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THE MULTI-AGENT RENDEZVOUS PROBLEM.
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Abstract. This paper is concerned with the collective behavior of a group of n > 1 mobile
autonomous agents, labelled 1 through n, which can all move in the plane. Each agent is able
to continuously track the positions of all other agents currently within its “sensing region,” where
by an agent’s sensing region we mean a closed disk of positive radius r centered at the agent’s
current position. The multi-agent rendezvous problem is to devise “local” control strategies, one
for each agent, which without any active communication between agents cause all members of the
group to eventually rendezvous at a single unspecified location. This paper describes a family of
unsynchronized strategies for solving the problem. Correctness is established appealing to the concept
of “analytic synchronization.”
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1. Introduction. This paper is concerned with the collective behavior of a group
of n > 1 mobile autonomous agents, labelled 1 through n, which can all move in the
plane. Each agent is able to continuously track the positions of all other agents
currently within its “sensing region,” where by an agent’s sensing region we mean a
closed disk of positive radius r centered at the agent’s current position. The multi-
agent rendezvous problem is to devise “local” control strategies, one for each agent,
which without any active communication between agents cause all members of the
group to eventually rendezvous at a single unspecified location.

The rendezvous problem, which is also sometimes called a “gathering problem,”
has been studied before assuming that all agents possess either unlimited visibility
(e.g., r = ∞) [4] or a common sense of direction [9, 5] or both; see [5] for additional
references. The problem has also been addressed before without making either of
these assumptions [1, 8]. This paper also treats the case in which individual agents
have limited visibility and distinct frames of reference. What distinguishes this work
from that in [1, 8] is that individual agents clocks are taken to be unsynchronized.
These three features, namely limited sensing, no common frame of reference or sense
of direction, and no common clock, are of obvious practical importance but have
apparently not been dealt with before at the same time as components of one multi-
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agent rendezvous problem.
As in [1, 8], we consider distributed strategies which guide each agent toward

rendezvous by performing a sequence of “stop-and-go” maneuvers. A stop-and-go
maneuver takes place within a time interval consisting of two consecutive subintervals.
The first, called a sensing period, is an interval of fixed length during which the agent
is stationary. The second, called a maneuvering period, is an interval of variable length
during which the agent moves from its current position to its next “way-point” and
again comes to rest. Successive way-points for each agent are chosen to be within rM
units of each other, where rM is a prespecified positive distance no larger than r. It is
assumed that there has been chosen for each agent i a positive number τMi , called a
maneuver time, which is large enough so that the required maneuver for agent i from
any one way-point to the next can be accomplished in at most τMi seconds. Since
our interest here is exclusively with devising high level strategies which dictate when
and where agents are to move, we will use point models for agents and shall not deal
with how maneuvers are actually carried out or with how vehicle collisions are to be
avoided.

In the synchronous case treated in [1, 8], the kth maneuvering period of each agent
is synchronized to begin at the same time t̄k as the kth maneuvering period of every
other agent. Agent i’s registered neighbors at the beginning of its kth maneuvering
period are taken to be all those other agents positioned within agent i’s sensing
region at the beginning of the period. Because of synchronization, this notion of a
registered neighbor induces a symmetric relation on the agent group in that agent j
is a registered neighbor of agent i at the beginning of maneuvering period k just in
case agent i is a registered neighbor of agent j at the same time. As a result, it is
possible to characterize neighbor relationships at time t̄k with a simple graph whose
vertices represent agents and whose edges represent existing neighbor relationships [8].
Although the neighbor relation is symmetric, it is clearly not transitive. On the other
hand, if agent i is at the same position as neighbor j at time t̄k, then any registered
neighbor of agent j at time t̄k certainly must be a registered neighbor of agent i at
the same time. It is precisely because of this weak transitivity property that one can
infer a global condition of the entire synchronized agent group from a local condition
of one agent and its neighbors. In particular, if the graph characterizing neighbor
relationships at time t̄k is connected, and any one agent is at the same position as
all of its neighbors, then the weak transitivity property guarantees at once that all n
agents have rendezvoused at time t̄k.

Our aim in this paper is to relax the synchronization requirement. In particular
we will not require synchronization of the start times of the maneuvering periods of
different agents. To accomplish this it is necessary to modify somewhat what is meant
by a registered neighbor of agent i at time t̄ik where for the asynchronous case under
consideration, t̄ik denotes the time at which agent i’s kth maneuvering period begins.
Our definition is guided by considerations discussed above for the synchronous case.
For example, the new definition is crafted to retain versions of the symmetry and weak
transitivity properties of the registered neighbor relation inherent in the synchronous
case. Doing this is challenging, because unlike the synchronous case, the times each
agent registers its neighbors and its neighbors’ positions are not synchronized with
the times its neighbors do the same thing.

Exactly the same way-point update rules considered in the synchronous case [8]
are adopted for the asynchronous case. Thus the only functional differences between
the two cases are the definitions of registered neighbors and registered neighbor po-
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sitions. Of course in the asynchronous case, way-point updates are computed asyn-
chronously, whereas in the synchronous case they are not.

Not surprisingly, the analysis of the asynchronous version of the problem is con-
siderably more challenging than that of the synchronous version. For example, while
it is more or less obvious in the synchronous case that the proposed way-point update
rules causes all agents to retain their neighbors as the system evolves [8], proving that
this is also true in the asynchronous case involves a number of steps.

Just as in the synchronous case, it is possible to characterize neighbor relationships
with a graph. This is done in section 3 by first merging together into a single ordered
time set the distinct “event times” t̄ik, i ∈ {1, 2, . . . , n}, k ≥ 1, generated by all n
agents. The elements of this set are then relabelled as t1, t2, . . . in such a way so that
tj < tj+1, j ∈ {1, 2, . . .}. With this notation, agent i’s registered neighbors at its kth
event time t̄ik are its registered neighbors at time tPi(k), where Pi(k) denotes that
value of p for which tp = t̄ik. For each i ∈ {1, 2, . . . , n}, the domain of definition of
agent i’s registered neighbors is then extended from the set {tPi(k) : k ≥ 1} to the set
{tp : p ≥ Pi(1)} by stipulating that for values of tp which are between two successive
event times of agent i, say between t̄ik and t̄i(k+1), agent i’s registered neighbors are
the same as its registered neighbors at time t̄ik. This means that registered neighbors

of each agent are defined at each time tp ≥ tp̄, where p̄
∆
= max{P1(1), P2(1), . . . Pn(1)}.

Because of this, it is possible to describe neighbor relationships with a directed graph
with vertex set {1, 2, . . . , n} and directed edge set defined so that (i, j) is a directed
edge from vertex i to vertex j just in case agent j is a registered neighbor of agent i
at event time ts. The main result of this paper (Corollary 1) is that if this graph is
ever strongly connected, then rendezvous of all n agents will eventually occur.

Establishing the correctness of Corollary 1 requires the analysis of the asymptotic
behavior of the asynchronous process which describes the n-agent system. Despite the
apparent complexity of this process, it is possible to capture its salient features using
a suitably defined synchronous discrete-time, hybrid dynamical system S. We call the
sequence of steps involved in defining S analytic synchronization. Analytic synchro-
nization is applicable to any finite family of continuous or discrete-time dynamical
processes {P1,P2, . . . ,Pn} under the following conditions. First, each process Pi must
be a dynamical system whose inputs consist of functions of the states of the other
processes as well as signals which are exogenous to the entire family. Second, each pro-
cess Pi must have associated with it an ordered sequence of event times {ti1, ti2, . . .}
defined in such a way so that the state of Pi at event time ti(ki+1) is uniquely de-
termined by values of the exogenous signals and states of the Pj , j ∈ {1, 2, . . . , n},
at event times tjkj which occur prior to ti(ki+1) but in the finite past. Event time
sequences for different processes need not be synchronized. Analytic synchronization
is a procedure for creating a single synchronous process for purposes of analysis which
captures the salient features of the original n asynchronously functioning processes.
As a first step, all n event time sequences are merged into a single ordered sequence of
even times T . This clever idea has been used before in [2] to study the convergence of
totally asynchronous iterative algorithms. Second, the “synchronized” state of Pi is
then defined to be the original of Pi at Pi’s event times {ti1, ti2, . . .} plus possibly some
additional state variables; at values of t ∈ T between event times tiki and ti(ki+1), the
synchronized state of Pi is taken to be the same as the value of its original state at
time tik. Although it is not always possible to carry out all of these steps, in this case
it is. What ultimately results is a synchronous dynamical system evolving on T with
a state composed of the synchronized states of the n individual processes under con-
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sideration. The definition of S in section 4.1 illustrates the analytic synchronization
procedure.

2. The asynchronous agent system. The strategy analyzed in [1, 8] cannot
be regarded as truly distributed because each agent’s decisions must be synchronized
to a common clock shared by all other agents in the group. In what follows we
redefine the strategies so that a common clock is not required. To do this it will
be necessary to modify somewhat what is meant by a registered neighbor and by a
registered neighbor’s position.

For each agent i, the real time axis can be partitioned into a sequence of time
intervals [0, ti1), [ti1, ti2), . . . , [ti(k−1), tik), . . . , each of length at most τD + τMi , where
τD is a number greater than τMi called a dwell time. Each interval [ti(k−1), tik) consists
of a sensing period [ti(k−1), t̄ik) of fixed length τD during which agent i is stationary,
followed by a maneuvering period [t̄ik, tik) of length at most τMi during which agent
i moves from its current position to its next way-point. Although all agents use the
same dwell time, they operate asynchronously in the sense that the time sequences
ti1, ti2, . . . , i ∈ {1, 2, . . . , n}, are uncorrelated. Thus each agent’s strategy can be
implemented independent of the rest, without the need for a common clock.

2.1. Registered neighbors. Because of the asynchronous nature of the control
strategies under consideration, care must be exercised in defining what is meant by
a registered neighbor if one is to end up with something similar to the symmetry
property of the neighbor relationship defined in the synchronous case. For the asyn-
chronous case, agent i’s registered neighbors at time t̄ik (i.e., at the beginning of its
kth maneuvering period [t̄ik, tik)) are taken to be those agents which are fixed at one
position within agent i’s sensing region for at least τS > 0 seconds during agent i’s

kth sensing period Si(k)
∆
= [ti(k−1), t̄ik). Here τS is a positive number called a sensing

time. For reasons to be made clear below, we shall require τS to satisfy

τS ≤ 1

2
(τD − τMi) ∀i ∈ {1, 2, . . . , n}.(1)

Note that this implies that τD > τMi , i ∈ {1, 2, . . . , n}, which means that the n agents
spend more time between successive way-points sensing their neighbors’ positions than
they do maneuvering between successive way-points. For any agent j, there may be
more than one distinct interval of length at least τS within Si(k) during which agent
j is stationary. Let t∗ denote the end time of the last of these. For purposes of
calculation, agent i takes the registered position of agent j at the beginning of its kth
maneuvering period to be the actual position of agent j at registration time t∗. To
attain a symmetry-like property for the asynchronous case, it is necessary to make sure
that the registration interval [t∗ − τS , t∗) lies within one of agent j’s sensing periods.
One way to guarantee this is to require each agent to keep moving during each of its
maneuvering periods except possibly for brief periods which are each shorter than τS .
Another way is to equip each agent with a signaling device (such as a light in the case
of visual sensing) which is on just in case the agent is in one of its sensing periods. In
what follows we will assume that registration of each agent j during one of agent i’s
sensing periods always occurs at the end of a registration interval [t∗ − τS , t∗) which
also lies within one of agent j’s sensing periods. Note that this and the requirement
that agent j be stationary during its sensing periods together imply that agent j’s
registered position xj(t∗) is equal to xj(t̄jk∗), where k∗ is the sensing/maneuvering
interval of agent j during which registration takes place.
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2.1.1. Neighbor characterization. Prompted by the preceding, let us agree
to say that for each i, j ∈ {1, 2, . . . , n}, agent j’s pth sensing period Sj(p) strongly
overlaps agent i’s kth sensing period Si(k) if the overlap Sj(p) ∩ Si(k) is a nonempty
interval of length at least τS seconds. In what follows we write Sj(p) ∩ Si(k) ( τS
whenever Si(k) and Sj(p) strongly overlap. Let us note that because all sensing
periods of all agents are τD seconds long, the largest number of sensing periods of
any one agent which a given sensing period of agent i can overlap is two. On the
other hand, each sensing period of agent i must strongly overlap at least one sensing
period of every other agent. To understand why this is so, note first that the maximal
possible amount of time between two successive sensing periods of agent j is τMj , but
τMj is bounded above by τD−2τS because of (1). Thus the maximal possible amount
of time between two successive sensing periods of agent j is no greater than τD −2τS .
Given this and the fact that all sensing periods are τD seconds long, it follows that
each sensing period of agent i must strongly overlap at least one sensing period of
each agent j.

It is possible to be more explicit about which sensing periods of agent j overlap
Si(k). For each i, j ∈ {1, 2, . . . , n} and each k ≥ 1, let )t̄ik*j denote the smallest
integer q such that t̄jq ≥ t̄ik. In other words, )t̄ik*j is the unique integer for which
t̄ik ∈ (t̄j(q−1), t̄jq]. Set q = )t̄ik*j . In view of the definition of )·*j and the preceding
discussion it is clear that the only sensing periods of agent j which Si(k) can overlap
are Sj(q − 1) and Sj(q); moreover, Si(k) must strongly overlap one of these. There
are three possible situations which might occur. In the first, shown in Figure 1(a),
the only sensing period of agent j which overlaps Si(k) is Sj(q − 1); in this case the
length of the overlap is τD − (t̄ik − t̄j(q−1)), and this length will always be greater
than or equal to τS . Therefore in this situation, Si(k) and Sj(q− 1) strongly overlap.
For the second situation, shown in Figure 1(b), the only sensing period of agent j
which overlaps Si(k) is Sj(q); in this case the length of the overlap is τD − (t̄jq − t̄ik),
and this length will also always be greater than or equal to τS . Therefore in this
situation Si(k) and Sj(q) strongly overlap. The only other possible situation that can
occur, which is shown in Figure 1(c), is when Si(k) is overlapped by both Sj(q − 1)
and Sj(q). In this case the lengths of the first and second overlapping intervals are
τD − (t̄j(q−1) − t̄ik) and τD − (t̄ik − t̄jq), respectively, and at least one of these lengths
will always be greater than or equal to τS . Thus in this situation, Si(k) strongly
overlaps Sj(q − 1) or Sj(q) or both. We summarize.

Lemma 1 (overlaps). Let i and j be distinct integers in {1, 2, . . . , n}. Let t̄ik be
fixed and define q = )t̄ik*j. The only possible sensing periods of agent j which Si(k)
can overlap are Sj(q − 1) and Sj(q); moreover, Si(k) must strongly overlap at least
one of these. In addition,

1. Si(k) ∩ Sj(q) ( τS if and only if t̄jq − t̄ik ≤ τD − τS;
2. Si(k) ∩ Sj(q − 1) ( τS if and only if t̄ik − t̄j(q−1) ≤ τD − τS.

Note that for agent j to be a registered neighbor of agent i at the beginning of
agent i’s kth maneuvering period, it is necessary and sufficient that agent j be “within
range of agent i” (i.e., within agent i’s sensing region) during a sensing period of agent
j which strongly overlaps Si(k). Consider again Figure 1 where q = )t̄ik*j . In the
situation depicted in Figure 1(a), agent j will be a registered neighbor of agent i just
in case ||xi(t̄ik) − xj(t̄j(q−1))|| ≤ r; moreover, if this condition holds, xj(t̄j(q−1)) will
be the registered position of agent j. Similarly in the situation shown in Figure 1(b),
agent j will be a registered neighbor of agent i just in case ||xj(t̄jq) − xi(t̄ik)|| ≤ r;
moreover, if this condition holds, xj(t̄jq) will be the registered position of agent j.
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Fig. 1. Sensing period overlaps.

The remaining situation shown in Figure 1(c) is slightly more complicated. If, on
the one hand, the length of the second overlap is greater than or equal to τS and
||xj(t̄jq) − xi(t̄ik)|| ≤ r, then agent j will be a registered neighbor of agent i with
registered position xj(t̄jq). If either of these two conditions fails to hold, if the length
of the first overlap is greater than or equal to τS , and if ||xi(t̄ik)−xj(t̄j(q−1))|| ≤ r, then
agent j will be a registered neighbor of agent i, and xj(t̄j(q−1)) will be its registered
position. The following proposition summarizes these observations.

Proposition 1 (neighbor characterization). Let i, j ∈ {1, 2, . . . , n} and t̄ik be
fixed and let q = )t̄ik*j. Then agent j is a registered neighbor of agent i at the beginning
of agent i’s kth maneuvering period if and only if at least one of the following is true.

(A) Si(k) ∩ Sj(q) ( τS and ||xj(t̄jq) − xi(t̄ik)|| ≤ r.
(B) Si(k) ∩ Sj(q − 1) ( τS and ||xi(t̄ik) − xj(t̄j(q−1))|| ≤ r.

Moreover, if (A) is true, then xj(t̄jq) is the registered position of agent j at the be-
ginning of agent i’s kth maneuvering period, and if (A) is not true while (B) is,
then xj(t̄j(q−1)) is the registered position of agent j at the beginning of agent i’s kth
maneuvering period.

2.1.2. Neighbor relationship symmetry. The definition of a registered neigh-
bor determines a relationship between agents similar to the symmetric relationship
determined by the definition of a registered neighbor in the synchronous case [8].
Suppose that agent j is a registered neighbor of agent i at the beginning of agent i’s
kth maneuvering period. In view of Proposition 1, either condition (A) or condition
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(B) must hold. Suppose first that condition (A) is true. Then Si(k) strongly overlaps
Sj(q), and agent i is in range of agent j during the overlap. There are two cases
to consider. First, it is possible that Si(k + 1) also strongly overlaps Sj(q) for at
least τS time units and agent i is in range of agent j during this overlap; in this case
agent i would be a registered neighbor of agent j at time t̄jq, and xi(t̄i(k+1)) would be
its registered position. Second, it is possible either that Si(k + 1) does not strongly
overlap Sj(q) or that agent i is not in range of agent j during this overlap; in this
case agent i would be a registered neighbor of agent j at time t̄jq, and xi(t̄ik) would
be its registered position. Thus in summary, if condition A is true, then agent i will
be a registered neighbor of agent j at time t̄jq with registered position which could
be either xi(t̄ik) or xi(t̄i(k+1)).

Suppose next that condition (A) does not hold. In view of Proposition 1, condition
(B) must hold. In other words, Si(k) must strongly overlap Sj(q − 1), and agent i
must be in range of agent j during this overlap. In view of Lemma 1, this must be
the last sensing period of agent i with these properties because we have assumed that
condition (A) does not hold. Therefore agent i must be a registered neighbor of agent
j at time t̄j(q−1), and xi(t̄ik) must be its registered position. We summarize.

Proposition 2 (neighbor relationship symmetry). Suppose that agent j is a
registered neighbor of agent i at the beginning of agent i’s kth maneuvering period.
Let q = )t̄ik*j. If condition (A) of Proposition 1 holds, then agent i is a registered
neighbor of agent j at the beginning of agent j’s qth maneuvering period with either
xi(t̄ik) or xi(t̄i(k+1)) as its registered position. If condition (A) of Proposition 1 does
not hold, then condition (B) must hold and agent i is a registered neighbor of agent
j at the beginning of agent j’s (q − 1)st maneuvering period with registered position
xi(t̄ik).

2.1.3. Motion constraint. In the synchronous case treated in [1], each agent’s
way-points are constrained to positions defined in such a way so that no agent can lose
any of its neighbors as it moves from one way-point to the next. This is accomplished
by adopting a clever idea proposed in [1] which we call the pairwise motion constraint.
Neighbor retention can also be achieved in the asynchronous case by enforcing the
following constraint. Agent i is said to satisfy the motion constraints induced by its
neighbors if for each j ∈ {1, 2, . . . , n} for which j += i and each k ∈ {1, 2, . . .} for which
agent j is a registered neighbor of agent i at the beginning of maneuvering period k,
the position to which agent i moves at the end of the period is within a closed disk of
diameter r centered at the mean of agent i’s position at the beginning of the period
(i.e., at time t̄ik) and the registered position of agent j at the beginning of the period.
As mentioned, in the synchronous case, satisfaction of the pairwise motion constraint
by agent i and neighbor j causes each to retain the other as a neighbor. The following
proposition implies that essentially the same thing is true in the asynchronous case
when the induced motion constraints are satisfied by agents i and j.

Proposition 3 (neighbor retention). Suppose that agents i and j satisfy the
motion constraints induced by their registered neighbors. If agent j is a registered
neighbor of agent i at the beginning of agent i’s kth maneuvering period, then agent j is
also a registered neighbor of agent i at the beginning of agent i’s (k+1)st maneuvering
period.

In proving Proposition 3 and several subsequent claims we will make use of the
inequalities

t̄j(q+p) − t̄jq ≥ pτD, p ∈ {0, 1, 2, . . .}, q ∈ {1, 2, . . .}, j ∈ {1, 2, . . . , n},(2)
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and

t̄i(k+1) − t̄ik ≤ 2(τD − τS), k ∈ {1, 2, . . .}, i ∈ {1, 2, . . . , n},(3)

which are both direct consequences of the definitions of the sensing and maneuver
periods and (1). To justify (2), let us first recall that for each integer s ≥ 1, t̄js is at
the end of agent j’s sth sensing period. In addition, agent j’s sensing periods do not
intersect and are each of length τD. It follows that t̄j(s+1)− t̄js ≥ τD, s ≥ 1, and thus
that (2) is true. To justify (3), note that t̄i(k+1) can be written as t̄i(k+1) = t̄ik+τD+τ ,
where τ is the length of agent i’s kth maneuvering period. Since τ is constrained to
satisfy τ ≤ τMi , we can write t̄i(k+1) ≤ t̄ik + τD + τMi . From this and (1) it follows
that t̄i(k+1) ≤ t̄ik + τD + (τD − 2τS) and thus that (3) is true.

To prove Proposition 3, we will make use of the two conditions characterizing a
registered neighbor in Proposition 1. Each of these conditions in turn involves both an
overlap requirement and a range requirement. The next lemma provides the needed
facts about the way in which two agents’ sensing periods overlap. This is followed by
Lemma 3 which provides the range information needed to prove Proposition 3 and
subsequent claims.

Lemma 2. Let i and j be distinct integers in {1, 2, . . . , n}. Let t̄ik be fixed and
define q = )t̄ik*j. Then

)t̄i(k+1)*j ∈ {q, q + 1, q + 2}.(4)

1. If )t̄i(k+1)*j = q, then Si(k + 1) ∩ Sj(q) ( τS.
2. If )t̄i(k+1)*j = q+1, then Si(k+1)∩Sj(q) ( τS or Si(k+1)∩Sj(q+1) ( τS.
3. If )t̄i(k+1)*j = q + 2, then Si(k) ∩ Sj(q) ( τS and Si(k + 1) ∩ Sj(q + 1) ( τS.

Moreover, if )t̄i(k+1)*j ∈ {q + 1, q + 2}, then Si(k) and Si(k + 1) are the only sensing
periods of agent i which can strongly overlap Sj(q).

Proof of Lemma 2. It will be shown first that (4) is true. Since t̄ik ∈ (t̄j(q−1)− t̄jq]
and t̄i(k+1) > t̄ik, it must be true that t̄i(k+1) > t̄j(q−1). Thus )t̄i(k+1)* ≥ q. To prove
that )t̄i(k+1)*j ≤ q + 2, we use (3) and the fact that t̄ik ≤ t̄jq to write t̄i(k+1) ≤
2(τD− τS)+ t̄jq. In view of (2) (with p = 1), 2(τD− τS)+ t̄jq ≤ τD + t̄j(q+1) ≤ t̄j(q+2).
Therefore t̄i(k+1) ≤ t̄j(q+2). This means that )t̄i(k+1)*j ≤ q + 2. Thus (4) is true.

To prove assertion 1, we use (2) with i substituted for j and p = 1 to write
t̄i(k+1) ≥ t̄ik + τD. In view of the definition of q, t̄ik > t̄j(q−1). Therefore t̄i(k+1) −
t̄j(q−1) > τD > τD − τS . The hypothesis )t̄i(k+1)* = q implies that Lemma 1 holds
with k + 1 substituted for k. Thus Si(k + 1) and Sj(q − 1) cannot overlap because
of the lemma’s last claim. Since the lemma also states that Si(k + 1) must strongly
overlap either Sj(q − 1) or Sj(q), it must be true that Si(k + 1) strongly overlaps
Sj(q). Therefore assertion 1 is true.

Assertion 2 assumes that )t̄i(k+1)*j = q + 1. Lemma 1 thus applies with k + 1
and q + 1 replacing k and q, respectively. From this it follows that the only sensing
periods of agent j which can overlap S1(k + 1) are Sj(q) and Sj(q + 1); moreover,
S1(k + 1) must strongly overlap at least one of these. Thus assertion 2 is true.

Assertion 3 assumes that )t̄i(k+1)*j = q+2. Thus t̄j(q+1) < t̄i(k+1). But t̄jq+τD ≤
t̄j(q+1) because of (2) (with p = 1), and t̄i(k+1) ≤ t̄ik + 2(τD − τS) because of (3).
Therefore t̄jq ≤ t̄ik+τD−2τS . It follows that t̄jq− t̄ik+τD−τS . Therefore by the first
assertion of Lemma 1, Si(k) and Sj(q) must strongly overlap. It remains to be shown
that Si(k+1)∩Sj(q+1) ( τS if )t̄i(k+1)*j = q+2. Since )t̄i(k+1)*j = q+2, Lemma 1
applies with k+1 and q+2 replacing k and q, respectively. Thus, to prove that Si(k+1)
and Sj(q+1) also strongly overlap, it is enough to show that t̄i(k+1)−t̄j(q+1) ≤ τD−τS .
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To do this, we first use (3) and the fact that t̄ik ≤ t̄jq to write t̄i(k+1) ≤ t̄jq+2(τD−τS).
From this and (2) with p = 1 there follows t̄i(k+1) ≤ t̄j(q+1) + τD − 2τS . Therefore
t̄i(k+1) ≤ t̄j(q+1) + τD − τS . Thus Si(k + 1) ∩ Sj(q + 1) ( τS , so assertion 3 is true.

Now suppose that )t̄i(k+1)*j ∈ {q + 1, q + 2}. Then in either case t̄jq ≤ t̄i(k+1).
Therefore t̄ik ≤ t̄jq ≤ t̄i(k+1). If t̄ik += t̄jq, then t̄ik < t̄jq ≤ t̄i(k+1), which means
that )t̄jq* = t̄i(k+1); thus Lemma 1 applies with k and q replaced by q and k + 1,
respectively. Therefore in this case Si(k) and Si(k + 1) are the only sensing periods
of agent i which can strongly overlap Sj(q). Now suppose that t̄ik = t̄jq. This means
that )t̄jq* = t̄ik; thus Lemma 1 applies with k and q interchanged. Therefore in this
case Si(k − 1) and Si(k) are the only sensing periods of agent i which can strongly
overlap Sj(q). To complete the proof, it is enough to show that Si(k − 1) cannot
strongly overlap Sj(q). Towards this end, first note that t̄ik ≥ t̄i(k−1) + τD because of
(2). Thus t̄jq ≥ t̄i(k−1) + τD, so t̄jq − t̄i(k−1) > +τD − τS . Therefore Si(k− 1) cannot
strongly overlap Sj(q) because of Lemma 1.

Lemma 3. Let q = )t̄ik*j. Suppose that agents i and j satisfy the motion con-
straints induced by their registered neighbors. If agent j is a registered neighbor of
agent i at the beginning of agent i’s kth maneuvering period, then

||xi(t̄i(k+1)) − xj(t̄jq∗)|| ≤ r,(5)

||xi(t̄i(k+1)) − xj(t̄j(q∗+1)|| ≤ r,(6)

where q∗ = q if condition (A) of Proposition 1 is true and q∗ = q − 1 if it is not.
Moreover, in either case

||xi(t̄ik) − xj(t̄jq)|| ≤ r.(7)

Proof of Lemma 3. First suppose that agent j is a registered neighbor of agent i
at the beginning of maneuvering period k. Thus by Proposition 1, xjq∗ is agent j’s
registered position, and

||xi(t̄ik) − xj(t̄jq∗)|| ≤ r,(8)

where q∗ = q if condition A holds and q∗ = q − 1 if it does not. The positions of
agent i at the beginning and end of its kth maneuvering period are xi(t̄ik) and xi(tik),
respectively. Therefore since agent i satisfies the motion constraint induced by agent
j during this period, ||xi(tik) − 1

2{xi(t̄ik) + xj(t̄jq∗)}|| ≤ r
2 . But xi(t̄i(k+1)) = xi(tik)

because agent i does not move during sensing period [tik, t̄i(k+1)). This enables us to
rewrite the preceding inequality as

∥∥∥∥xi(t̄i(k+1)) −
1

2
{xi(t̄ik) + xj(t̄jq∗)}

∥∥∥∥ ≤ r

2
.(9)

Observe that

xi(t̄i(k+1)) − xj(t̄jq∗) = xi(t̄i(k+1)) −
1

2
{xi(t̄ik) + xj(t̄jq∗)}−

1

2
(xj(t̄jq∗) − xi(t̄ik)) .

Hence

||xi(t̄i(k+1)) − xj(t̄jq∗)|| ≤
∥∥∥∥xi(t̄i(k+1)) −

1

2
{xi(t̄ik) + xj(t̄jq∗)}

∥∥∥∥

+

∥∥∥∥
1

2
(xj(t̄jk∗) − xi(t̄ik))

∥∥∥∥ .
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From this, (8), and (9) there follows ||xi(t̄i(k+1)) − xj(t̄jq∗)|| ≤ r
2 + r

2 = r. Therefore
(5) is true.

It will now be shown that (6) is also true. By Proposition 2, agent i is a registered
neighbor of agent j at the beginning of agent j’s q∗th maneuvering period, where
q∗ = q if condition (A) of Proposition 1 holds and q∗ = q − 1 if it does not. Thus by
Proposition 1

||xj(t̄jq∗) − x̄i|| ≤ r,(10)

where x̄i denotes the registered position of agent i at t̄jq∗ . The positions of agent j
at the beginning and end of its q∗th maneuvering period are xj(t̄jq∗) and xj(tjq∗),
respectively. Therefore since agent j satisfies the motion constraint induced by agent
i during this period, ||xj(tjq∗) − 1

2{xj(t̄jq∗) + x̄i}|| ≤ r
2 . But xj(t̄j(q∗+1)) = xj(tjq∗)

because agent j does not move during sensing period q∗ + 1. Therefore
∥∥∥∥xj(t̄j(q∗+1)) −

1

2
{xj(t̄jq∗) + x̄i}

∥∥∥∥ ≤ r

2
.(11)

In view of Proposition 2, x̄i could be either xi(t̄ik) or xi(t̄i(k+1)) if condition A of
Proposition 1 holds, while x̄i = xi(t̄ik) if it does not. Consider first the case when
x̄i = xi(t̄ik). It is then possible to rewrite (11) as

∥∥∥∥xj(t̄j(q∗+1)) −
1

2
{xj(t̄jq∗) + xi(t̄ik)}

∥∥∥∥ ≤ r

2
.(12)

But

||xi(t̄i(k+1)) − xj(t̄j(q∗+1))|| =

∥∥∥∥xi(t̄i(k+1)) −
1

2
{xi(t̄ik) + xj(t̄jq∗)}

−(xj(t̄j(q∗+1)) −
1

2
{xj(t̄jq∗) + xi(t̄ik)})

∥∥∥∥

≤
∥∥∥∥xi(t̄i(k+1)) −

1

2
{xi(t̄ik) + xj(t̄jq∗)}

∥∥∥∥

+

∥∥∥∥xj(t̄j(q∗+1)) −
1

2
{xj(t̄jq∗) + xi(t̄ik)}

∥∥∥∥ .

From this, (9), and (12) it follows that ||xi(t̄i(k+1))− xj(t̄j(q∗+1))|| ≤ r and thus that
(6) holds.

It will now be shown that (6) also holds for the case when x̄i = xi(t̄i(k+1)) which
only occurs when q∗ = q. Assuming this possibility, (11) can be written as

∥∥∥∥xj(t̄j(q∗+1)) −
1

2
{xj(t̄jq∗) + xi(t̄i(k+1))}

∥∥∥∥ ≤ r

2
.(13)

Observe that it is possible to write

xj(t̄j(q∗+1)) − xi(t̄i(k+1)) = xj(t̄j(q∗+1)) −
1

2
{xj(t̄jq∗) + xi(t̄i(k+1))}

− 1

2

(
xi(t̄i(k+1)) −

1

2
{xj(t̄jq∗) + xi(t̄ik)}

)

+
1

4
(xj(t̄jq∗) − xi(t̄ik)) .
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Clearly

||xj(t̄j(q∗+1)) − xi(t̄i(k+1))|| ≤
∥∥∥∥xj(t̄j(q∗+1)) −

1

2
{xj(t̄jq∗) + xi(t̄i(k+1))}

∥∥∥∥

+
1

2

∥∥∥∥xi(t̄i(k+1)) −
1

2
{xj(t̄jq∗) + xi(t̄ik)}

∥∥∥∥

+
1

4
‖xj(t̄jq∗) − xi(t̄ik)‖ .

Using (8), (9), and (13) we thus obtain ||xj(t̄j(q∗+1)) − xi(t̄i(k+1))|| ≤ r
2 + r

4 + r
4 = r.

Thus (6) holds in this case too.
In view of (8), (7) is true if q∗ = q. To prove that (7) also holds if q∗ = q − 1, we

first write

xj(t̄j(q∗+1)) − xi(t̄ik) = xj(t̄j(q∗+1)) −
1

2
{xj(t̄jq∗) + xi(t̄ik)}−

1

2
(xi(t̄ik) − xj(t̄jq∗)) .

Therefore

||xj(t̄j(q∗+1)) − xi(t̄ik)|| ≤
∥∥∥∥xj(t̄j(q∗+1)) −

1

2
{xj(t̄jq∗) + xi(t̄ik)}

∥∥∥∥(14)

+

∥∥∥∥
1

2
(xi(t̄ik) − xj(t̄jq∗))

∥∥∥∥ .

But if q∗ = q − 1, both (8) and (12) hold. From these inequalities and (14) it follows
that ||xj(t̄j(q∗+1)) − xi(t̄ik)|| ≤ 1

r + 1
r = r and therefore that (7) is true.

Proof of Proposition 3. Consider first the case when )t̄i(k+1)* = q. If condition
(A) of Proposition 1 holds, then q∗ = q and

||xi(t̄i(k+1)) − xj(t̄jq)|| ≤ r(15)

because of (5). On the other hand, if condition (A) of Proposition 1 does not hold,
then q = q∗ − 1 and (15) still holds, in this case because of (6). Since )t̄i(k+1)* = q, it
must be true that Si(k + 1) ∩ Sj(q) ( τS because of Lemma 2. This and (15) mean
that condition (A) of Proposition 1 is satisfied with k+1 substituted for k. Therefore
agent j is a registered neighbor of agent i at t̄i(k+1).

Now suppose that )t̄i(k+1)* ∈ {q+1, q+2}. Consider first the case when condition
(A) of Proposition 1 holds. Then Lemma 3 applies with q∗ = q, so

||xi(t̄i(k+1)) − xj(t̄j(q+1))|| ≤ r(16)

and

||xi(t̄i(k+1)) − xj(t̄jq)|| ≤ r.(17)

If )t̄i(k+1)* = q + 1, then Si(k + 1) must strongly overlap either Sj(q) or Sj(q + 1)
because of Lemma 2. In view of (16) and (17), condition (A) of Proposition 1 is
satisfied in either situation with k + 1 substituted for k and q + 1 substituted for q.
Therefore agent j is a registered neighbor of agent i at t̄i(k+1). If )t̄i(k+1)* = q + 2,
then Si(k+1) and Sj(q+1) still must strongly overlap because of Lemma 2. Thus in
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this case condition (B) of Proposition 1 is satisfied with k + 1 substituted for k and
q+2 substituted for q. Therefore agent j is a registered neighbor of agent i at t̄i(k+1).

Consider finally the case when condition (A) of Proposition 1 does not hold.
Since (7) holds, Si(k) and Sj(q) cannot overlap. Therefore )tik* += q + 2 because of
statement 3 in Lemma 2. Thus )tik* = q + 1. In addition, Lemma 2 states that
the only sensing periods of agent i which can strongly overlap Sj(q) are Si(k) and
Si(k + 1). Since Sj(q) must strongly overlap at least one sensing period of agent i, it
must be true that

Sj(q) ∩ Si(k + 1) ( τS .(18)

Since condition (A) of Proposition 1 does not hold, condition (B) must hold, because
agent j is a neighbor of agent i at t̄ik. Thus Lemma 3 applies with q∗ = q − 1, so by
(6),

||xi(t̄i(k+1)) − xj(t̄jq)|| ≤ r.(19)

Since )t̄i(k+1)* = q + 1, (19) and (18) show that condition (B) of Proposition 1 is
satisfied with k + 1 and q + 1 substituted for k and q, respectively.

2.2. Unsynchronized agent strategies. We are interested in strategies which
cause agents to retain their registered neighbors. We therefore make the following
assumption.

Cooperation assumption. Each agent i satisfies the motion constraints induced
by each of its registered neighbors.

Suppose that the cooperation assumption is satisfied. Proposition 3 states that
if agent j is a registered neighbor of agent i during maneuvering interval k, then it
will also be a registered neighbor of agent i during maneuvering interval k + 1. In
other words, if the cooperation assumption is satisfied, each agent retains all of its
prior registered neighbors as the system evolves. Thus if Ni(k) denotes the set of
labels of agent i’s neighbors at the beginning of its kth maneuvering period, then
Ni(k) ⊂ Ni(k + 1), k ≥ 1.

Agent i’s kth way-point x̄i(k) is the point to which agent i moves at the end of
its kth maneuvering period. Thus if xi(t) denotes the position of agent i at time t
represented in a world coordinate system, then xi(tik) and agent i’s kth way-point
are one and the same. The rule which determines x̄i(k) is essentially the same as
that considered previously for the synchronous case in [1, 8], except that now x̄i(k)
depends on agent i’s own position at the beginning of its kth maneuvering period and
the registered (relative) positions of agent i’s registered neighbors at the beginning
of the period. In particular, if agent i has mik registered neighbors at time t̄ik with
registered positions z1, z2, . . . , zmik relative to agent i’s, then agent i moves to the
position x̄i(k) = xi(ti(k−1)) + umik(z1, . . . , zmik) at the end of the period where

zj = xiij (t̄ik) − xi(ti(k−1)), j ∈ {1, 2, . . . ,mik},(20)

and xiij (t̄ik) is the registered position of neighbor ij at time t̄ik. As in [8], u0 = 0,
and for m ∈ {1, . . . , n − 1}, um is a continuous control law mapping Dm into DM ,
where D and DM are the closed disks of radii r and rM , respectively, centered at
the origin in R2. For m > 0, um is defined so that the aforementioned neighbor
motion constraint is satisfied and, in addition, so that for each {z1, z2, . . . , zm} ∈ Dm,
um(z1, z2, . . . , zn) is in the convex hull of {0, z1, z2, . . . , zm}, but not at a corner unless
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z1 = z2 = · · · = zm = 0. Examples of um(·) satisfying these control law requirements
can be found in [1, 8].

Since each agent is assumed to move to its kth way-point at the end of its kth
maneuvering period, agent i’s position at time tik is given by

xi(tik) = xi(ti(k−1))

+ umik(xii1(t̄ik) − xi(ti(k−1)), . . . , xiimik
(t̄ik) − xi(ti(k−1))).(21)

In view of Proposition 1 and (7), the formulas for the xij(t̄ik) can be written as

xij(t̄ik) =

{
xj(t̄jq) if Si(k) ∩ Sj(q) ( τS

xj(t̄j(q−1)) otherwise

}
, j ∈ Ni(k),(22)

where q = )t̄ik*j and

Ni(k) = {j : ||xi(t̄ik) − xj(t̄iq)|| ≤ r and Si(k) ∩ Sj(q) ( τS}
⋃

{j : ||xi(t̄ik) − xj(t̄i(q−1))|| ≤ r and Si(k) ∩ Sj(q − 1) ( τS}.(23)

The expressions for the xij(t̄ik) in (22) are a direct consequence of the characterization
of registered positions in Proposition 1, the fact that (7) holds whenever j ∈ Ni(k),
and the implication of Lemma 1 that Si(k)∩Sj(q−1) ( τS whenever Si(k)∩Sj(q) +( τS .
Of course the neighbor set Ni(k) and the registration positions xij , j ∈ Ni(k), all
depend on i and k.

3. Main results. Note that because agents do not move during sensing periods,
for each i ∈ {1, 2, . . . , n} the positions of agent i at times ti(k−1) and tik are the same
as at times t̄ik and t̄i(k+1), respectively. Thus (21) can also be written as

xi(t̄i(k+1)) = xi(t̄ik) + umik(xii1(t̄ik) − xi(t̄ik), . . . , xiimik
(t̄ik) − xi(t̄ik)).(24)

The n equations given by (24) for i ∈ {1, 2, . . . , n} together with (22) and (23) com-
pletely describe the evolution of the positions of the n agents under consideration as
each maneuvers from way-point to way-point. Just as in the synchronous case, the
analysis of these equations depends on the relationships between registered neighbors
and how these relationships evolve with time. To characterize these relationships, we
first extend the domain of definition of each agent’s registered neighbors from its set
of maneuvering period start times to a suitably defined set of “event times” common
to all n agents. By an event time is meant any time t̄ik at which any maneuvering
period [t̄ik, tik) of any agent begins. Let {t̄ik : i ∈ {1, 2, . . . , n}, k ≥ 1} denote the
set of all distinct event times. Label this set’s elements as t1, t2, . . . , tp, . . . in such a
way that tp < tp+1, j ∈ {1, 2, . . .}. For i ∈ {1, 2, . . . , n}, let Pi denote that strictly
monotone function from the set of positive integers I to I which assigns to k ∈ I that
value of p ∈ I for which tp = t̄ik. Thus with this notation, tPi(k) = t̄ik, so agent i’s
registered neighbors at its kth event time tPi(k) are its registered neighbors at time t̄ik.
For each i ∈ {1, 2, . . . , n} we extend the domain of definition of agent i’s registered
neighbors from the set {tPi(k) : k ≥ 1} to the set {tp : p ≥ Pi(1)} by stipulating that
for values of tp which are between two successive event times of agent i, say between
tik and ti(k+1), agent i’s registered neighbors are the same as its registered neighbors
at time tik.
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Let T ∆
= {tp̄, tp̄+1, tp̄+2, . . .} denote the set of all event times greater than or equal

to tp̄, where p̄
∆
= max{P1(1), P2(1), . . . Pn(1)}. Note that the registered neighbors of

each agent are defined at each time tp in T . For each p ≥ p̄, it is therefore possible to
describe neighbor relationships using a directed1 graph Gp with vertex set {1, 2, . . . , n}
and directed edge set defined so that (i, j) is a directed edge from vertex i to vertex
j just in case agent j is a registered neighbor of agent i at event time tp.

Let us partially order the set of all directed graphs with vertex set {1, 2, . . . , n}
by agreeing to say that G is contained in Ḡ if the edge set of G is a subset on the edge
set of Ḡ. It is natural then to define the union of a collection of such graphs to be
the directed graph with vertex set {1, 2, . . . , n} and edge set equaling the union of the
edge sets of all of the graphs in the collection. Because of the cooperation assumption
and Proposition 3, we know that each agent keeps all of its registered neighbors as
the system evolves. What this means is the sequence of graphs Gp̄,Gp̄+1, . . . ,Gp, . . .
forms the ascending chain

Gp̄ ⊂ Gp̄+1 ⊂ · · ·Gp · · · .(25)

Because the set of directed graphs on vertices {1, 2, . . . , n} is a finite set, the chain
must converge to the graph

G ∆
=

∞⋃

p=p̄

Gp(26)

in a finite number of steps. More is true. Suppose that agent i has agent j as a
registered neighbor at the beginning of one of agent i’s maneuvering periods. Then
because of Proposition 2, agent i must be a registered neighbor of agent j at the
beginning of one of agent j’s maneuvering periods. These observations together with
the cooperation assumption imply that agents i and j must both eventually become
and remain registered neighbors of each other. As a consequence, there must be
directed arcs in G from vertex i to vertex j as well as from vertex j to vertex i.
Clearly G must be a directed graph with the property that for each distinct pair of
vertices—say i and j—either there is no directed arc connecting one to the other or
there are two directed arcs, one from vertex i to vertex j and the other from vertex j
to vertex i. Directed graphs with this property are usually regarded as simple graphs
whose edges represent such pairs of directed arcs [6]. In what follows we shall adopt
this viewpoint and refer to G as a simple graph. Our main result is as follows.

Theorem 1. Let u0 = 0 ∈ DM and for each m ∈ {1, 2, . . . , n−1}, let um : Dm →
DM be any continuous function satisfying the aforementioned control law require-
ments. For each set of initial agent positions x1(0), x2(0), . . . , xn(0), each agent’s po-
sition xi(t) converges to a unique point πi ∈ R2 such that for each i, j ∈ {1, 2, . . . , n},
either πi = πj or ||πi−πj || > r. Moreover, if agent j is a registered neighbor of agent
i at the beginning of one of agent i’s maneuvering periods, then πi = πj.

This theorem will be proved in section 4.
Theorem 1 states that the strategies under consideration cause all agents’ po-

sitions to converge to points in the plane with the property that each pair of such
points are either equal to each other or separated by a distance greater than r units.

1It will soon be clear that the aforementioned symmetry of the neighbor relationship will ulti-
mately enable us to characterize neighbor relationships with a simple, undirected graph as in the
synchronous case.
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The theorem further states that if one agent is ever a registered neighbor of another,
then both converge to the same point. Thus all n agents’ positions will converge to
a single point if any one directed graph in the ascending chain is strongly connected.
We are led to the following corollary.

Corollary 1. If at any event time tp ≥ tp̄, the directed graph Gp characterizing
registered neighbors is strongly connected, then positions of all n agents converge to a
common point in the plane.

4. Analysis. The aim of this section is to establish the correctness of Theorem 1.
This requires the analysis of the asymptotic behavior of the asynchronous process
described by (22) and (24) for i ∈ {1, 2, . . . , n}. Despite the apparent complexity of
this process, it is possible to capture its salient features for ts sufficiently large using a
suitably defined synchronous discrete-time, hybrid dynamical system S. The process
of constructing a synchronous process to model the behavior of an asynchronous
process is called analytic synchronization and has been outlined in the introduction
to this paper. In what follows we demonstrate the utility of this idea by applying it
to the problem at hand.

4.1. A synchronous model of the asynchronous agent system. It is suffi-
cient to analyze the behavior of the n-agent system for times beyond the time at which
each agent’s neighbor set stops changing. Analytic synchronization would thus have
us define S to be a synchronous system evolving on the event time set {tp : p ∈ P}
where P = {p; p ≥ p∗} and p∗ is the smallest value of p ≥ p̄ for which the ascending
chain shown in (25) has converged to the limit graph G in (26). To reduce clutter
we will instead define S to be a synchronous discrete-time dynamical system evolving
on the index set P. Thus for p ∈ P, the registered neighbors of each agent do not
change. For simplicity, we will only deal with the case when each agent has at least
one neighbor for tp ≥ tp∗ . The position update equation (24) for agent i can thus be
written as

xi(t̄i(k+1)) = xi(t̄ik) + umi(xii1(t̄ik) − xi(t̄ik), . . . , xiimi
(t̄ik) − xi(t̄ik)),(27)

where mi is a positive number and Ni
∆
= {i1, i2, . . . , imi} is the set of indices labelling

agent i’s registered neighbors. Just as before,

xij(t̄ik) =

{
xj(t̄jq) if Si(k) ∩ Sj(q) ( τS ,

xj(t̄j(q−1)) otherwise,
(28)

and

Ni = {j : ||xi(t̄ik) − xj(t̄iq)|| ≤ r and Si(k) ∩ Sj(q) ( τS}
⋃

{j : ||xi(t̄ik) − xj(t̄i(q−1))|| ≤ r and Si(k) ∩ Sj(q − 1) ( τS},(29)

where q = )t̄ik*j . Note that it must be true that

||xj(t̄jq) − xi(t̄ik)|| ≤ r(30)

because of (7). In view of (29) it also must be true that

||xj(t̄j(q−1)) − xi(t̄ik)|| ≤ r if Si(k) ∩ Sj(q) +( τS .(31)

Inequalities (30) and (31) are consequences of the assumption that j ∈ Ni. These
inequalities will translate into constraints on the state of S.
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4.1.1. Definition of S. We will take as the state space of S the space X of all
lists {y1, y2, . . . , yn, w1, w2, . . . , wn} satisfying

yi, wi ∈ R2,

||yi − yj || ≤ r

}
, j ∈ Ni, i ∈ {1, 2, . . . , n}.(32)

In what follows we often write y for {y1, y2, . . . , yn} and w for {w1, w2, . . . , wn}. We
sometimes refer to {yi, wi} as the state of “node” i. For i ∈ {1, 2, . . . , n} let P−1

i be
a left inverse of Pi and let Pi = P ∩ image Pi. We now define S to be a time-varying
system with state {y, w}; for each i ∈ {1, 2, . . . , n}, the state of node i evolves on P
according to update equations defined for p ∈ Pi by

yi(p + 1) = yi(p) + umi(vii1(p) − yi(p), . . . , viimi
(p) − yi(p)),(33)

wi(p + 1) = yi(p),(34)

where

vij(p) =

{
yj(p) if Si(P

−1
i (p)) ∩ Sj()tp*j) ( τS ,

wj(p) otherwise

}
, j ∈ Ni,(35)

and by

yi(p + 1) = yi(p),(36)

wi(p + 1) = wi(p)(37)

for p +∈ Pi. We require that yi satisfies the neighbor constraints

||yi(p) − wj(p)|| ≤ r if Si(P
−1
i (p)) ∩ Sj()tp*j) +( τS , p ∈ Pi, j ∈ Ni.(38)

Note that these constraint requirements together with the definition of X and vij
ensure that ||vij − yi(p)|| ≤ r whenever p ∈ Pi. This in turn is necessary for (33) to
make sense because the domain of umi is Dmi .

The preceding defines S to be a synchronous discrete-time dynamical system with
state constraints given by (38). The definition depends on the Ni as well as the n
event time sequences {t̄ik; k ≥ 1}. We have assumed that the Ni are nonempty; in
addition, Ni ⊂ {1, 2, . . . , i − 1, i + 1, . . . , n}. As a consequence of Proposition 2 and
the assumption that neighbors stop changing, the Ni all have the following symmetry
property: If j ∈ Ni, then i ∈ Nj . Because of the symmetry property we can associate
with the Ni a simple graph G with vertex set {1, 2, . . . , n} and edge set defined in
such a way that (i, j) is in the edge set just in case i ∈ Nj and j ∈ Ni. Note that this
is precisely the same as the simple graph mentioned just before Theorem 1. As for
event times, recall that each event time sequence is strictly monotone increasing and
that together they all satisfy Lemma 1, (2), and (3). In defining S, these are the only
properties of the Ni and the event times which are assumed.

4.1.2. Validation of S. We claim that S provides a synchronous model of the
asynchronous agent system describe by (27)–(31). The first step in justifying this
claim is to define

yi(p) = xi(t̄ik),

wi(p) = xi(t̄i(k−1))

}
, Pi(k − 1) < p ≤ Pi(k), k ∈ P−1

i (P),(39)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2136 J. LIN, A. S. MORSE, AND B. D. O. ANDERSON

for i ∈ {1, 2, . . . , n}. Note that yi has been defined so that it is constant between
agent i’s event times and agrees with xi whenever p is such that tp is within one of
agent i’s sensing periods.

To justify the claim that S models (27)–(31), we need to prove that with the yi(p)
and wi(p) defined by (39), {y(p), w(p)} ∈ X , p ∈ P, and (33)–(38) are satisfied. In
view of (30) and the definition of the yi(p) in (2), it is clear that for i ∈ {1, 2, . . . , n},
||yi(p)− yj(p)|| ≤ r, j ∈ Ni, p ∈ P. Therefore {y(p), w(p)} ∈ X , p ∈ P. It remains to
be shown that (33)–(38) are satisfied. To accomplish this, fix p ∈ P and suppose that
k is that value for which Pi(k) ≤ p < Pi(k + 1). Set p1 = Pi(k) and p2 = Pi(k + 1).
By definition,

yi(p1) = xi(t̄ik),(40)

wi(p1) = xi(t̄i(k−1)),(41)

yi(p2) = xi(t̄i(k+1)),(42)

wi(p2) = xi(t̄ik),(43)

yi(s) = yi(p2), p1 < s ≤ p2,(44)

wi(s) = wi(p2), p1 < s ≤ p2.(45)

Suppose first that p +∈ Pi or, equivalently, that p1 < p < p2. Then p1 < p + 1 ≤ p2,
so yi(p + 1) = yi(p2) and wi(p + 1) = wi(p2) because of (44) and (45), respectively.
But yi(p) = yi(p2) and wi(p) = wi(p2) also because of (44) and (45), respectively. It
follows that (36) and (37) are true.

Now suppose that p ∈ Pi or, equivalently, that p = p1. Then p1 < p + 1 ≤ p2, so
yi(p + 1) = yi(p2) and wi(p + 1) = wi(p2) because of (44) and (45), respectively. It
follows from (42) and (43) that

yi(p + 1) = xi(t̄i(k+1))(46)

and

wi(p + 1) = xi(t̄ik).(47)

But

xi(t̄ik) = yi(p)(48)

because of (40); thus (34) is true.
Fix j ∈ Ni and set q = )tp*j . To justify (38) and (33) we will need to express

xj(t̄iq), xj(t̄i(q−1)), and k in terms of yj , wj , and p, respectively. Note first that
tp = t̄ik because p = p1. Thus

q = )t̄ik*j ,(49)

so t̄j(q−1) < t̄ik ≤ t̄jq. This means that Pj(q − 1) < Pi(k) ≤ Pj(q) and thus that
Pj(q − 1) < p ≤ Pj(q). But by definition yj(s) = xj(t̄jq) and wj(s) = xj(t̄j(q−1)) for
Pj(q − 1) < s ≤ Pj(q). Therefore

xj(t̄jq) = yj(p),(50)

xj(t̄j(q−1)) = wj(p).(51)
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Finally note that

k = P−1
i (p)(52)

because Pi(k) = p1 = p. It is now clear from (40), (51), and (52) that the inequality
in (31) translates into neighbor constraint (38).

In addition, examination of (48)–(52) together with the definitions of xij(t̄ik) and
vij(p) in (28) and (35), respectively, reveals that

xij(t̄ik) = vij(p).(53)

From this and (48) it follows that the expression for xi(t̄i(k+1)) in (27) can be written
as

xi(t̄i(k+1)) = yi(p) + umi(vii1(p) − yi(p), . . . , viimi
(p) − yi(p)).

This and (46) thus finally justify (33).
By a trajectory of S is meant a sequence of states {{y(p), w(p)} : p ∈ P} which

satisfy (33)–(37) as well as the neighbor constraints (38). The preceding proves that
the family of such trajectories is nonempty and contains the trajectory which repre-
sents the actual agent system under consideration. It turns out that the trajectory
representing the actual agent system has an additional property which we will exploit
later.

Lemma 4. For i ∈ {1, 2, . . . , n}, let yi(p) and wi(p) be defined by (39). Let
i ∈ {1, 2, . . . , n} and s ∈ Si be fixed. Suppose that for some j ∈ {1, 2, . . . , n} and
p ∈ Pi,

||yi(p + 1) − yj(p)|| ≤ r,(54)

||wi(p + 1) − yj(p)|| ≤ r.(55)

Then j ∈ Ni.
Proof of Lemma 4. Since p ∈ Pi and Pi is strictly monotone, there is a unique

integer k for which p = Pi(k). Let q = )t̄ik*. As noted previously in the development
leading to (46)–(50), yi(p+1) = xi(t̄i(k+1)), wi(p) = xi(t̄ik), and yj(p) = xj(t̄jq). Thus
(54) and (55) translate into ||xi(t̄i(k+1)) − xj(t̄jq)|| ≤ r and ||xi(t̄ik) − xj(t̄jq)|| ≤ r,
respectively. Moreover, Lemma 1 states that Si(k) must strongly overlap either Sj(q)
or Sj(q − 1). If the former is true, then condition (A) of Proposition 1 is satisfied
and thus j ∈ Ni. Suppose next that Si(k) does not strongly overlap Sj(q). Then
t̄i(k+1) ∈ {q, q + 1} because of (4) and condition 3 in Lemma 2. If t̄i(k+1) = q, then
Si(k + 1) ∩ Sj(q) ≥ τS because of condition 1 in Lemma 2. Thus condition (A) of
Proposition 1 is satisfied when k + 1 is substituted for k; thus in this case j ∈ Ni.
Suppose t̄i(k+1) = q + 1. In view of Lemma 2, Si(k) and Si(k + 1) are the only
sensing periods of agent i which can strongly overlap Sj(q). Since Sj(q) must be
strongly overlapped by at least one of agent i’s sensing periods, it must be true that
Si(k+1)∩Sj(q) ≥ τS . Thus condition (B) of Proposition 1 is satisfied with k+1 and
q + 1 substituted for k and q, respectively. Therefore j ∈ Ni.

Conditions (54) and (55) do not necessarily imply that j ∈ Ni for every trajectory
of S. The claim of Lemma 4 is that the implication does indeed hold if the trajectory
in question is the one which models the actual agent system.

4.2. Properties of S. In section 4.1 we defined S and proved that it faithfully
models the actual agent system. In this section we derive several important properties
of S.
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4.2.1. Local convex hulls. In what follows we denote the convex hull of a given
set of points x1, x2, . . . , xq in R2 by 〈x1, x2, . . . , xq〉. We write Hi(p) for the ith local
convex hull

Hi(p) = 〈yi(p), yi1(p), . . . , yimi
(p), wi(p), wi1(p), . . . , wimi

(p)〉,

where {i1, i2, . . . , imi} = Ni. We also write H(p) for the (global) convex hull

H(p) = 〈y1(p), y2(p), . . . , yn(p), w1(p), w2(p), . . . , wn(p)〉,

and K(p) for the set of corners of H(p). Clearly

Hi(p) ⊂ H(p), i ∈ {1, 2, . . . , n}, p ∈ P.(56)

This fact plays a role in the proof of the following lemma which establishes a funda-
mental property of S.

Lemma 5.

H(p + 1) ⊂ H(p), p ∈ P.(57)

Proof of Lemma 5. Fix i ∈ {1, 2, . . . , n} and note that (33) and the control law
requirement that um(z1, z2, . . . , zm) ∈ 〈0, z1, . . . , zm〉, zi ∈ D, imply that yi(p + 1) ∈
Hi(p), p ∈ Pi; thus yi(p + 1) ∈ H(p), p ∈ Pi, because of (56). Moreover, yi(p + 1)
is also in H(p) for p +∈ Pi because of (36). Therefore yi(p + 1) ∈ H(p) for all p ∈ P.
Similarly, wi(p+ 1) ∈ H(p), p ∈ P, because of (34) and (37). Thus {yi(p+ 1), wi(p+
1)} ⊂ H(p), p ∈ P. Since this holds for all i ∈ {1, 2, . . . , n}, (57) is true.

4.2.2. Stationary nodes. Let us agree to say that node i is stationary at time
p ∈ Pi if

yi(p) = vii1(p) = · · · = viimi
(p).

The terminology is prompted by the fact that if node i is stationary at p, then yi(p+
1) = yi(p); this can be seen from (33) and the control law requirements imposed
on umi . In addition, the requirement that um(z1, z2, . . . , zm) not be a corner of
〈0, z1, . . . , zm〉 unless z1 = z2 = · · · = zm = 0 implies that if yi(p + 1) is a corner
of 〈yi(p), vii1(p), . . . , viimi

(p)〉, then node i must be stationary at p. The following
lemma implies that this is also true if yi(p + 1) is a corner of H(p).

Lemma 6. Fix i ∈ {1, 2, . . . , n} and p̄ ∈ Pi. If yi(p̄ + 1) ∈ K(p̂) for some p̂ ≤ p̄,
then node i must be stationary at each p ∈ Pi ∩ {p : p̂ ≤ p ≤ p̄} and

yi(p) = yi(p̄ + 1)(58)

for all such p.
Proof of Lemma 6. Let p1, p2, . . . , pm denote the elements of the set Pi ∩ {p : p̂ ≤

p ≤ p̄}, ordered so that p1 < p2 < · · · < pm = p̄. To prove the lemma it is sufficient
to show that the following statements hold for k ∈ {1, 2, . . . ,m}:

(i) Node i is stationary at pk, pk+1, . . . , pm.
(ii) yi(pk) = yi(pk+1) = · · · = yi(pm) = yi(p̄ + 1).
Let H̄(ps) = 〈yi(ps), vii1(ps), . . . , viimi

(ps)〉, s ∈ {1, 2, . . . ,m}. Note that um

must satisfy the control law requirement um(z1, z2, . . . , zm) ∈ 〈0, z1, . . . , zm〉. In view
of (33), it must therefore be true that

yi(ps + 1) ∈ H̄(ps), s ∈ {1, 2, . . . ,m}.(59)
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Note next that the definition of vij in (35) implies that vij(ps) ∈ {yj(ps), wj(ps)}, s ∈
{1, 2, . . . ,m}. Therefore H̄(ps) ⊂ Hi(ps). But Hi(ps) ⊂ H(ps); moreover, H(ps) ⊂
H(p̂) because of Lemma 5. Thus H̄(ps) ⊂ H(p̂). This implies that

H̄(ps) ∩K(p̂) ⊂ K̄(ps), s ∈ {1, 2, . . . ,m},(60)

where K̄(ps) is the corner set of H̄(ps).
Recall that pm = p̄. By assumption, yi(p̄+1) ∈ K(p̂). These facts and (59) imply

that yi(pm +1) ∈ H̄(pm)∩K(p̂). Thus yi(pm +1) ∈ K̄(pm) because of (60). Therefore
node i is stationary at pm, and because of this, yi(pm +1) = yi(pm). Thus statements
(i) and (ii) above are true for k = m. If m = 1, the proof is complete.

Suppose next that m > 1 and that statements (i) and (ii) hold for all k ∈ {q +
1, . . . ,m} where q is some integer satisfying 1 < q + 1 ≤ m. In view of (36), yi(p) =
yi(pq+1) for pq < p ≤ pq+1. Therefore

yi(pq + 1) = yi(pq+1).(61)

By hypothesis, (ii) holds for k = q + 1; thus yi(pq + 1) = yi(p̄ + 1). Therefore
yi(pq + 1) ∈ K(p̂). But yi(pq + 1) ∈ H̄(pq) because of (59). Therefore yi(pq + 1) ∈
H̄(pq) ∩K(p̂). From this and (60) it follows that yi(pq + 1) ∈ K̄(pq). Therefore node
i is stationary at pq, and because of this yi(pq + 1) = yi(pq). Hence yi(pq) = yi(pq+1)
because of (61). Thus statements (i) and (ii) above are true for k = {q, q+ 1, . . . ,m}.
By induction, statements (i) and (ii) must hold for all k ∈ {1, 2, . . . ,m}.

4.2.3. Equilibrium states. By an equilibrium state of S we mean a state which
does not change under the action of (33)–(37) under any conditions for every value of
p ∈ P. It is easy to see that equilibrium states are precisely those states {y, w} ∈ X
for which

yi = yii1 = · · · = yiimi
= wi = wii1 · · · = wiimi

∀i ∈ {1, 2, . . . , n}.

Note that each equilibrium state is invariant under the action of (33)–(37) under any
and all possible conditions. It is clear that if S is in an equilibrium state at p, then
each node of S is stationary at p. It is also not difficult to see that if each node of S
is stationary at p, then S is at an equilibrium state at time p + 1.

4.2.4. Locally rendezvoused nodes. In what follows we will say node i ∈ {1,
2, . . . , n} has locally rendezvoused at time p if Hi(p) is a single point, i.e., if yi(p) =
yi1(p) = · · · = yimi

(p) = wi(p) = wi1(p) = · · · = wimi
(p). Note that if a node

has locally rendezvoused at p, it must be stationary at p. The following proposition
provides a criterion for a node of S to be locally rendezvoused.

Proposition 4. Let p1 < p2 < p3 < p4 be four consecutive values of p in Pi. If
yi(p4 + 1) ∈ K(p1), then node i is locally rendezvoused at p = p3.

The proof of Proposition 4 depends on the following lemmas.
Lemma 7. Let p1 and p2 be two consecutive values of p in Pi. Suppose for some

i ∈ {1, 2, . . . , n} that yi(p2 + 1) ∈ K(p1). Then

yi(p1) = yj(p1), j ∈ Ni.(62)

Proof of Lemma 7. By hypothesis, yi(p2 + 1) ∈ K(p1). Therefore by Lemma 6,
yi(p1) = yi(p2) and node i is stationary at both p1 and p2. Because node i is stationary
at p2, yi(p2) = vij(p2), j ∈ Ni. Therefore

yi(p1) = vij(p2), j ∈ Ni.(63)
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To justify (62) it is therefore enough to show that

vij(p2) = yj(p1), j ∈ Ni.(64)

For this fix j ∈ Ni and define k = P−1
i (p1) and q = )t̄ik*j . Since p1 = Pi(k) and

t̄j(q−1) < t̄ik ≤ t̄jq,

Pj(q − 1) < p1 ≤ Pj(q).(65)

Let q̄ = )t̄i(k+1)*j . Since p2 = Pi(k + 1) and t̄j(q̄−1) < t̄i(k+1) ≤ t̄jq̄,

Pj(q̄ − 1) < p2 ≤ Pj(q̄).(66)

By Lemma 2, q̄ ∈ {q, q + 1, q + 2}. We claim that no matter which value q̄ takes,

vij(p2) ∈ {yj(Pj(q)), yj(Pj(q + 1)), yj(Pj(q + 2))}.(67)

To justify this claim, consider first the case when q̄ = q. Then Si(k + 1)∩ Sj(q) ( τS
because of Lemma 2. In general q̄ = )tp2*j because tp2 = t̄i(k+1). Thus in this case

q = )tp2*j . In addition k + 1 = P−1
i (p2). Therefore Si(P

−1
i (p2)) ∩ Sj()tp2*j) ( τS .

From this and (35) it follows that vij(p2) = yj(p2). In view of (36), yj(p) = yj(Pj(q))
for all values of p in the range Pj(q − 1) < p ≤ Pj(q). But Pj(q − 1) < p2 ≤ Pj(q)
because of (66). Therefore yj(p2) = yj(Pj(q)). Thus vij(p2) = yj(Pj(q)) which proves
that (67) holds in this case.

Now suppose that q̄ = {q + 1, q + 2}. In this case vij(p2) equals either yj(p2) or
wj(p2) because of (35). In view of (36), yj(p) = yj(Pj(q̄)) for Pj(q̄ − 1) < p ≤ Pj(q̄).
From this and (66) it follows that yj(p2) = yj(Pj(q̄)). Thus if vij(p2) = yj(p2), then
vij(p2) = yj(Pj(q̄)). Since q̄ ∈ {q + 1, q + 2}, (67) must hold in this situation. To
prove that (67) also holds in the alternative situation, when vij(p2) = wj(p2), we
exploit the relation wj(Pj(q̄ − 1) + 1) = yj(Pj(q̄ − 1)) which is valid because of (34).
In view of (37), wj(p) is constant for p in the range Pj(q̄ − 1) < p ≤ Pj(q̄). But p2

is in this range because of (66); clearly Pj(q̄ − 1) + 1 is as well. Therefore wj(p2) =
wj(Pj(q̄ − 1) + 1). It follows that wj(p2) = yj(Pj(q̄ − 1)). Thus if vij(p2) = wj(p2),
then vij(p2) = yj(Pj(q̄− 1)). Since q̄ ∈ {q + 1, q + 2}, (67) must hold in this situation
too. Thus (67) holds under all conditions.

It will now be shown that

vij(p2) = yj(Pj(q)).(68)

Consider first the situation when vij(p2) = yj(Pj(s)), where s is fixed at either value
in {q + 1, q + 2}. Since node i is stationary at p2, vij(p2) = yi(p2 + 1). Thus
yj(Pj(s)) = yi(p2 + 1). By hypothesis, yi(p2 + 1) ∈ K(p1). Thus yj(Pj(s)) ∈ K(p1).
Moreover, p1 ≤ Pj(q) because of (65). Thus by Lemma 6, yj(Pj(s)) = yj(Pj(q)).
Therefore (68) holds when vij(p2) = yj(Pj(s)) for s ∈ {q + 1, q + 2}. In view of (67),
the only other possibility is vij(p2) = yj(Pj(q)). Therefore (68) is true under all
conditions.

It remains to be shown that (64) holds. In view of (36), yj(p) = yj(Pj(q)) for
p in the range Pj(q − 1) < p ≤ Pj(q). But (65) shows that p1 is in this range so
yj(p1) = yj(Pj(q)). From this and (68) it follows that (64) holds.

Lemma 8. For any integers i ∈ {1, 2, . . . , n} and k ≥ 1,

Pi(k + 1) − Pi(k) ≤ 2(n− 1).(69)
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Moreover, for any integer j ∈ {1, 2, . . . , n} which is not equal to i, there are at most
two successive positive integers s, s + 1 such that

Pi(k) ≤ Pj(s) < Pj(s + 1) ≤ Pi(k + 1).(70)

Proof of Lemma 8. Fix i, j ∈ {1, 2, . . . , n} and k > 0. Let s and p be positive
integers such that t̄ik ≤ t̄js < t̄j(s+p) ≤ t̄i(k+1). These inequalities imply that t̄j(s+p)−
t̄js < t̄i(k+1) − t̄ik. But pτD ≤ t̄j(s+p) − t̄js because of (2) and t̄i(k+1) − t̄ik < 2τD
because of (3). Therefore pτD < 2τD, so p = 1. Thus there are at most two successive
event times t̄js and t̄j(s+1) for which t̄ik ≤ t̄js < t̄j(s+1) ≤ t̄i(k+1). Moreover, since
{j : j ∈ {1, 2, . . . , n}, j += i} contains n − 1 integers, it therefore follows that the
number of distinct event times in the set {t̄js : j ∈ {1, 2, . . . , n}, j += i, s ≥ 1} which
satisfy t̄ik ≤ t̄js ≤ t̄i(k+1) does not exceed 2(n − 1). But Pi(·) and Pj(·) are strictly
monotone increasing, and t̄iq = tPi(q), t̄jq = tPj(q) for all q ≥ 1. Therefore (69) is true,
and there are at most two successive integers s, s + 1 for which (70) holds.

Proof of Proposition 4. By hypothesis, yi(p4 +1) ∈ K(p1), and p1 < p2 < p3 < p4.
Therefore by Lemma 6,

yi(p2) = yi(p3) = yi(p4) = yi(p4 + 1),(71)

and node i is stationary at p3 and p4. In view of (34), wi(p2 + 1) = yi(p2). But
wi(p) = wi(p3) for p2 < p ≤ p3 because of (37), so wi(p2 + 1) = wi(p3). Therefore
yi(p2) = wi(p3). From this and (71) it follows that

yi(p3) = wi(p3).(72)

By hypothesis yi(p4 + 1) ∈ K(p1). In addition, yi(p4 + 1) ∈ H(p3) because of (71).
Thus yi(p4 + 1) ∈ K(p1) ∩ H(p3). In view of Lemma 5, H(p3) ⊂ H(p1). Thus
K(p1) ∩H(p3) ⊂ K(p3). Therefore yi(p4 + 1) ∈ K(p3). Hence by Lemma 7,

yi(p3) = yj(p3), j ∈ Ni.(73)

In view of (72) and (73), node i will be rendezvoused at p3 provided that

yj(p3) = wj(p3), j ∈ Ni.(74)

It will now be shown that this is true.
Fix j ∈ Ni and let q = )t̄ik*j , where k = P−1

i (p3). Equivalently, q is the unique
integer for which Pj(q − 1) < p3 ≤ Pj(q). In view of (36) and (37), yj(p) and wj(p)
are constant for p in the range Pj(q−1) < p ≤ Pj(q). Since both p3 and Pj(q−1)+1
are in this range,

yj(p3) = yj(Pj(q − 1) + 1) and wj(p3) = wj(Pj(q − 1) + 1).(75)

Note next that yi(p4 + 1) = yi(p4) because node i is stationary at p4. From this and
(71) and (73) it follows that yi(p4 + 1) = yj(p3). Thus yi(p4 + 1) = yj(Pj(q− 1) + 1).
Since yi(p4 + 1) ∈ K(p1) it must be true that

yj(Pj(q − 1) + 1) ∈ K(p1).(76)

In view of Lemma 8, there can be at most two consecutive integers in Pj which are
in the set {p : Pj(q − 1) ≤ p ≤ Pj(q)}. Since p3 is one such integer, it must be true
that p1 is not in the set. Therefore p1 < Pj(q − 1). From this, (76), and Lemma 6 it
follows that yj(Pj(q− 1) + 1) = yj(Pj(q− 1)). But wj(Pj(q− 1) + 1) = yj(Pj(q− 1))
because of (34), so wj(Pj(q−1)+1) = yj(Pj(q−1)+1). From this and (75) it follows
that wj(p3) = yj(p3). Therefore (74) is true.
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4.3. Error system. To analyze system behavior it is helpful to use a suitably
defined error system S̄ derived from S. Towards this end, for each p ∈ P let

ȳi(p) = yi(p) − wn(p),

w̄i(p) = wi(p) − wn(p)

}
, i ∈ {1, 2, . . . , n}.(77)

Note that

w̄n(p) = 0, p ∈ P.(78)

Using (33)–(37) we obtain the update equations for {ȳi, w̄i} defined for p ∈ Pi by

ȳi(p + 1) = ȳi(p) + umi(v̄ii1(p) − ȳi(p), . . . , v̄iimi
(p) − ȳi(p)) − ω(p)ȳn(p),(79)

w̄i(p + 1) = ȳi(p) − ω(p)ȳn(p),(80)

where

v̄ij(p) =

{
ȳj(p) if Si(P

−1
i (p)) ∩ Sj()tp*j) ( τS ,

w̄j(p) otherwise

}
, j ∈ Ni,(81)

and by

ȳi(p + 1) = ȳi(p) − ω(p)ȳn(p),(82)

w̄i(p + 1) = w̄i(p) − ω(p)ȳn(p)(83)

for p +∈ Pi. Here ω(p) = 1 if p ∈ Pn and ω(p) = 0 otherwise. In terms of error
variables, the neighbor constraints given by (38) can be written as

||ȳi(p) − w̄j(p)|| ≤ r if Si(P
−1
i (p)) ∩ Sj()tp*j) +( τS , p ∈ Pi j ∈ Ni.(84)

In what follows S̄ denotes the error system defined by (79)–(84). Note that the state
of S̄, namely {ȳ1(p), . . . , ȳn(p), w̄1(p), . . . , w̄n−1(p)}, takes values in the closed space
X̄ of all lists {ȳ1, . . . , ȳn, w̄1, . . . , w̄n−1} satisfying

ȳi, w̄i ∈ R2,

||ȳi − ȳj || ≤ r

}
, j ∈ Ni, i ∈ {1, 2, . . . , n}.(85)

It is possible to describe the preceding state update equations concisely as

x̄(p + 1) = f(p, x̄(p)), p ∈ P,

where x̄ is the state {ȳ1, . . . , ȳn, w̄1, . . . , w̄n−1}, f(p, ·) : X̄ (p) → X̄ is the next state
map defined by (79)–(83), and X̄ (p) is the set of states in X̄ for which the neighbor
constraints (84) hold at time p. It is important to recognize that even though there
are infinitely many possible values of p, there are only finitely many distinct X̄ (p)
and finitely many distinct f(p, ·). Moreover, each X̄ (p) is closed because of (84), and
each f(p, ·) is continuous on its domain because each um(·) is. The following lemma
summarizes these observations.

Lemma 9. There exist a finite index set Q and a finite set of continuous functions
Fq : Xq → X̄ with closed domains such that the following statement is true. For any
p ∈ P there is a q ∈ Q such that X̄ (p) = Xq and Fq(·) = f(p, ·).
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The implication of Lemma 9 is that if {x̄(p) : p ∈ P} is a trajectory of S̄, then
there are indices q(p) ∈ Q, p ∈ P such that

x̄(p) = Fq(p)Fq(p−1) · · ·Fq(τ+1)(x̄(τ)), p > τ, p, τ ∈ P.(86)

Here Fq(p)Fq(p−1) · · ·Fq(τ+1) is a “composed function,” where by the composition of
functions Fs and Fq we mean the function FqFs : Xqs → X̄ , whose domain Xqs is the
inverse image of Xq under Fs, and whose action on x̄ is x̄ 1−→ Fq(Fs(x̄)). Composition
is an associative operation, and because of this, the operation extends unambiguously
to finite families of Fq. Note that any such composed function F = Fq1Fq2 · · ·Fqk has
a closed domain on which it is continuous.

Suppose that p̄ > 0 is fixed. If follows from the preceding that there are q(p) ∈ Q
such that

x̄(p + p̄) = Fq(p+p̄)Fq(p+p̄−1) · · ·Fq(p+1)(x̄(p)), p ∈ P.(87)

It is important to recognize that even though the composed function Fq(p+p̄)Fq(p+p̄−1)

· · ·Fq(p+1)(x̄(p)) depends on p, there can be only a finite number of such composed
functions. This is because the family of maps {Fq : q ∈ Q} is a finite set and because
the composed functions in question are all compositions of exactly p̄ maps in the
family. The following proposition summarizes these observations.

Proposition 5. Let p̄ > 0 be fixed. There exist a finite index set Q̄, a finite set
of closed subsets X̄q ⊂ X̄ , and a finite set of continuous maps Dq : X̄q → X̄ , q ∈ Q̄,
with the following property. For each trajectory {x̄(p) : p ∈ P} of S̄, and each p ∈ P,
there is a q ∈ Q̄ such that

x̄(p̄ + p) = Dq(x̄(p)).(88)

4.4. Global rendezvous. It is natural to say that the n nodes of S have (glob-
ally) rendezvoused at time p if H(p) is a single point, i.e., if y1(p) = y2(p) = · · · =
yn(p) = w1(p) = w2(p) = · · · = wn(p). In view of the definitions of tp and the yi
and wi in (39), it is clear that the rendezvousing of all n nodes at time p implies the
rendezvousing of all n agents at time tp. It is also clear that the rendezvousing of all
n nodes at time p implies that each node has locally rendezvoused at p. Under certain
conditions the converse is also true.

Lemma 10. Suppose G is a connected graph. Suppose in addition that {{y(p),
w(p)} : p ∈ P} is the trajectory of S defined by (39). If for some i ∈ {1, 2, . . . , n}
and p ∈ Pi, node i is locally rendezvoused, then the n nodes of S have globally
rendezvoused.

Proof of Lemma 10. Suppose node i is locally rendezvoused at p ∈ Pi. Then
yi(p) = yj(p) and wi(p) = yj(p), j ∈ Ni. Moreover, since node i is locally ren-
dezvoused at p, it must be stationary at p. Therefore yi(p + 1) = yi(p); in addition,
wi(p+1)) = yi(p) because of (34). Thus yi(p+1) = yj(p) and wi(p+1) = yj(p), j ∈
Ni. Fix j ∈ Ni and k ∈ Nj . Then ||yj(p) − yk(p)|| ≤ r because of the definition
of X . Therefore ||yi(p + 1) − yk(p)|| ≤ r and ||wi(p + 1) − yk(p)|| ≤ r. It follows
from Lemma 4 that k ∈ Ni. Since this holds for every k ∈ Nj , it must be true that
Nj ⊂ Ni. Since j is arbitrary, this must be true for all j ∈ Ni. Since G is connected,
this can happen only if G is complete. Thus Ni = {1, 2, . . . , n} which means that
Hi(p) = H(p). By hypothesis Hi(p) is a single point. Therefore Hi(p) is also a single
point, so the n nodes of S have globally rendezvoused.

Establishing the preceding result requires one to be able to conclude that if for
some i, j ∈ {1, 2, . . . , n} and some p ∈ Pi, nodes i and j are in the same “position” in
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the sense that yi(p) = yj(p) = wi(p), then Nj ⊂ Ni. In words, what this is roughly
saying is that if node j is in the same position as node i, then node j’s “neighbors”
must also be neighbors of node i. This transitivity property is not true in general, but
it is true if y(p) and w(p) are defined by (39). This is a consequence of Lemma 4.

The following proposition shows that if H does not change for a sufficiently long
period of time, then the n nodes have rendezvoused.

Proposition 6. Suppose that G is a connected graph. Suppose in addition that
{y(p), w(p) : p ∈ P} is the trajectory of S defined by (39). Suppose that pa and pb are
values in P for which pb − pa ≥ 8n and

dia{H(pa)} = dia{H(pb)}.(89)

Then the n nodes of S have rendezvoused at p = pb.
Proof of Proposition 6. Choose i ∈ {1, 2, . . . , n} so that for some z ∈ H(pb),

||yi(pb)−z|| = dia{H(pb)}. Then yi(pb) ∈ K(pb). In view of Lemma 5, H(pb) ⊂ H(pa).
Therefore yi(pb), z ∈ H(pa). Moreover, ||yi(pb) − z|| = dia{H(pa)} because of (89);
thus

yi(pb) ∈ K(pa).(90)

Let p4 be the largest value of p ∈ Pi such that p4 < pb. Define k = P−1
i (p4) − 3 so

that Pi(k + 3) = p4. Then p4 < pb ≤ Pi(k + 4). By (69),

pb − p4 ≤ 2(n− 1).(91)

In view of (36), yi(p) is constant for p in the range p4 < p ≤ Pi(k + 4). Since both
p4 + 1 and pb are in this range, yi(p4 + 1) = yi(pb). Thus

yi(p4 + 1) ∈ K(pa).(92)

Define p1 = Pi(k), p2 = Pi(k + 1), and p3 = Pi(k + 2). Clearly p1 < p2 < p3 <
p4. Moreover, pj+1 − pj ≤ 2(n − 1), j ∈ {1, 2, 3}, because of (69). From these
inequalities and (91) it follows that pb − p1 ≤ 8(n− 1). By hypothesis, pb − pb ≥ 8n.
Therefore pa < p1. In view of Lemma 5, H(p4) ⊂ H(p1) and H(p1) ⊂ H(pa).
Therefore H(p1) ∩ K(pa) ⊂ K(p1). But H(p4 + 1) ⊂ H(p1) because of Lemma 5;
thus yi(p4 + 1) ∈ H(p1). This and (92) imply that yi(p4 + 1) ∈ H(p1) ∩ K(pa).
Therefore yi(p4 + 1) ∈ K(p1). From this and Proposition 4 it follows that node i has
locally rendezvoused at p3. Therefore by Lemma 10, the n nodes of S are rendezvoused
at p3.

The following theorem is our main convergence result concerning S. The main
result of this paper, Theorem 1, is an immediate consequence.

Theorem 2. Let {{y(s), w(s)} : p ∈ P} be the trajectory of S defined by (39). If
G is a connected graph, then

lim
s→∞

dia〈y1(s), y2(s), . . . , yn(s), w1(s), w2(s), . . . , wn(s)〉 = 0.(93)

Proof of Theorem 2. In what follows we write x(p) for {y1(p), . . . , yn(p), w1(p), . . . ,
wn(p)} and x̄(p) for the error vector {ȳ1(p), . . . , ȳn(p), w̄1(p), . . . , w̄n−1(p)} defined by
(77). Let V : X → R denote the diameter function x 1−→ dia〈y1, y2, . . . , yn, w1, w2,
. . . , wn〉. Similarly, let V̄ : X̄ → R denote the diameter function x̄ 1−→ dia〈ȳ1, ȳ2,
. . . , ȳn, w̄1, w̄2, . . . , wn−1, 0〉. Note that

V (x(p)) = V̄ (x̄(p)).(94)
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Note in addition that because 0 ∈ 〈ȳ1, ȳ2, . . . , ȳn, w̄1, w̄2, . . . , wn−1, 0〉, V̄ is radially
unbounded, whereas V is not.

As a consequence of Lemma 5, V (x(p)) is a monotone nonincreasing function of
p. Clearly V (x(p)) is bounded below by 0. Moreover, V (x(p)) is bounded above by
V (x(0)) because V (·) is continuous. Therefore there must exist a finite limit

V ∗ = lim
p→∞

V (x(p)).

We claim that V ∗ = 0. To prove this claim, suppose it is false. Then V ∗ > 0.
This means that the trajectory {x(p) : p ∈ P} cannot contain any points in the set
E = {x : V (x) = 0}. To proceed, fix s̄ > 8n and let ∆(x(p)) denote the difference

∆(x(p)) = V (x(p̄ + p)) − V (x(p)).(95)

Since V (x(p)) is monotone nonincreasing, ∆(x(p)) ≤ 0, p ∈ P. In the light of Propo-
sition 6 and the fact that E has no points in common with {x(p) : p ∈ P}, one can
conclude that ∆(x(p)) += 0, p ∈ P. Therefore

∆(x(p)) < 0, p ∈ P.(96)

Define ∆̄(x̄(p)) as

∆̄(x̄(p)) = V̄ (x̄(p̄ + p)) − V̄ (x̄(p)).(97)

In view of (94)

∆(x(p)) = ∆̄(x̄(p)).(98)

Therefore

∆̄(x̄(p)) < 0, p ∈ P.(99)

According to Proposition 5, for each p ∈ P there is a continuous function Dq such
that x̄(p + p̄) = Dq(x(p)). Let Wq denote the set of state pairs (x̄(p + p̄), x̄(p)) along
the given trajectory of S̄ for which this formula holds. It follows that

{(x(s + s̄), x(s)) : s ∈ S} =
⋃

q∈Q
Wq

and that each Wq is a closed set. We claim that each Wq is bounded as well. This is in
fact so because of (94), because V̄ is radially unbounded, and because 0 ≤ V (x(p)) ≤
V (x(0)) < ∞.

For (x̂, x̄) ∈ Wq define ∆q : Wq → R so that (x̂, x̄) 1−→ V̄ (Dq(x̂)) − V (x̄). Note
that ∆q is a continuous function on Wq whose value at each point (x̂, x̄) ∈ Wq agrees
with ∆̄(x̄(p)) for some p. It follows from (99) that

∆q(x̂, x̄) < 0, (x̂, x̄) ∈ Wq.

Define

µq = sup
(x̂,x̄)∈Wq

∆q(x̂, x̄).
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Since Wq is compact and ∆q is negative and continuous on Wq, it must be true that
µq < 0. Let

µ = max
q∈Q

µi.

Since Q is finite, µ < 0. Clearly

∆q(x̂, x̄) ≤ µ, (x̂, x̄) ∈ Wq, q ∈ Q.(100)

Note that by construction, for each p ∈ S there must be a q ∈ Q such that ∆̄(x̄(p)) =
∆q(x̄(p + p̄), x̄(p)). From this and (100) it follows that

∆̄(x̄(p)) ≤ µ, p ∈ P.

Therefore

∆(x(p)) ≤ µ, p ∈ P,

because of (98). Note that

V (x(p + p̄)) − V (x(p)) = ∆(x(p)) ≤ µ, p ∈ P.

Thus by summing,

V (x(p + kp̄)) ≤ V (x(p)) + kµ, k ≥ 1.

Therefore, for k sufficiently large V (x(p + kp̄)) must be negative because µ < 0. But
this is impossible because V (·) is positive semidefinite. Hence V ∗ cannot be positive.
This concludes the proof.

5. Concluding remarks. The analysis used in this paper exploits ideas which
appear to have much in common with the embedding process discussed in Chapter 7
of [2] for analyzing “partially asynchronous iterative algorithms.” This suggests that
the tools developed in [2] may be helpful in further understanding the asynchronous
system considered in this paper.

The asynchronous multi-agent rendezvous problem we have considered serves as
an example of the type of problem to which the idea of analytic synchronization can be
applied. The asynchronous version of the flocking problem considered in [3] provides
another. Despite these examples, there are several unsettled issues concerning the
analytic synchronization idea. First, it is not clear what the general process is for
choosing a state vector. Second, it is also not clear what the exact conditions are on
an asynchronously interacting set of dynamical systems for analytic synchronization
to be possible. The examples provided by this paper and by [3] may help to more
precisely formulate these issues and to lead to their resolution.
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