we will show afterwards how we can obtain the same MAP

solutions with a sparse, tractable model.

B. Formulation

The key idea for modeling weighted graph matching as a MAP problem in a Graphical Model

is as follows. Assume that each vertex in the domain graph is a random variable Xi, and that each

such random variable has a finite set of possible realizations coinciding with the set of vertices

in the codomain graph. This means that a particular realization xk of a random variable Xi

corresponds to a particular map between the point di in the domain pattern and a point ck in the

codomain pattern. Thus, a joint realization x = {xk} of the set of variables X = {Xi,∀i|di ∈ T }

corresponds to a particular match between the point sets T and S.

In this spirit, one can define a probability distribution such that the most likely joint realization

of the variables (the MAP configuration) corresponds to the minimum of Eq. (1).

In order to accomplish this, we specify a Markov random field based on edge-wise potentials

over the fully connected graph. Let ψij denote the local potential function for edge (i, j). Then,

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 10

the joint probability distribution over the pairwise Markov random field is

p(X = x) =
1

Z

∏
(i,j)

ψij(Xi = xi, Xj = xj) (3)

=
1

Z
exp

−∑
(i,j)

Vij(Xi = xi, Xj = xj)

where Vij(Xi, Xj) = − log(ψij(Xi, Xj)), and Z is a global normalization constant determined by

summing the product of potentials over all possible joint realizations x. For clarity, in Eq. (3), we

have used standard notation where xi denotes a generic realization of Xi (i.e., any realization,

not one in particular indexed by i). In the context of this paper, we find it more convenient

to modify this notation such that Xi is still the random variable, but xf(i) is now the specific

realization indexed by f(i).

To relate this problem to Eq. (1) (and here we use the new notation), all we have to do is

specify appropriate potentials. In particular, define

Vij(Xi = xi, Xj = xj) = Vij(di 7→ cf(i), dj 7→ cf(j))

:= D(ydij, y
c
f(i)f(j)).

The resulting model becomes

p(f) =
1

Z
exp

(
−

T∑
i=1

T∑
j=1

D(ydij, y
c
f(i)f(j))

)
(4)

∝ exp (−UT (f)) ,

thus maximizing p(f) is equivalent to minimizing UT (f). Note that we now write the realization

X = x in the form of a map f : each random variable Xi, which corresponds to a point di, will

“map” to a realization xf(i), which corresponds to point cf(i) (note the new notation).

The reason why we require the whole class of many-to-one matches is that, in general, one

cannot prevent two random variables from having the same realization—unless they are in the

same clique.5 PRL-based approaches also behave in this way [33], [34]. In general this can be

seen as a limitation, because in many cases (and certainly in exact point set matching) ideal

solutions are one-to-one. One exception when one-to-one approaches will fail to provide the

5If they are in the same clique, one can design a potential of zero for any joint assignment to the same realization.

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 11

ideal interpretation is in cases where two points in one pattern are actually superimposed on the

second pattern. However, it is fair to acknowledge that, in general, a one-to-one version of the

proposed algorithm would not only be desirable but invaluable since in most cases many-to-one

matches may appear artificial. This is a current limitation of the present algorithm which, as of

this stage, we cannot see how to overcome. Nevertheless, as will be shown, the experimental

results indicate that this assumption has not prevented the proposed algorithm from improving

the matching accuracy over the competing ones in many operating regions (that is, every one-

to-one solution is also tested in our algorithm, and if any of them turns out to have a cost which

is smaller than the costs over all other solutions, this will be the selected assignment).

Returning to Eq. (4), although the equivalence between finding the MAP solution and min-

imizing the energy function is important, it does not immediately yield a useful approach to

solving the problem because MAP computations over a fully connected Markov random field

are intractable. The key idea in this paper is to approximate UT (f) in such a way that only a

subset of all the pairwise cliques in the fully connected model is taken into account. This will

eventually lead us to a Graphical Model that is tractable. However, the hallmark of the particular

model that we will obtain is that its MAP solutions can be proven to be the same as those of

the fully connected model in the noiseless case. This makes the “approximation” exact.

IV. THE MODEL

To construct a sparse alternative to the fully connected Graphical Model given in Eq. (4)

we need to specify: (i) a set of potential functions that will define the function D; and (ii) a

connectivity pattern that will define the subset C2 of edges on which we will define potentials.

x

Xi Xj
x S

1x

x S

1

Fig. 2. Local “kernel” structure of the Graphical Model. Each random variable can assume S possible realizations, so that the

sample space for two connected random variables has S2 elements.

First, to specify the potentials, consider the local “kernel” structure of our model shown in

Figure 2. Generally speaking, a potential function associates to each element of the sample space

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 12

a non-negative real number [57], [59]. In our model, potentials will be defined on edges, where

each node contained in an edge (a random variable) represents one of the T vertices in Gd,

which, in turn, can assume a set of S possible realizations (which correspond to vertices in Gc).

Thus the sample space for each edge has S2 elements, and we can specify the potential function

for an edge (i.e., a pair {Xi, Xj} in Gd) by an S × S compatibility matrix of the edge:

ψij(Xi, Xj) =

H(ydij, y

c
11) . . . H(ydij, y

c
1S)

...

H(ydij, y
c
S1) . . . H(ydij, y

c
SS)

 , (5)

where ydij denotes the edge weight between vertices with indexes i and j in graph Gd (which

corresponds to the Euclidean distance between points di and dj). An analogous notation holds

for yckl. H is a function that measures how similar these arguments are.

To measure compatibility in the exact matching case (no noise) we can simply use the indicator

function

H(ydij, y
c
kl) = 1(ydij = yckl) ≡

 1, if ydij = yckl

0, if ydij 6= yckl
(6)

For inexact matching, where we assume jitter in the point positions (typical in practice), we need

a more general “proximity measure” to cope with uncertainty. Thus, in these cases we measure

compatibility using the Gaussian kernel6

H(ydij, y
c
kl) = exp

(
− 1

2σ2
|ydij − yckl|2

)
. (7)

Other similarity measures could be chosen, but we do not focus on this issue here.7 Note that

any technique for matching noisy patterns requires some soft similarity measure, including the

methods we compare to in this paper (where we use the same kernel). For example, relaxation

labeling [29] and graduated assignment [13] both use a compatibility measure between pairs of

assignments to score any putative matching. These scores use a parameter to adjust for the level

of position jitter in the data. Thus, the single parameter in Eq. (7) is not, itself, an artifact of

our method, but a necessary element in any matching model that aims to cope with noise.

6In the exact matching case, the Gaussian kernel actually gives identical results to the indicator, since its maximum is attained

uniquely at an exact match. However, the indicator makes the upcoming theoretical results clearer.
7An early attempt to evaluate different measures is reported in [62].

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 13

Having specified the potential functions, it remains to determine the connectivity of the

Graphical Model. Here we will simply propose the Graphical Model structure shown in Figure 3,

and assert that this Graphical Model structure preserves the MAP solutions of the fully connected

model—a fact we will verify in Section V below.

T−1

X X X

XXX

1 2 3

4 5 TX

Fig. 3. A model for matching in R2. The topology of the model corresponds to that of a 3-tree graph, whose maximal clique

size is 4 (thus independent on T , the number of nodes, and S, the number of possible realizations for each random variable).

Before proceeding with the proof of its optimality, we make a few remarks about this model.

First, Figure 3 illustrates a model that is specifically constructed for matching in R2. For matching

in Rk−1, an analogous topology can be used: instead of a 3-clique in the upper layer, one simply

uses a k-clique, and each of the other T − k nodes is then connected to each of these k nodes.

For any k (and T > k), this generic model topology has two important features: (i) it is already

triangulated, and (ii), the size of the maximal clique is k+1, independent of both the number of

nodes T and of the number of possible realizations S. As explained in Section III, because it is

triangulated, we know that this model has a Junction Tree, and because it has a bounded maximal

clique size, the “Junction Tree algorithm” has polynomial complexity in this model. That is, for

models like the one in Figure 3 the exact MAP solutions can be computed in polynomial time.

It might sound artificial to define the “candidate” topology as a triangulated Graphical Model

with a fixed maximal clique size (which together form sufficient conditions for polynomial

time complexity). However, in the next section we show that this topology is not postulated,

but derived from first principles, which reveals a subtle connection between exact inference in

Graphical Models and the “global rigidity of graphs”.

V. OPTIMALITY OF THE MODEL

In this section, we present theoretical results that lead to a special kind of graph: a “k-tree”.

The properties of this graph will allow us to draw a connection to the problem of exact inference

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 14

in Graphical Models, and will ultimately lead us to prove that the model shown in Figure 3,

although sparse and computationally tractable, yields equivalent results to the fully connected

model in the limit case of exact matching.

A. A relevant lemma

We start by presenting a lemma that will be necessary to obtain the subsequent results.

Lemma 1: Let S1, S2, . . . , Sn+1 be (n+1) spheres in Rn whose centers are in general position

(do not lie in a (n− 1)-dimensional vector subspace). Then the intersection set ∩n+1
i=1 Si is either

a single point or the empty set.

Proof: See Appendix A.

Another way to see this result is the following: if the distances from an unknown point to

n+ 1 known points in Rn are determined, then this point is unique—provided the n+ 1 points

are in general position. In order to see this fact, note first that the unknown point is clearly in

the intersection of the spheres whose centers are the n + 1 fixed points and the radii are the

respective distances between their centers and the unknown point. Second, note that Lemma 1

states that the intersection is either a single point or empty (which is not the case because we

have assumed the existence of this unknown point). This implies that the point is unique. This

result will be used in the following in order to obtain another result concerning the “global

rigidity of graphs”.

B. Global rigidity of k-trees

Here we use Lemma 1 to infer a second result that will ultimately lead us to obtain the

main theorem about the topology of the Graphical Model. The theory of graph rigidity, although

mathematically rich and sophisticated [63], involves concepts that are easy to understand. Strictly

speaking, we talk about the rigidity of graph embeddings in Rn where the edges are straight

lines (these embeddings are called frameworks). Simply put, we say that a framework is globally

rigid if the lengths of the edges uniquely determine the lengths of the “absent edges” (the edges

of the complement graph).

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 15

To present the key result about the global rigidity of a special kind of framework—a k-tree—

we start by reviewing some basic definitions from graph theory [64]. In what follows a complete

graph with n vertices is denoted as Kn, and a k-clique is a clique with k vertices. Also recall

that a framework is a straight line embedding of a graph.

Definition 1 (k-tree, base k-clique): A k-tree is a graph that arises from Kk by zero or more

iterations of: adding a new vertex to the graph and connecting it with k edges to an existing k-

clique in the previous graph. The k-cliques defined by the new vertices are called base k-cliques.

Figure 4 shows the process of creating a k-tree, in the particular case where k = 3. We start

with a K3 graph. Then we add a vertex (4) and connect it to every vertex of the (so far unique)

base 3-clique. Vertex (5) is then added and is connected, in this example, to the same base

3-clique. Vertex (6) is then added and connected to another base 3-clique, formed by vertices

(2), (3) and (4). Note that all intermediate graphs generated in this way are themselves legitimate

3-trees. Also note that, in general, the resulting graph is sparse (the graph with 5 nodes is the

first to present sparseness, since the edge (4-5) is absent).

A careful examination reveals that the size of the maximal clique of a k-tree with n vertices

is precisely k if n = k and precisely k + 1 if n > k. (This is easy to see because every time a

new vertex is added it is connected to exactly k vertices of a k-clique, forming a (k+1)-clique.)

5

2

5

4 4 6

13

2

1

2

3
1

Base 3−cliques

1
3 3

42

Fig. 4. The process of constructing 3-trees. At each step, a new node is added and connected to all nodes of an existent

3-clique (which is then called a “base 3-clique”).

We are now equipped to present the second result:

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 16

Lemma 2: A k-tree framework with all base k-cliques in general position in Rk−1 is globally

rigid in Rk−1.

Proof. See Appendix A.

The direct implication of this result is that the k-tree framework, from the perspective of

pairwise distances, has exactly the same information content as a fully connected framework. We

now show, using this fact, that our sparse model yields equivalent results to the fully connected

model in the noiseless case.

C. Equivalence of k-tree versus full model

To present the main theoretical result, we introduce some new terminology to that established

in Section II. We specifically analyze the noiseless case, where T and T ′ are related by an

isometry. Consider the domain and codomain graphs Gd and Gc defined in Section II. Define

Gkt
d = (Vd, Ektd) as a graph with the same nodes as Gd but with edge connectivity given by a

k-tree whose base k-cliques are in general position in Rk−1. Let Gkt
c = (Vktc , Ektc) be the subgraph

of Gc whose nodes are those to which the nodes Vd map under an optimal map f . We define as

Ḡkt
d = (Vd, Ēktd) the complement graph of Gkt

d , while Ḡkt
c = (Vktc , Ēktc) is the complement graph

of Gkt
c .

Now, if we choose the edge set of the model (the set of pairwise cliques C2) to be a k-tree,

the “approximated” optimization problem over this k-tree graph Gkt
d can be defined as one of

minimizing the following “partial” cost function over f (as opposed to the “total” cost UT from

Eq. (1)):

UGkt
d

(f) =
∑

i,j|dij∈Ekt
d

D(ydij, y
c
f(i)f(j)), (8)

where dij is the edge between vertices di and dj in Gd and Ektd is the edge set of graph Gkt
d .

We can now state our main result.

Theorem 1: In the exact matching case, a mapping function f which minimizes UGkt
d

(f) also

minimizes UT (f).

Proof: See Appendix A.

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 17

Note now that the model shown in Figure 3 has the topology of a k-tree (a 3-tree). As a result,

the solution obtained by the Junction Tree algorithm over this model will not only minimize the

cost function UGkt
d

(f), but also the cost function of a complete model, UT (f) (Eq. (1)). This is

our main theoretical result.

Actually, other models can be used, as long as they have the topology of a k-tree. The specific

choice of 3-tree for Figure 3 was made simply because it has a single base 3-clique and, therefore,

only requires these 3 points to be non-collinear (the points corresponding to random variables

X1, X2 and X3).

In the case of exact matching, as long as these points are not collinear, any choice can be

made and Theorem 1 will still hold. However, when there is position jitter, different choices can

give different results, and the variance of the results over different selections of the reference

points will increase with jitter (experimental evidence of this fact will be provided). A principled

way of selecting the reference points in this case is still an open problem which we are currently

investigating, and for the purposes of the experiments presented in this paper the selection of

the reference points is made randomly.

VI. INFERENCE

Given the k-tree model, we must solve the MAP problem, i.e. determine the most likely joint

realization of the random variables in the model. This is done with the Junction Tree algorithm.

In this section we describe how the Junction Tree algorithm is applied to our particular case (for

details of the general case, see [59] and [57], [58]). For simplicity of exposition, we describe

inference in a 3-tree (matching in R2), but the procedure is analogous for arbitrary k.

The Junction Tree for the model shown in Figure 3 is given in Figure 5.

The tree in this case is actually just a chain. The maximal cliques in the Junction Tree are

denoted by circles, called “clique nodes”, whereas the set of variables common to adjacent clique

nodes are represented by rectangles, called “separator nodes”. The Junction Tree algorithm is a

dynamic programming procedure that systematically changes the potentials in the clique nodes

and separator nodes in a two-way “message-passing” scheme, similar to the Viterbi algorithm

for MAP computation in Hidden Markov Chain models [65].

Just like the Viterbi algorithm, which after the forward and backward operations delivers the

individual MAP distributions (also called “max-marginals” [58]) for each node, the Junction Tree

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 18

X3X1 X2X 3X1 X2

X TX3X1 X2XXX1 X2 T−13X 4X 3X1 X2 X 5X 3X1 X2

1 2 3 T−4 T−3 T−2

2(T−2)−(T−5) 2(T−2)−(T−4) 2(T−2)−(T−3)2(T−2)−22(T−2)−12(T−2)

Fig. 5. The Junction Tree for the model in Figure 3. Circles (“clique nodes”) correspond to the maximal cliques of the original

graph, whereas rectangles (“separator nodes”) correspond to the intersection between adjacent clique nodes. Non-filled arrows

correspond to the first message-passing, whereas filled arrows correspond to the second. The value adjacent to an arrow denotes

the order in which the corresponding message is passed. Dashed arrows correspond to Eq. (9), whereas solid arrows correspond

to Eq. (10).

algorithm delivers the MAP distribution for each clique node (up to a normalization constant

Z—see Appendix B for details). The final MAP distribution for each individual node Xi can

then be computed by “maximizing out” the remaining individual nodes within the clique node

[57], [59]. For example, the final MAP distribution for node X1 in Figure 5 can be computed

by p(x1) = maxx2 maxx3 maxx4 p(x1, x2, x3, x4). This operation is clearly exponential on the

number of variables in the clique node, and that is one of the reasons why the Junction Tree

algorithm is only efficient for graphs with small maximal clique size.

The message-passing scheme works as follows. First we initialize the potential functions for

one of the clique nodes by combining the pairwise potential functions from in Section IV:

Ψ(x1, x2, x3, x4) = ψ(x1, x2)ψ(x1, x3)ψ(x1, x4)ψ(x2, x3)ψ(x2, x4)ψ(x3, x4). For the other clique

nodes, the terms ψ(x1, x2), ψ(x1, x3) and ψ(x2, x3) are not included, since they have already

been, and the general form, for i > 4, is Ψ(x1, x2, x3, xi) = ψ(x1, xi)ψ(x2, xi)ψ(x3, xi). The

separator nodes are all then initialized to 1 [59]. After that we perform message-passing: starting

with a clique node V that is a leaf of the chain, we compute

Φ∗
S = max

V \S
ΨV (9)

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 19

Ψ∗
W =

Φ∗
S

ΦS

ΨW , (10)

where W is the clique node to which V is “sending a message”. This “message” actually consists

of two updates: (i) substituting the potential in the separator S by computing the MAP of clique

node V with respect to the nodes that are common with the separator; and (ii) re-weighting the

potential in clique node W by the ratio between the new and the previous separator potentials.

This local operation is then propagated until the other leaf is reached, after which it is repeated

in the reverse direction. Once the message-passing is completed, the joint distribution has been

preserved, and the marginalization property, Eq. (9), has now been established between every

clique node and its separators. This ensures that we have obtained the desired MAP distribution

at each clique node [59], as mentioned above.

To compute the messages, note that each potential Ψ is a 4D table, with S bins per dimension;

see Figure 5.

Thus, the maximization operation in Eq. (9) runs over the dimension of the 4D table, ΨV ,

that is not common to the 3D table, ΦS . Similarly, the division and multiplication operations of

Eq. (10) are performed entry-wise in the tables.

Figure 5 shows details of how the overall dynamic programming procedure works. As men-

tioned above, after the two-way message-passing is finished, local maximization yields the final

MAP distributions of the singleton nodes Xi, from which the mode indicates the point in the

codomain pattern that matches the point in the domain corresponding to Xi.

The complexity of computing each of the messages (Eq. (9) and Eq. (10)) is O(S4), since the

largest tables (Ψ’s) are 4-dimensional with S bins per dimension. There are in total 2(T − 2)

messages, so that the overall computational complexity for this model is O(TS4), which is

polynomial in the size of the domain pattern (T) and in the size of the codomain pattern (S).

Note that there is no iterative procedure involved, and no concept of “initialization” is present.

The algorithm runs in precisely 2(T − 2) steps and will always deliver the same result for the

same input. This is because the algorithm is strictly deterministic, based solely on the dynamic

programming principle [54], [57], [59]. Since the dynamic programming finds the global optimum

for the given model and the model itself is optimal in the noiseless case, we have an algorithm

for point pattern matching that has polynomial complexity and is provably optimal in the limit

case of exact matching. Aiming at clarifying in detail the full inference procedure, we present in

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 20

Appendix B a fully worked out example of the Junction Tree algorithm for a simple Graphical

Model. Algorithm 1 shows a pseudocode for our algorithm in the general case of matching in

Rk−1.

VII. EXPERIMENTS AND RESULTS

One obvious shortcoming of this theory is that it only addresses the exact matching case. For

inexact matching, the theoretical guarantee that the minimum of Eq. (8) equals the minimum

of Eq. (1) no longer holds. However, there remains value to the framework: in the noisy case,

one can still run the Junction Tree algorithm with the compatibility measure of Eq. (7) to

cope with approximate matches, requiring the same polynomial time. The only question is: how

significantly does the quality of the approximate match degrade?

To evaluate this question, we conducted a number of experiments to compare our method

(denoted simply as JT) to standard techniques in the literature, including probabilistic relaxation

labeling (PRL), as described in [28], the spectral method (SB) presented in [37], and Graduated

Assignment (GA) [49]. Note that these methods encode all pairwise distances in their objectives,

whereas our method only encodes those distances that correspond to the k-tree topology. On the

other hand, our approach uses an optimal non-iterative algorithm, whereas the others are based

on approximate heuristic algorithms. None of the standard approaches—PRL, SB or GA—have

any optimality guarantees, even in the noiseless case. The experiments involve matching tasks

in R2, so we use the 3-tree model of Figure 3.

A. Synthetic data

To compare techniques across a range of problem conditions, we generated random points

according to a bivariate uniform distribution in the interval x = [0, 1], y = [0, 1]. We conducted

two sets of synthetic experiments: (i) point sets S and T of equal sizes comparing JT, GA,

PRL and SB, (ii) point sets S and T of different sizes comparing JT, GA and PRL (SB is not

suited for different graph sizes). In order to compute the similarity measure between pairwise

assignments, we use the same Gaussian kernel with σ = 0.4 for all methods (see Section (IV)).

This is the only parameter involved in our method, but is also necessary in the other ones. The

problem of selecting σ is far from trivial [5], and in this paper we do not aim at optimizing over

this parameter. See [62] for tentative experiments in this sense. We basically choose a value that

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 21

Algorithm 1: Point Pattern Matching in Rk−1

Data: Domain point set T , Codomain point set S, σ

Result: Assignment vector v

begin
Select, from T , k points in general position

Construct a k-tree with these k points constituting the unique base k-clique

for every edge of the k-tree do
compute compatibility matrix (Eq. 5) w.r.t. S using Eq. 7 with provided σ;

Select an arbitrary maximal clique of the k-tree

for every one of its edges do
replicate its compatibility matrix across the k-1 remaining dimensions (thus

obtaining a (k+1)-D compatibility array)
Assemble the (k+1)-D potential of the maximal clique by entry-wise multiplication of

the (k+1)-D compatibility arrays

for every other maximal clique do

for every edge not belonging to the base k-clique do
replicate its compatibility matrix across the k-1 remaining dimensions (thus

obtaining a (k+1)-D compatibility array)
Assemble the (k+1)-D potential of the maximal clique by entry-wise multiplication

of the (k+1)-D compatibility arrays
Construct a Junction Tree from the maximal cliques (see Figure 5 for k = 3 example)

Initialize the potentials of the maximal cliques as the assembled (k+1)-D potentials

Initialize the potentials of the separators to 1

Perform propagation (Eqs. 9 and 10 from one end to the other and then back)

for every maximal clique of the Junction Tree do
Compute the max-marginal distribution of the single variable not present in the

separators, by maximizing over the other k variables

for an arbitrary separator do

for every variable do
Compute its max-marginal distribution by maximizing over the other k-1

variables

for every (ith) max-marginal distribution do
Compute the argument that maximizes it, and store it in v(i)

end

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 22

we know will not underflow the kernel computation in the case of extremal differences between

the argument and the mean of the Gaussian function. For the construction of the 3-tree, the

3 reference points were selected randomly. Also, since all algorithms use exclusively distance

features (which are isometry-invariant and as a result do not depend on rotations, translations or

reflexions in the patterns), it is not necessary to evaluate performance across several isometries

since, by construction, the results will be the same up to numerical errors. Here we simply

generated random isometries for every trial.

In the first experiment, we used patterns of size (10,10), (20,20), (30,30) and (40,40) points.

For each of these 4 instances, we perturbed the codomain pattern with progressive levels of noise:

from small levels (std = 0 to 1), to moderate levels (std = 2), to high levels (std = 4). The quantity

‘std’ is 256 times the real standard deviation used (i.i.d. Gaussian noise). Typical instances of

patterns perturbed with jitter of std = 1 and std = 4 are shown in Figure 6. Figure 7 shows the

obtained curves under these experimental conditions. Each point in a graph corresponds to the

average over 300 trials.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

Jitter = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

Jitter = 4

Fig. 6. Instances of patterns when different levels of jitter are introduced. Circles correspond to the jittered pattern whereas

“plus” corresponds to the original pattern (the patterns were superimposed for the purpose of visual comparison; in practice, as

should be clear from the text, they may be translated/rotated/reflected with respect to each other and may also have different

cardinalities).

The graphs show that JT, GA and PRL are much more robust under jitter than SB, confirming

the known fact that spectral methods are very sensitive to structural corruption (which is one of

the reasons why significant research effort has been recently dedicated to alleviating this problem

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 23

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Results over 300 trials, 10 node graphs

std: position jitter

Fr
ac

tio
n

of
 c

or
re

ct
 c

or
re

sp
on

de
nc

es

JT
GA
PRL
SB

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Results over 300 trials, 20 node graphs

std: position jitter

Fr
ac

tio
n

of
 c

or
re

ct
 c

or
re

sp
on

de
nc

es

JT
GA
PRL
SB

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Results over 300 trials, 30 node graphs

std: position jitter

Fr
ac

tio
n

of
 c

or
re

ct
 c

or
re

sp
on

de
nc

es

JT
GA
PRL
SB

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Results over 300 trials, 40 node graphs

std: position jitter

Fr
ac

tio
n

of
 c

or
re

ct
 c

or
re

sp
on

de
nc

es

JT
GA
PRL
SB

Fig. 7. Comparison of JT, GA, PRL and SB in matching equal-sized point sets under varying jitter. Results shown for 10, 20,

30 and 40 node graphs. Error bars correspond to standard errors.

with spectral techniques [4], [5], [40], [53]). The graphs also show that, when the pattern sizes

are increased, GA and PRL are still very robust across the whole range (the curves are almost

horizontal), whereas JT is more sensitive to high jitter. However, it is clear that JT is competitive

for small to moderate jitter (std = 0-2). The curves for GA and PRL essentially just undergo a

change in offset for different pattern sizes, which reveals decreasing performance in the low jitter

region. PRL is particularly more sensitive than GA for large matching problems, as reported in

[13].

In the second experiment we held the size of the domain pattern T constant (10 nodes) and

varied the size of the codomain pattern S (from 10 to 35 nodes in steps of 5), for various jitter

levels (std = 1,2,3,4). In this experiment, we compared JT, GA and PRL only, since SB is not

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 24

suited for graphs with different sizes. Figure 8 shows the results of this experiment. Each point in

a graph corresponds to the average over 300 trials. Clearly the accuracy of JT does not degrade

significantly for larger codomain patterns, even under high jitter, whereas the performances of

GA and PRL begin to fail dramatically.

10 15 20 25 30 35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of the codomain pattern (S)

Fr
ac

tio
n

of
 c

or
re

ct
 c

or
re

sp
on

de
nc

es

std = 1, T = 10, varying S

JT
GA
PRL

10 15 20 25 30 35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of the codomain pattern

Fr
ac

tio
n

of
 c

or
re

ct
 c

or
re

sp
on

de
nc

es

std = 2, T = 10, varying S

JT
GA
PRL

10 15 20 25 30 35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
std = 3, T = 10, varying S

Size of the codomain pattern (S)

Fr
ac

tio
n

of
 c

or
re

ct
 c

or
re

sp
on

de
nc

es

JT
GA
PRL

10 15 20 25 30 35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of the codomain pattern (S)

Fr
ac

tio
n

of
 c

or
re

ct
 c

or
re

sp
on

de
nc

es

std = 4, T = 10, varying S

JT
GA
PRL

Fig. 8. Comparison of JT, GA and PRL for matching under varying relative sizes. Results for various levels of jitter (std = 1,

2, 3 and 4). Error bars denote standard errors.

Overall, it is possible to summarize the results as follows. JT always outperforms SB and

PRL in all the operating regions described in the experiments. When comparing JT to GA, the

only case where GA outperforms JT is for patterns of equal sizes and moderate to high jitter.

In all other cases—when (i) the patterns have equal sizes and noise is small, or (ii) the patterns

have different size, regardless of jitter—JT outperforms GA. Note in particular the outstanding

performance of JT for patterns of different size (Figure 8): in this case, the advantage over all

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 25

the competing techniques, including GA, is dramatic.

B. Image data

We also conducted experiments on image data to evaluate the techniques on a realistic

Computer Vision problem. In the real-world experiments, we used the CMU house sequence

available at http://vasc.ri.cmu.edu/idb/html/motion/house/index.html. This database consists of

111 frames of a moving sequence of a toy house.

We matched all images spaced by 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 frames and

computed the average correct correspondence. Since there are 111 frames, note that the number

of image pairs spaced by these amount of frames are, respectively, 101, 91, ... , 11.

Figure 9 shows typical images separated by these quantities of frames.

Fig. 9. Images from the CMU house sequence (top row: frames 1, 11, ... , 41; bottom row: frames 51, 61, ... , 91.)

Since all the images have size 384 × 576 (contrary to the synthetic experiments, where the

point sets lied on x, y = [0, 1]), we need to use, accordingly, a large value for σ (see Eq. 7) that

does not underflow the kernel computation for very large deviations in the pairwise assignments.

Here we used σ = 150. Also, as in the synthetic experiments, the 3 reference points for the

3-tree were selected randomly.

In total, 30 landmark points were manually marked in each of the images. We then conducted

four different experiments. We matched 15 against 30, 20 against 30, 25 against 30 and finally

30 against 30 points for every image pair in the experimental setting defined above. This allows

us to evaluate how the techniques perform in a real problem with different point set sizes. For

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 26

the 30×30 case, we run all 4 techniques (JT, GA, PRL and SB), whereas for the remaining cases

SB was not used since it is not suitable for patterns of different sizes, as already mentioned.

10 20 30 40 50 60 70 80 90 100
0

5

10

15

Separation between frames

A
ve

ra
ge

 c
or

re
ct

 c
or

re
sp

on
de

nc
e

Matching 15 X 30 points in ’house’ database

JT
GA
PRL

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20
Matching 20 X 30 points in ’house’ database

Separation between frames

A
ve

ra
ge

 c
or

re
ct

 c
or

re
sp

on
de

nc
e

JT
GA
PRL

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Separation between frames

A
ve

ra
ge

 c
or

re
ct

 c
or

re
sp

on
de

nc
e

Matching 25 X 30 points in ’house’ database

JT
GA
PRL

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30
Matching 30 X 30 points in ’house’ database

Separation between frames

A
ve

ra
ge

 c
or

re
ct

 c
or

re
sp

on
de

nc
e

JT
GA
PRL
SB

Fig. 10. Performances of JT, GA, PRL and SB in the CMU houses sequence for increasing baselines (10 to 100 frame

separation) and different domain/codomain sizes (15/30, 20/30, 25/30, 30/30). Error bars correspond to standard errors.

Figure 10 shows the results for these experiments. The average value is taken over different

spacings between image pairs in the frame sequence.

Here we observe that, as the relative sizes of the patterns become progressively different,

the advantage of JT over the other techniques increases, which agrees with the results from the

synthetic experiments. For the reported values of different pattern sizes, JT performs significantly

better than the competing methods, even for a wide baseline. Although the isometric assumption

clearly does not hold for a wide baseline, we note that the same pairwise distances were used

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 27

as features in every algorithm, so we expect this to be a fair comparison.8 For the experiment

with patterns of the same size (30 × 30), JT has similar performance to GA and PRL when

the baseline is increased. For the narrow baseline case, JT slightly outperforms the competing

methods.

Our results in the real-world experiments lead us to conclude that, in the particular real-world

problem of stereo correspondence, JT finds its best applicability in the narrow baseline case for

patterns of different sizes where the isometric assumption holds (apart from jitter of course).

This finding agrees with the results on synthetic data.

Given the positive results on both synthetic and real-world experiments where there is a

narrow baseline, we expect that in other applications, like those involving matching of star

constellations, flexible ligands and protein motifs (where the isometric assumption also holds

with good approximation) the proposed technique should perform similarly well.

C. Empirical performance evaluation for varying k-trees

We mentioned previously that there is a theoretical problem that remains unsolved in this

framework: how to select the k-tree when there is position jitter. When there is no jitter, any

k-tree will find the same—optimal—solution. However, when jitter is present, different k-trees

could result in different degrees of accuracy. Here we provide empirical evidence of this fact by

measuring the variance of the performance of a matching task over a range of possible choices

of k-trees.

We used the same setting of the previous synthetic experiments: random point patterns in

[0, 1]2. We randomly generated 100 domain-codomain pairs in this range, each with 20 points.

For each of these 100 configurations, we randomly selected 100 3-trees for the domain pattern.

Finally, the JT algorithm was run in each of these 100 3-trees, and the standard error for

the fraction of correct correspondences recorded. This allows us to measure the performance

variability within the same pair domain-codomain over a wide selection of 3-trees. Ir order to

compute the aggregate over the 100 configurations, we simply averaged the standard errors.

This whole procedure was performed for jitter levels of std = 0, 1, 2, 3 and 4. The final average

8It should be clear that in real problems, any of these approaches, since they rely exclusively on distance features, will only

be competitive in the narrow baseline case.

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 28

10 20 30 40
0

10

20

30

40

50

60

70

80

90

Graph size T (S=T)

Ti
m

e
(s

ec
on

ds
)

Processing times

JT
GA
PRL
SB

Fig. 11. Processing times for JT, GA, PRL and SB all in MATLAB implementations running on a Pentium 4, 3.2 GHz and

1GB of RAM.

standard errors were, respectively, 0, 0.001, 0.003, 0.007 and 0.011 (measured in fraction of

correct correspondences, which vary from 0 to 1). This indicates, as expected, that the influence

on the choice of k-tree becomes more significant as jitter increases (in particular, it is zero when

there is no jitter, confirming the theoretical results).

D. Processing Times

The computational complexity of the proposed method is higher than in the other approaches.

Spectral, graduated assignment and relaxation methods are, respectively, O(T 3) (S=T), O(T 2S2)

and O(T 2S3), while the proposed Junction Tree approach is O(TS4) (for matching in R2).

However, the graphs showing real processing times (see Figure 11) indicate that even for a

reasonable size, like 40, the actual running time is just twice that of PRL and 4 times that of

GA. For graphs with about 30 nodes, the technique is about as fast as relaxation labeling.

VIII. DISCUSSION AND FUTURE WORK

A matching algorithm should, ideally, present high robustness with respect to jitter as well as

with respect to size increases of the patterns. Our experiments revealed essentially two findings.

First, for matching patterns of the same size, the proposed method is very robust to small and

moderate position jitter and reasonably robust to high position jitter. Second, and more important,

the method is extremely robust to increasing differences in the pattern sizes. In experiments where

the sizes of the two patterns are significantly different, the performance of JT is by far superior to

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 29

that of the alternative methods. This is an important result, because in many relevant application

domains the problem of finding a “small” model within a “large” scene is of primary concern.

(A typical such scenario that arises in Computer Vision is model-based object recognition in

cluttered scenes.) We believe that the approach presented in this paper indicates a new direction

in the search for robust algorithms for subgraph matching, where the sizes of the graphs can

differ significantly.

There are several ways in which the current work can be extended. First, by considering higher-

order potentials one might be able to cope with more complex invariances, such as invariance

under affine transformations. Second, non-rigid matching might be attainable by augmenting

the clique potentials with terms that allow for some kind of nonlinear transformation. Third,

theoretical results on the accuracy of the method for the noisy case can be investigated. Fourth,

the framework should be extended to deal robustly with outliers. Also, a deeper understanding

of the noisy case might lead to a principled technique for the k-tree selection problem.

IX. CONCLUSION

This paper proposed a new solution to the rigid point pattern matching problem where jitter

is allowed. The approach consisted of modelling the point matching task as a weighted graph

matching problem and solving it using exact probabilistic inference in an appropriately designed

Graphical Model. By using graph rigidity arguments, we showed that this Graphical Model,

while allowing for exact MAP computation in polynomial time, still remains equivalent to the

fully connected model in the noiseless limit. Contrary to many alternative heuristic approaches,

the method we obtain is built from first principles, is non-iterative, obtains results independent

of initialization, and provably finds a global optimum in polynomial time in the exact matching

case. For inexact matching, our experiments indicate that the proposed technique is more accurate

than standard methods when matching patterns of different sizes.

ACKNOWLEDGEMENTS

National ICT Australia is funded by the Australian Government’s Backing Australia’s Ability initiative, in part

through the Australian Research Council. This work was initiated when the first three authors were with the

Department of Computing Science, University of Alberta. We would like to thank NSERC, CFI and the Alberta

Ingenuity Centre for Machine Learning for their support. The first author thanks CAPES for financial support. Also,

we kindly thank X. Chen for a discussion that led to the idea behind the proof of Lemma 1.

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 30

REFERENCES

[1] T. S. Caetano, T. Caelli, and D. A. C. Barone, “An optimal probabilistic graphical model for point set matching,” in

International Workshops SSPR & SPR, Lisbon, 2004, pp. 162–170.

[2] T. S. Caetano, “Graphical models and point set matching,” Ph.D. dissertation, Universidade Federal do Rio Grande do Sul

(UFRGS), 2004.

[3] R. Myers, R. C. Wilson, and E. R. Hancock, “Bayesian graph edit distance,” IEEE Trans. on PAMI, vol. 22, no. 6, pp.

628–635, 1999.

[4] M. Carcassoni and E. R. Hancock, “Spectral correspondence for point pattern matching,” Pattern Recognition, vol. 36, pp.

193–204, 2003.

[5] H. Wang and E. R. Hancock, “A kernel view of spectral point pattern matching,” in International Workshops SSPR &

SPR, 2004, pp. 361–369.

[6] M. T. Goodrich and J. S. B. Mitchell, “Approximate geometric pattern matching under rigid motions,” IEEE Trans. on

PAMI, vol. 21, no. 4, pp. 371–379, 1999.

[7] F. Murtagh, “A new approach to point-pattern matching,” Astronomical Society of the Pacific, vol. 104, no. 674, pp.

301–307, 1992.

[8] G. Weber, L. Knipping, and H. Alt, “An application of point pattern matching in astronautics,” Journal of Symbolic

Computation, no. 11, pp. 1–20, 1994.

[9] Y. Martin, M. Bures, E. Danaher, J. DeLazzer, and I. Lico, “A fast new approach to pharmacophore mapping and its

application to dopaminergic and bezodiazepine agonists,” J. of Computer-Aided Molecular Design, vol. 7, pp. 83–102,

1993.

[10] P. W. Finn, L. E. Kavraki, J.-C. Latombe, R. Motwani, C. Shelton, S. Venkatasubramanian, and A. Yao, “Rapid: Randomized

pharmacophore identification for drug design,” Computational Geometry, vol. 10, pp. 263–272, 1998.

[11] T. Akutsu, K. Kanaya, A. Ohyama, and A. Fujiyama, “Point matching under non-uniform distortions,” Discrete Applied

Mathematics. Special Issue: Computational biology series issue IV, pp. 5–21, 2003.

[12] R. Nussinov and H. J. Wolfson, “Efficient detection of three-dimensional structural motifs in biological macromolecules

by computer vision techniques,” Proc. Natl. Acad. Sci., vol. 88, pp. 10 495–10 499, 1991.

[13] S. Gold and A. Rangarajan, “A graduated assignment algorithm for graph matching,” IEEE Trans. PAMI, vol. 18, no. 4,

pp. 377–388, 1996.

[14] T. S. Caetano, T. Caelli, and D. A. C. Barone, “Graphical models for graph matching,” in IEEE International Conference

on Computer Vision and Pattern Recognition, Washington, DC, 2004, pp. 466–473.

[15] Y. Keselman, A. Shokoufandeh, M. F. Demirci, and S. Dickinson, “Many-to-many graph matching via metric embedding,”

in International Conference on Computer Vision and Pattern Recognition, vol. 1, 2003, pp. 18–20.

[16] M. Demirci, A. Shokoufandeh, S. Dickinson, Y. Keselman, and L. Bretzner, “Many-to-many feature matching using

spherical coding of directed graphs,” in European Conference on Computer Vision, 2004, pp. 322–335.

[17] J. Ullman, “An algorithm for subgraph isomorphism,” Journal of the ACM, vol. 23, no. 1, pp. 31–42, 1976.

[18] B. T. Messmer and H. Bunke, “A new algorithm for error-tolerant subgraph isomorphism detection,” IEEE Trans. PAMI,

vol. 20, no. 5, pp. 493–503, 1998.

[19] S. Berreti, A. D. Bimbo, and E. Vicario, “Efficient matching and indexing of graph models in content-based retrieval,”

IEEE Trans. PAMI, vol. 23, no. 10, pp. 1089–1105, 2001.

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 31

[20] K. S. Fu, “A step towards unification of syntatic and statistical pattern recognition,” IEEE Trans. PAMI, vol. 5, no. 2, pp.

200–205, 1983.

[21] M. Eshera and K. Fu, “A graph distance measure for image analysis,” IEEE Transactions on Systems Man and Cybernetics,

vol. 14, no. 3, pp. 353–363, 1984.

[22] W. H. Tsai and K. S. Fu, “Subgraph error-correcting isomorphisms for syntactic pattern recognition,” IEEE Trans. on

Systems, Man and Cybernetics, vol. 13, no. 1, pp. 48–62, 1983.

[23] K. L. Boyer and A. C. Kak, “Structural stereopsis for 3-d vision,” IEEE Trans. on PAMI, vol. 10, no. 2, pp. 144–166,

1988.

[24] B. Bhanu and O. D. Faugeras, “Shape matching of two-dimensional objects,” IEEE Trans. PAMI, vol. 6, no. 2, pp. 137–156,

1984.

[25] L. S. Davis, “Shape matching using relaxation techniques,” IEEE Trans. PAMI, vol. 1, no. 1, pp. 60–72, 1979.

[26] O. D. Faugeras and M. Berthod, “Improving consistency and reducing ambiguity in stochastic labeling: an optimization

approach,” IEEE Trans. PAMI, vol. 3, pp. 412–423, 1981.

[27] S. Ulmann, “Relaxation and constraint optimization by local process,” Computer Graphics and Image Processing, vol. 10,

pp. 115–195, 1979.

[28] A. Rosenfeld and A. C. Kak, Digital Picture Processing. New York, NY: Academic Press, 1982.

[29] W. J. Christmas, J. Kittler, and M. Petrou, “Structural matching in computer vision using probabilistic relaxation,” IEEE

Trans. PAMI, vol. 17, no. 8, pp. 749–764, 1994.

[30] S. Z. Li, “A markov random field model for object matching under contextual constraints,” in International Conference

on Computer Vision and Pattern Recognition, 1994, pp. 866–869.

[31] R. A. Hummel and S. W. Zucker, “On the foundations of relaxations labeling process,” IEEE Trans. on PAMI, vol. 5,

no. 3, pp. 267–286, 1983.

[32] A. Rosenfeld, R. Hummel, and S. Zucker, “Scene labeling by relaxation operations,” IEEE Trans. on Systems, Man and

Cybernetics, vol. 6, pp. 420–433, 1976.

[33] R. C. Wilson and E. R. Hancock, “Structural matching by discrete relaxation,” IEEE Trans. PAMI, vol. 19, no. 6, pp.

634–648, 1997.

[34] E. Hancock and R. C. Wilson, “Graph-based methods for vision: A yorkist manifesto,” SSPR & SPR 2002, LNCS, vol.

2396, pp. 31–46, 2002.

[35] J. V. Kittler and E. R. Hancock, “Combining evidence in probabilistic relaxation,” Int. Journal of Pattern Recognition and

Artificial Intelligence, vol. 3, pp. 29–51, 1989.

[36] S. Umeyama, “An eigen decomposition approach to weighted graph matching problems,” IEEE Trans. PAMI, vol. 10, pp.

695–703, 1998.

[37] L. Shapiro and J. Brady, “Feature-based correspondence - an eigenvector approach,” Image and Vision Computing, vol. 10,

pp. 283–288, 1992.

[38] B. J. van Wyk and M. A. van Wyk, “Kronecker product graph matching,” Pattern Recognition, vol. 36, no. 9, pp. 2019–2030,

2003.

[39] M. A. van Wyk, T. S. Durrani, and B. J. van Wyk, “A rkhs interpolator-based graph matching algorithm,” IEEE:PAMI,

vol. 24, no. 7, pp. 988–995, 2002.

[40] A. Robles-Kelly and E. R. Hancock, “Graph edit distance from spectral seriation,” IEEE Trans. on PAMI, vol. 27, no. 3,

pp. 365–378, 2005.

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 32

[41] P. N. Suganthan, “Structural pattern recognition using genetic algorithms,” Pattern Recognition, vol. 35, pp. 1883–1893,

2002.

[42] M. Pelillo, “Replicator equations, maximal cliques, and graph isomorphism,” Neural Comput., vol. 11, pp. 1933–1955,

1999.

[43] M. Pelillo, K. Siddiqi, and S. Zucker, “Matching hierarchical structures using association graphs,” IEEE Trans. PAMI,

vol. 21, no. 11, pp. 1105–1120, 1999.

[44] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of graph matching in pattern recognition,” Special Edition

of the International Journal of Pattern Recognition and Artificial Intelligence on Graph Theory in Vision, vol. 18, no. 3,

pp. 265–298, 2004.

[45] T. Caelli and T. Caetano, “Graphical models for graph matching: approximate models and optimal algorithms,” Pattern

Recognition Letters, vol. 26, pp. 339–346, 2005.

[46] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge, UK: Cambridge Univesity Press,

2000.

[47] J. Mejı́a, T. Villela, and J. Braga, “The ccd stellar sensor of the masco telescope pointing system,” Advances in Space

Research, vol. 26, no. 9, pp. 1407–1410, 2000.

[48] P. J. de Rezende and D. T. Lee, “Point set pattern matching in d-dimensions,” Algorithmica, vol. 13, pp. 387–404, 1995.

[49] H. Chui and A. Rangarajan, “A new algorithm for non-rigid point matching,” in CVPR, vol. 2, 2000, 44–51.

[50] A. Rangarajan, A. Yuille, and E. Mjolsness, “Convergence properties of the softassign quadratic assignment algorithm,”

Neural Computation, vol. 11, pp. 1455–1474, 1999.

[51] R. Sinkhorn, “A relationship between arbitrary positive matrices and doubly stochastic matrices,” Ann. Math. Statis., vol. 35,

pp. 876–879, 1964.

[52] T. Caelli and S. Kosinov, “An eigenspace projection clustering method for inexact graph matching,” IEEE Trans. PAMI,

vol. 26, no. 4, pp. 515–519, 2004.

[53] A. Robles-Kelly and E. R. Hancock, “String edit distance, random walks and graph matching,” International Journal of

Pattern Recognition and Artificial Intelligence, vol. 18, no. 3, pp. 315–327, 2004.

[54] S. L. Lauritzen, Graphical Models. New York, NY: Oxford University Press, 1996.

[55] J. Dattorro, “Euclidean distance matrices,” Ph.D. dissertation, Stanford University, 2005.

[56] H.-X. Huang, Z.-A. Liang, and P. M. Pardalos, “Some properties of the Euclidean distance matrix and positive semidefinite

matrix completion problems,” Journal of Global Optimization, vol. 25, pp. 3–21, 2003.

[57] M. J. Wainwright, “Stochastic processes on graphs with cycles: Geometric and variational approaches,” Ph.D. dissertation,

Department of EECS, Massachusetts Institute of Technology, 2002.

[58] M. J. Wainwright and M. I. Jordan, “A variational principle for graphical models,” in New directions in statistical signal

processing, to appear in 2005.

[59] M. I. Jordan, An Introduction to Probabilistic Graphical Models, in preparation.

[60] ——, “Graphical models,” Statist. Sci., vol. 19, no. 1, pp. 140–155, 2004.

[61] S. Geman and D. Geman, “Stochastic relaxation, gibbs distribution and the bayesian restoration of images,” IEEE

Transactions on PAMI, vol. 6, no. 6, pp. 721–741, 1984.

[62] T. S. Caetano, T. Caelli, and D. A. C. Barone, “A comparison of junction tree and relaxation algorithms for point matching

using different distance metrics,” in IEEE International Conference on Pattern Recognition, vol. 2, Cambridge, UK, 2004,

pp. 124–127.

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 33

[63] R. Connelly, “Rigidity and energy,” Invent. Math., vol. 66, no. 1, pp. 11–33, 1982.

[64] D. B. West, Introduction to Graph Theory. Upper Saddle River, NJ: Prentice Hall, 2001.

[65] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech recognition,” Proceedings of the

IEEE, vol. 77, no. 2, pp. 257–286, 1989.

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 34

APPENDIX A

Proof of Lemma 1

We use induction over n. Recall that a sphere in a vector space is the set of points equidistant to a fixed point.

The Lemma obviously holds for the base case when n = 1.

Now let S1∩S2 = I1. Then I1 is a (n−2)-sphere lying in a (n−1) vector subspace Q. (We use the convention

of topology, which states that an (n− 2)-sphere is spanned necessarily by a complete basis in Rn−1. For example,

the 3D sphere in R3 is a 2-sphere, not a 3-sphere.) Let Ii = Si+1 ∩Q for i = 2, 3, . . . , n. Then I1, I2, . . . , In are n

spheres in Q ∼= Rn−1 (∼= denotes congruency) and, obviously, ∩n
j=1Ij = ∩n+1

i=1 Si. Given the above definitions, the

natural induction hypothesis that arises is: if the centers of the spheres I1, I2, . . . , In do not lie in a (n− 2) vector

subspace, then the intersection of these spheres consists of at most a single point. Since ∩n
j=1Ij = ∩n+1

i=1 Si, we

have from the hypothesis that ∩n+1
i=1 Si consists of at most a single point. So, what is left to prove is that the centers

of the spheres S1, S2, . . . , Sn+1 do not lie in a (n− 1) dimensional vector space (i.e. are in general position). Let

(x1, x2, . . . , xn) be the coordinates of Rn. Let (ai1, ai2, . . . , ain) be the center of Si. Without loss of generality,

we may assume that Q is given by x1 = 0. Then Q ∼= Rn−1 is parameterized by (x2, x3, . . . , xn). The center of

Ij−1 has coordinate (aj2, aj3, . . . , ajn), j ≥ 2. The centers of I1, I2, · · · , In are in general position if and only if

the matrix

a22 a23 . . . a2n 1

a32 a33 . . . a3n 1
...

. . .
...

...
...

an+1,2 an+1,3 . . . an+1,n 1

 (11)

is invertible, i.e. has maximal rank.

But this matrix is precisely the n× n lower-right submatrix of the following matrix

a11 a12 . . . a1n 1

a21 a22 . . . a2n 1
...

...
. . .

...
...

an+1,1 an+1,2 . . . an+1,n 1

 (12)

which is the analogous matrix for the centers of S1, S2, . . . , Sn+1. By subtracting the second row from the first

row of matrix (12), we obtain

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 35

a11 − a21 0 . . . 0 0

a21 a22 . . . a2n 1
...

...
. . .

...
...

an+1,1 an+1,2 . . . an+1,n 1

 (13)

Note that Q = {x1 = 0} implies that (a12, a13, . . . , a1n) = (a22, a23, . . . , a2n), which creates the zeros in the first

row. It is evident that matrix (13) is invertible if and only if a11 6= a21 and matrix (11) is invertible, which is the

induction hypothesis. This implies that the centers of Si do not lie in a (n − 1) vector subspace in Rn, which

completes the proof. �

Proof of Lemma 2

We use induction on the number of vertices n in the k-tree framework. For n = k the result is obvious because

the graph is simply a k-clique, which is fully connected and by definition is globally rigid. Now assume the lemma

is true for some n > k. First, choose a fixed (but arbitrary) coordinate system S. If the lemma holds for some

n > k, then all the points in the framework are determined in S. Now include a new vertex with given distances

from all the k vertices of any existent base k-clique in general position. By drawing edges corresponding to these

known distances, we generate a new framework with n+ 1 vertices. But since the inserted vertex has determined

distances from all vertices of a base k-clique which is in general position, its position is determined in S by

virtue of Lemma 1. If its position is determined in S, then the positions of all vertices in the new framework

are determined in S (because the previous framework was globally rigid by the induction hypothesis). If all the

positions are determined in S, all pairwise distances are determined (irrespectively of S). This guarantees that the

new framework is globally rigid in Rk−1, which completes the proof. �

Proof of Theorem 1

If we define a cost function over the complement graph of Gkt
d (Ḡkt

d) :

UḠkt
d

(f) =
∑

i,j|dij∈Ēkt
d

D(yd
ij , y

c
f(i)f(j)), (14)

we have

UT (f) = UGkt
d

(f) + UḠkt
d

(f). (15)

In the noiseless case, the dissimilarity function D(·, ·) associated to a particular match is described simply in

terms of an indicator function (Eq. (6)):

D(yd
ij , y

c
f(i)f(j)) = 1− 1(yd

ij = yc
f(i)f(j)). (16)

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 36

The optimal matching function f is such that UT (f) = 0. Obviously, from Eq. (15) it holds that UT (f) = 0 ⇒

UGkt
d

(f) = 0, since UGkt
d

(f) and UḠkt
d

(f) are non-negative because D(·, ·) is non-negative (Eqs. (8) and (14)). Our

purpose is to prove the converse, i.e. that UGkt
d

(f) = 0 ⇒ UT (f) = 0. According to Eq. (15), in order to do so, it

suffices to prove that UGkt
d

(f) = 0 ⇒ UḠkt
d

(f) = 0.

Here we use Lemma 2, which asserts that if the distances corresponding to the edges of a k-tree framework

whose base k-cliques are in general position are determined, then all the remaining distances between vertices not

connected by an edge are determined.

Let us write this result symbolically, for a k-tree in the domain graph, as

{yd
ij = constdij ,∀i, j|dij ∈ Ekt

d } ⇒ {yd
ij = constdij ,∀i, j|dij ∈ Ēkt

d } (17)

where constdij is a constant for fixed i and j.

Since UGkt
d

(f) = 0, every term of the sum in Eq. (8) must be zero, since they are non-negative:

D(yd
ij , y

c
f(i)f(j)) = 0,∀i, j|dij ∈ Ekt

d . (18)

However, from the definition of D(·, ·) for exact matching (Eq. (16)), this means that

yd
ij = yc

f(i)f(j),∀i, j|dij ∈ Ekt
d . (19)

Notice that the statement (Eq. (17)) holds for any k-tree whose base k-cliques are in general position, so it holds

for Gkt
c in particular. (Recall that Gkt

c has its base k-cliques in general position in Rk−1 because it is assumed

isometric to Gkt
d , which by assumption has its base k-cliques in general position and so is globally rigid.) Therefore

we conclude:

{yc
f(i)f(j) = constcf(i)f(j),∀i, j|df(i)f(j) ∈ Ekt

c } ⇒ {yc
f(i)f(j) = constcf(i)f(j),∀i, j|cf(i)f(j) ∈ Ēkt

c } (20)

Notice that Eq. (19) implies that the left hand sides of implications (17) and (20) are equivalent. As a result,

their right hand sides are equivalent and we obtain:

yd
ij = yc

f(i)f(j),∀i, j|dij ∈ Ēkt
d . (21)

Substituting this into Eq. (14), yields

UḠkt
d

(f) = 0, (22)

which was what we wanted to prove. �

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 37

V

II

III

I

IV

6

1

2

3

4

5

V

II

III

I

IV

I III IVI II III IV I III IV V

Fig. 12. A simple example of point pattern matching. From left to right: The domain pattern, the codomain pattern, a possible

3-tree in the domain pattern and the resulting Junction Tree.

APPENDIX B

Figure 12 shows a very simple instance of a point pattern matching problem, a corresponding 3-tree selection

and the associated Junction Tree. In this appendix we are going to present a detailed description of the proposed

algorithm when applied to this specific instance, for didactic purposes. This is one of the simplest types of examples

that we can show, since five points in the domain is the minimal amount required to motivate the use of our algorithm

(in the 4 points case a 3-tree is the fully connected graph and the algorithm reduces to a brute-force approach). The

correct correspondence in this case is {I 7→ 3, II 7→ 1, III 7→ 2, IV 7→ 5, V 7→ 6}. The node ‘4’ in the codomain

is the only difference between the two patterns, and no point in the domain should map to it.

The first step of the algorithm consists in selecting a 3-tree for the domain graph. This is done randomly, provided

that nodes II, III and V do not constitute the base 3-clique (since they are collinear). A possible 3-tree is shown

in Figure 12, third from left. The second step of the algorithm consists in constructing the Junction Tree and the

potential functions for the graphical model induced by the 3-tree. The Junction Tree is shown in Figure 12, right.

A potential function will associate a non-negative real number to each possible instantiation of the four variables in

a maximal clique (i.e. a “score” for the corresponding 4-wise map). This potential function is build from pairwise

potential functions by combining their scores. For example, the pairwise potential function ψI,II would have the

following form (we use σ = 1/
√

2 in Eq. 7 for simplicity, and the unit length is the side of an elementary square

in the grids of Figure 12):

ψI,II = exp

266666666664
−

0BBBBBBBBBB@

(
√

10− 0)2 (
√

10−
√

2)2 (
√

10−
√

10)2 (
√

10− 3)2 (
√

10−
√

10)2 (
√

10− 2
√

2)2

(
√

10−
√

2)2 (
√

10− 0)2 (
√

10− 2
√

2)2 (
√

10−
√

5)2 (
√

10− 2)2 (
√

10−
√

2)2

(
√

10−
√

10)2 (
√

10− 2
√

2)2 (
√

10− 0)2 (
√

10− 1)2 (
√

10− 2
√

5)2 (
√

10−
√

10)2

(
√

10− 3)2 (
√

10−
√

5)2 (
√

10− 1)2 (
√

10− 0)2 (
√

10−
√

13)2 (
√

10−
√

5)2

(
√

10−
√

10)2 (
√

10− 2)2 (
√

10− 2
√

5)2 (
√

10−
√

13)2 (
√

10− 0)2 (
√

10−
√

2)2

(
√

10− 2
√

2)2 (
√

10−
√

2)2 (
√

10−
√

10)2 (
√

10−
√

5)2 (
√

10−
√

2)2 (
√

10− 0)2

1CCCCCCCCCCA

377777777775
(23)

where exp(M) is the exponential of the elements of M (not the matrix exponential). For example, entry (5, 6)

in ψI,II is the “likelihood” of the pairwise map {I 7→ 5, II 7→ 6}. This entry must be smaller than, say,

entry (1, 5), because the distances dI,II and d5,6 are more different (
√

10 and
√

2, respectively) than the dis-

tances dI,II and d1,5 (
√

10 and
√

10). In summary, ψI,II has higher values in those entries whose correspon-

dent points are separated by a distance which is more similar to the distance between I and II (i.e.
√

10).

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 38

This reflects the idea that in rigid point pattern matching pairwise maps should preserve the distance between

points. The same type of table is constructed for all the other pairs in the domain which correspond to an

edge of the 3-tree, not only for the pair I-II. (Here we can observe that, even for the trivial example shown,

the amount of numeric values involved is still very large, what prevents us from displaying all the numeric

details of the computations that follow.) Once all the required pairwise tables have been constructed, one must

assemble the potentials of the maximal cliques, which are those to be used in the propagation phase. These

are given by ψI,II,III,IV (i, j, k, l) = ψI,II(i, j)ψI,III(i, k)ψI,IV (i, l)ψII,III(j, k)ψII,IV (j, l)ψIII,IV (k, l) and

ΨI,III,IV,V (i, j, k, l) = ψI,V (i, l)ψIII,V (j, l)ψIV,V (k, l) (the choice of which 4-wise potential should the common

pairwise potentials be assigned to is arbitrary). This operation can be understood in a vectorized form as simply

replicating the 2-D tables (like those in Eq. 23) across the 2 lacking dimensions and then performing an entry-wise

multiplication of all the resulting 4-D tables. Once the potentials for the maximal cliques are initialized, we initialize

the potential for the separator as simply being ΦI,III,IV (i, j, k) = 1, for all i, j, k.

The next step in the algorithm is the propagation phase. Notice that, at this point, one has three tables:

ΨI,II,III,IV , ΨI,III,IV,V and ΦI,III,IV . Each Ψ indicates an initial “guess” of the likelihood of every one of the 64

possible instantiations that its 4 variables may assume. However, at this stage, the two Ψ’s may be inconsistent. And

that is why the propagation phase must be run, which will change these potentials so that they become consistent.

The entire propagation algorithm for this simple example reduces to merely applying Eqs. 9 and 10 twice. For

example, we may first update ΨI,III,IV,V by doing

Φ∗
I,III,IV = max

II
ΨI,II,III,IV (24)

Ψ∗
I,III,IV,V =

Φ∗
I,III,IV

ΦI,III,IV
ΨI,III,IV,V , (25)

and then update ΨI,II,III,IV by doing

Φ∗∗
I,III,IV = max

V
Ψ∗

I,III,IV,V (26)

Ψ∗
I,II,III,IV =

Φ∗∗
I,III,IV

Φ∗
I,III,IV

ΨI,II,III,IV . (27)

where all operations are entry-wise in the tables (3-D Φ’s are replicated across the lacking dimension after the

quotient is computed, so that they can be entry-wise multiplied by the 4-D Ψ’s).

After this propagation algorithm has run, one is assured that the final clique potentials Ψ∗
I,II,III,IV and Ψ∗

I,III,IV,V

are equal to the max-marginal distributions over the 4 respective variables (apart from a common constant factor).

What this allows us to do is to simply compute the modes of the individual max-marginals by local maximization

within the cliques. For example, one can compute the correct assignment II† for point II by

II† = arg max
II

max
I,III,IV

Ψ∗
I,II,III,IV , (28)

March 26, 2006 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 39

and the correct assignment V † for point V by

V † = arg max
V

max
I,III,IV

Ψ∗
I,III,IV,V . (29)

The correct assignment for the remaining 3 points in the domain pattern can be computed by marginalizing over

either one of the Ψ’s, since they are present in both. This results in the final correct assignment {I 7→ 3, II 7→

1, III 7→ 2, IV 7→ 5, V 7→ 6}.

March 26, 2006 DRAFT

