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1. INTRODUCTION

The work described in this paper has been motivated by consideration of both parsimony in the
representation of speech acoustics and observations of the degradation of automatic speech
recognition (ASR) performance when speaking rate changes. The acoustic-phonetic processing within
an ASR system involves the matching of a representation of the acoustic stream with a phoneme
symbol sequence that has been promoted by a vocabulary list or a language model. The best match
between the continuous acoustic stream and the sequence of phoneme symbols may be based on
the probabilistic evidence for the presence, absence, and order of phonemes derived from acoustic
models of the individual 40-50 phonemes. The stochastic acoustic models against which the evidence
is assessed are based on acoustic feature vectors that conventionally represent the average spectral
characteristics of fixed windows, of 20-30ms duration, on the acoustic stream. The models of
individual phonemes will typically incorporate fairly crude representations of the sequence of the
different acoustic vectors that best approximate the phoneme in a number of contexts.

The acoustic stream is rich with timing information that can be characterised in terms of the temporal
extent of locally quasi-static feature values and the trajectory of these values over time. We are
concerned to capture more directly some primitives of acoustic feature trajectories that relate to
phonetic quality rather than just sequences of regularly sampled spectral values. We wish to build
acoustic models that do not simply treat "time" as defined by the "clock on the wall" but rather in a
way that is relative to the acoustic-phonetic structure. We therefore aim to capture "temporal extent"
and "spectral shape" in an appropriate parameter space, and then to test phonetic discrimination
within this space.

An ASR system that receives a stream of regularly sampled acoustic vectors to be matched against
a phoneme symbol sequence is faced with simultaneously performing three quite different tasks -
quantification of the temporal information, aggregation of adjacent AVs into phoneme scale groupings
and performing an existence/order match at the utterance level. This work attempts to evaluate
techniques that allow each of these tasks to be performed independently with an emphasis on
optimising the information coded in the individual AVs.

After placing our approach within a literature context, we describe a simplified implementation in
which individual acoustic features are processed according to the principles outlined. We set the
novel spectro-temporal processing in the context of appropriate pre-processing and post-processing
options. Specifically, the work discussed in this paper looks at temporal/sequential processing of
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speech on three distinct fronts: pre-processing via the source synchronous approach to acoustic
signal analysis, some novel spectro-temporal representations of acoustic parameters, and post-
processing via the aggregation of sequential acoustic-phonetic likelihood rankings.

1.1.1 Background

The auditory system is well designed for processing temporally organised information while the visual
system is well designed for spatial information processing. It is therefore appropriate that the way that
speech is organised temporally should influence the way that it is processed by machine. The
dimension of "time" is so fundamental to speech processing that it is easy to be overlooked as an
object of study.

Considerable attention has been given in the acoustic phonetic literature to the issue of rapid speech
processes. This has included studies on the "reduction" of spectral information during shortened
vowels [e.g. Lindblom, 1963; Fourakis, 1991; Van Son and Pols, 1992] and the encoding of "phonetic
length" which discriminates between categories of vowels which are labelled "long" (or tense) and
"short" (or lax) [e.g. Nooteboom and Doodeman, 1980]. It appears that combinations of relative
spectral information and relative temporal information are required to provide evidence for a sound
phonetic judgement.

Given this acoustic phonetic evidence it should not have come as a surprise that automatic speech
recognition (ASR) systems that treat spectral and temporal information separately generate errors
when the rate of speech encountered in testing differs from that encountered in training [e.g. Seneff,
1996]. It could be predicted that a given vocalic nucleus, for instance, spoken in different temporal
circumstances, could be realised as a number of differently shaped trajectories in an acoustic-feature
space where the variation in each parameter of the trajectories forms the "statistical distribution" that
represents the phonemic category.

The underlying philosophy of the current study is that it would be useful to capture some primitives of
syllabic trajectories that relate to phonemic category. As a first approximation to a more adequate
syllabic trajectory model we should check a primitive model that characterises "duration" and some
simple aspects of "shape" in an appropriate parameter space.  Once having defined a simple model
then its representation of trajectories may be used to explore phonemic discrimination in this space
as a prelude to speech processing in this space.

It is noted that temporal information has been incorporated into the vast majority of speech
processing systems by overlapping spectral measurement such that sequential spectral analyses
capture changes occuring more rapidly than the underlying spectral measurement theory can
support, and by extending these pseudo-instantaneous spectral measurements by differential and
double differential versions to the overall spectral feature set.

The issue of the representation of time in speech has been examined from a number of perspectives
by others and we briefly review these processes here.

1.1.1 Temporal Decomposition

Temporal decomposition of the speech stream in a way that is sensitive to the data within it rather
than by some external reference has arisen in speech synthesis, speech coding, and speech
recognition research. The concept of a target spectrum together with the specification of how it is
realised in time was the basis of early work on speech synthesis-by-rule (Holmes et al., 1964).
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The same principles were applied to speech coding when the redundancies present in externally-
clocked LPC parameters were realised (Atal, 1983), and computational efficiencies have continued
to be discussed for this method (e.g. Ghaemmaghami et al., 1998). The temporal decomposition
approach to speech coding has also been evaluated as a means for creating phonemic labelling
for use in speech recognition (Bimbot and Atal, 1991).

The approach to TD used by Atal used Singular Value Decomposition techniques to produce a local
set of interpolation functions for describing the speech signal. While capable of producing functions
that appear to reflect the distributed and overlapping nature of articulatory gestures the approach is
highly computationally intensive. When applied to ASR rather than Atal's signal coding application,
the technique poses questions about the stability of the interpolation functions with variations in
parameters such as window width and does not necessarily produce functions that have a consistent
association with the phonetic context.

Refinements of Atal's original method (eg. Bimbot and Atal 1991) have addressed the above issues
with some success and evaluated the technique in a recognition context. Ghaemmaghami et. al.
(1998) proposed a hierarchical TD approach in which they first determine Event Approximating
Functions as basis functions reducing the complexity of the problem. Van Dijk-Kappers (1988)
determined that filter-bank and log-area parameters were suitable for SD analysis while Ahlbom et al.
(1987) dropped the SVD step and use clusters of similar AVs as the basis vectors. The complexity of
the technique still impedes the ability to generate basis functions that are optimised for phonetic
relevance.

1.1.2 The Mutual Information Approach

The temporal distribution of phonetically relevant information has been estimated in perceptual studies
and information theoretic analysis (eg. Bilmes, 1998; Yang et.al. 2000). Yang et.al. evaluated the
mutual information between signal features in the time-frequency plane and phonetic labels. They also
measured the joint mutual information of pairs of acoustic features and the labels.

The significance of this form of analysis to the phoneme recognition problem lies in its direct
association of acoustic parameters with the phonemic labels and the generalised nature of the MI
measure compared with simpler geometric or correlation measures. As in the current work, the
acoustic parameters are treated singly or in pairs, so avoiding the added computation complexity of
high dimensionality, allowing multi-dimensional analysis to be performed at a later stage on a locally
optimised and simplified AV stream.

Yang et.al. (2000) published results aggregated over a 19 phoneme set. Single phoneme data of this
type would provide valuable constraints and reliability estimates for the faster geometrical measures
used in the current study.

1.1.3 Time Trajectory models

In a stationary state HMM, signal parameter variation through the duration of a state is seen as noise,
increasing model complexity and training data requirements. Trended HMMs model signal variation
over the duration of the state. Deng and others (eg. Deng et.al. 1994; Deng, 1997) have used cubic
polynomials to model signal variation with some success but increased model complexity.
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2. SOURCE SYNCHRONOUS ANALYSIS

The stream of voice source impulses provides the most fundamental temporal segmentation of the
speech signal for subsequent, primarily frequency domain, analysis. We have shown that for good
quality speech signals, tested over a range of speakers and voice qualities, a simple fundamental
harmonic extraction method (Hess, 1983) is likely to provide adequate accuracy for this purpose
(Davies & Millar, 1996). The specific method used was a multi-stage time-reversed leaky integrator
technique followed by a peak detector (Davies and Millar, 1996).

In the present study all signals were extracted from the broadband and anechoically recorded
ANDOSL data corpus (Millar et al., 1994; 1997) and were processed using this method with
parameters that were optimised over the speaker set analysed using mean ranking feedback (see
section 4). No distinction was made between speech segments that were phonemically labelled as
voiced or unvoiced. This had the advantage that phonation was tracked to its extremities. For
computational purposes, long periods of unphonated speech were broken into arbitrary frames for
subsequent analysis.

The major benefits of the source-synchronous approach lie in two areas. Firstly, the source excitation
epoch provides the minimum time scale for catching short-term variation and typically supports more
than twice the temporal resolution of the fixed-interval, and hence arbitrary phase, analysis systems.
Secondly, it provides for a better representation of low-frequency features such as the lowest nasal
and oral resonances. Essentially it produces a signal that is coherent by synchronising the cause
and the effect of the excitatory activity in the vocal tract.

Figure 1. Signal processing example of source synchronous framing and subsequent analysis. The
dark waveform is the microphone pressure waveform, the light near-sinusoid is the fundamental of the
source synchronous analysis, the vertical lines are the source synchronous frames, and the
horizontal bars plotted for each frame are the values of the nasal energy parameter (En1). The
utterance is the central part of the words "come along".

3. SPECTRO-TEMPORAL ACOUSTIC VECTORS

The source-synchronously framed signals were then analysed one source epoch at a time. This
analysis used the computationally efficient Goertzel DFT filter [Goertzel, 1958] to derive a spectral
section representing the first 4.5ms of the source epoch of the speech used in this study. The length
of the temporal window was optimised against the aggregated results of all the acoustic-phonetic
likelihoods estimated in this study.
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A fairly comprehensive set of one-dimensional acoustic parameters were extracted from individual
source synchronous frames. The parameter set comprised measures of energy, energy ratios, and
band-limited energies, formant frequencies, energies, and bandwidths, some frequency difference
values and of course instantaneous excitation frequency in the form of the length of each source-
synchronous epoch.

3.1 Excitation frequency measures

The glottal excitation period (Tx) is the reciprocal of the instantaneous excitation frequency (Fx), and
was extracted directly from the source synchronous epoch. Tx has so far been the most extensively
tested parameter in this work. This was partly due to the initial focus on source synchronous analysis
but it also provided a reliable and rapidly evaluated parameter for system testing and early
optimisation experiments for the nonlinear parameter transforms and the acoustic-phonetic
associations.

3.2 Energy feature measures

Total Frame Energy (Etot) was normalised against the long-term average energy and expressed on a
logarithmic scale. All other energy features for the frame were normalised against the total frame
energy.

Fundamental Harmonic Energy (Efx) was measured as the energy of the fundamental component
signal derived as the output of the fundamental harmonic extraction process used in the source
synchronous analysis (Figure 1).

Nasal energy (En1) is the energy of the fixed frequency nasal resonance that consistently appears in
source synchronous analysis in periods of oral tract closure or constriction. It was included to enable
testing as a cue to consonant closure.

3.3 Formant Energy Ratio measures

The formant energy ratio parameters (ERf1, ERf2, ERf3) quantify the ratio of energy that occurs in the
upper half of the formant frequency band compared to the total energy in the band. They combine
both formant position and energy information and are expected to be more rubust to noise than F1
and Ef1.

3.4 Bandlimited Energy measures

Certain frequency bands were selected for energy measurement (0-300Hz, 0-400Hz, 100-300Hz, 0-
2000Hz, 2000-5000Hz, 600-2800Hz, 2000-3000Hz). The three narrow low-frequency bands were
variants used to explore for an optimum low-frequency band, and the other four broad bands were
suggested by various published filterbank based front-ends for speech recognition.

3.5 Formant Measures

A frame-by-frame formant analysis was conducted by using formant frequency ranges to select the
maximum peak within each range. Published formant frequency ranges were subjected to a
sensitivity check for the contemporary data used and were deemed adequate. Formant energy was
equated to the area under the peak between adjacent minima, and formant bandwidth was equated to
the ratio of area under the peak to height of the peak. This analysis was performed for the first three
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formants and generated the nine parameters: 1st Formant frequency, bandwidth, and energy (F1,
BWf1, Ef1), 2nd Formant frequency, bandwidth, and energy (F2, BWf2, Ef2), and 3rd Formant
frequency, bandwidth and energy (F3, BWf3, Ef3).

3.6 Frequency difference measures

Two frequency difference measures were included to explore phonemic discrimination based on
relative rather than absolute formant values. The excitation frequency to first formant frequency
distance (FxtoF1) and first formant to second formant (F1toF2) have been found useful in certain
phonetic analyses.

3.7 Similarity Length Measures

The conventional way to incorporate the temporal change of acoustic parameters in ASR is to use the
first, and maybe second order time derivatives of the parameters. We have previously described
(Davies and Millar, 1999) an alternative to parameter derivatives based on a measure of parameter
similarity length (PSL). Rather than taking the change in parameter value over a fixed time interval, we
have measured the time interval over which a parameter maintains its value within a given range. Thus
the basic acoustic vector comprises the two elements: the instantaneous value of the parameter and
the similarity length. The related global variable is the range over which the parameter value can
change and still be considered "similar". This "similarity tolerance" value was optimised over all the
acoustic-phonetic associations and a single compromise value of +-20% used for all acoustic
parameters. A more detailed approach would use individually optimised values for each acoustic-
phonetic context. The current system allows for composite acoustic vectors comprising several
parameter values and their respective similarity lengths.

3.8 Parameter quantisation

Acoustic parameters are initially spread over differing value ranges. Frequencies are measured as a
sample number between 1 to 256 corresponding to equally spaced frequency samples taken over a
range of 0 to 5000Hz. Energy ratios, initially with floating point values in the range 0 to 1.0, are
linearly scaled to an integer range of 0 to 1023.

Parameters are then non-linearly re-scaled to the range of 0 to 15 to create a 4 bit acoustic vector
component. Empirical non-linear scales were pre-determined for each parameter such that, over the
long term, their values distributed evenly across a set of hexadecile bins representing the full range of
the parameter. In the current system a separate non-linear scaling was established for each individual
speaker, and, given the extent of the ANDOSL data used, this amounted to deriving equiprobable bins
from approximately 10 minutes of spoken phonemically-rich sentence data. The most successful
algorithm tested produced equiprobable bins by progressively aggregating pairs of adjacent values
with the lowest populations, reducing the parameter ranges incrementally from up to 1024 to 16
discrete values. The same procedure was applied to the quantisation of the PSL.

3.9 Introduction of Shape bits

In addition to the PSL value for each frame, an indication of the way in which similarity of parameter
value is terminated at each of its extremes has been added. The PSL together with the similarity
tolerance value define a rectangle in parameter-time space. One bit is used to indicate at which
corner of the rectangle the parameter enters, and another bit is used to indicate at which corner the
parameter leaves. By definition it must leave at one of the corners. These so-called "shape bits" can



A Reassessment of Temporal Information in Speech Processing–Millar and Davies

indicate in minimal terms something of the immediate context of the observed temporal extent of the
parameter as measured at one source synchronous frame.

4. ASSOCIATION MATRIX AND PHONETIC RANKING TABLES

The association matrix is a simple mechanism to enable the evaluation of the performance of such an
innovative form of speech representation in the task of phoneme discrimination. It has its roots in the
"signature table" technique devised by Samuel (1967) for representing and evaluating moves in a
checker-playing computer program, and subsequently applied to the task of speech recognition
(Thosar, 1973), and of structured analysis of speech variance (Millar and Wagner, 1983). The matrix
comprises a two dimensional array of counters and is established by a single pass of phonemically
labelled speech data. A counter in the body of the matrix is incremented when the phonemic label on
its first dimension coincides with the binary representation of its acoustic vector on its second
dimension. While this form of representation is very simple, it is particularly suited to our spectro-
temporal acoustic vectors as the extra complexity required to encode temporal behaviour, as in
hidden Markov models, is coded within the acoustic vector itself. It is acknowledged that this form of
analysis can have very high memory requirements. Recent increases in the availability of large
amounts of memory at low cost have made this approach attractive.

The strength of the acoustic-phonetic association for a particular acoustic vector, X, labeled by
phoneme, P, was evaluated by simply taking the rank of the association or the number of other
phonemes that have more often been associated with X in the speech data sample. The average value
of the mean ranking of each phoneme against phonemically labelled data, as in the ANDOSL corpus,
has been used throughout as feedback for the optimisation of otherwise fixed parameters.

The results displayed in this paper are derived from the application of these techniques to material
selected from the ANDOSL data corpus. Four speakers were randomly extracted from the section of
the corpus representing speakers of cultivated Australian English and in the age range 31 to 45
years.

4.1 Comparison of temporal representations

The PSL approach has been shown to give better acoustic-phonetic associations than parameter
derivatives alone. This can be seen in figure 2 where the discriminative power of simply the first
formant and its temporal characteristics expressed in both its time derivative and its PSL plus shape
bits can be seen. It should be noted that the ranking values on the ordinate are for aggregated values
of all levels of F1 and as such give a global picture but are in fact much higher that those achieved for
an optimal range of the parameter value. This is clearly shown in Tables 1 and 2 where clustering of
low-ranked phoneme associations can be seen.
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F1 value rank 1 rank 2 rank 3 rank 4
0 S Z dZ tS
1 Z d g S
2 m n N j
3 j n N m
4 i@ u: j i:
5 i@ u: i: j
6 i@ u: U I
7 U o: oi u:
8 o: e: U @:
9 @: e: b oi
10 @: E e: oi
11 u@ E @: e:
12 @u O ei E
13 O @u ei A
14 A au u@ V
15 a: ai au V

Table 1 Phoneme rankings for F1 acoustic vector for a single speaker.

En1 value rank 1 rank 2 rank3 rank4
0 a: ai au V
1 u@ @: oi e:
2 u@ @: e: o:
3 o: U S oi
4 o: U oi S
5 U o: oi S
6 u@ o: S i@
7 S U s u:
8 i@ u: I tS
9 i@ I tS U
10 i@ I u: i:
11 i@ I u: N
12 I u: i@ i:
13 N I u: i:
14 m n N j
15 b g d v

Table 2 Phoneme rankings for En1 acoustic vector for a single speaker.

Tables 1 an 2 show phoneme rankings for single parameter acoustic vectors for En1 and F1
generated from 200 sentences for one speaker. While we cannot expect strong clustering of
associations for such simple acoustic vectors, the low frequency nasal energy (En1) in particular,
displays obvious clustering.
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Figure 2  Aggregated phoneme discrimination rankings for all phonemes for the first formant
parameter alone (upper trace), together with its first time differential (middle trace) or its similarity
length and shape bits (lower trace).

For the nasal energy (table 2) the highest energies are for stops and nasals while open vowels
associate with low nasal energy. The midrange (6-13) tend to be associated with high vowels.

In table 1, low F1 is associated with fricatives and stops, next we see nasals, then an approximate
trend from close to the more open vowels and glides with increased F1. As expected, schwa and its
transitions are located centrally.

4.2 Energy of Nasal Resonance

One aim of this work, partially motivating the source synchronous analysis, was to achieve rapid
response times to changing frequency domain information. In Figure 1 the energy of the lowest nasal
resonance (horizontal straight lines) can be seen to jump in value by approximately 150% between
frames at the junction between the vowel 'V' and final consonant 'm' in the word "come". It has been
observed that through sustained near closures this signal can fluctuate between frames in a manner
that suggests a rapid mode switching between the excitation of nasal and oral resonances.

4.3 Interspeaker Comparison

Aggregated association strengths such as those in figure 2 were derived from data from four
speakers. Figure 3 illustrates the interspeaker variation for F1 results.
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Figure 3 Comparison of stop and affricate rankings across 4 speakers. The parameter used is the
similarity length of the second time derivative of the first formant frequency.

5. FUTURE DIRECTIONS

A current direction of this work is to analyse the ranking stream generated by emitting, for each frame
in an utterance, the four top ranked phonemes. This stream can be aggregated over a phone length
temporal window. The aim is to generate phoneme hypotheses for a word recogniser. In particular we
are looking for evidence of increased nasalisation spreading beyond the labelled position of nasals or
stops that could serve as a cue to the presence of phonemes that are not explicitly expressed.

6. CONCLUSIONS

This paper has described an innovative approach to the represention of time in speech by integrating
it within source-synchronous acoustic vectors. The application of this approach to a set of one and
two-dimensional acoustic vectors has illustrated some of the issues arising. A rapid evaluation
method using the association of these vectors with phonemic labelling has enabled indications of
some of the benefits of this approach. Sample results of this form of processing have been
demonstrated.

While such innovation may not lead to immediate global improvements in the performance of speech
technology, it is hoped that a consideration of those areas where a some clear advantage can be
gained will provide a planning vector towards innovative combinations of ideas that will take us beyond
the current speech processing plateau on which we have been sitting for most of the past decade.

The next steps forward will include attempts to integrate some of the ideas in this work into more
mainstream speech processing. This will be characterised by a shift from essentially "clock-on-the-
wall" temporal processing to a data-driven sequence processing.
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