SMOCTHING AS AN IMPROVEMENT ON
FILTERING: ‘A UNIVERSAL BOUND

Indexing terms: Filtering and prediction theory, White noise

Comparison is made between the mean-square errors P, and
P, associated with the linear least-squares filtered and smoothed
estimates of a stationary process of spectral density S(w) in
white noise of spectral demsity Np. A universal curve is
obtained which relates the mixumum possible value of P/Py

to MaX {8(w) No}. The curve sets a bound on the maximum

1mpmvement over filtering which smoothing will offer, in
terms of the maximum signal/noise ratio.

Let s(.) be a stationary scalar random process with power
spectrum S{e), and let noisy measurements z(1) = st} + n{)
of () be available for —oo < r< . The noise n(.) is
stationary and white, with covariance Nod{t—1) and power
spectrum No. The noise process n(.) is assumed to be
independent of the process s{.).

1t is well known how to obtain linear least-squares filtered
and smoothed estimates of £(.) from the measurement process,
-and this aspect of the estimation problem will not concern us.
Instead, we study the errors

Pr=E{s()—5,() Py=ELs(O-50 . . (D

. where §,(t) and §,(?) are the filtered and smoothed estimates,
respectively.
With reasonable conditions on S(w), it is found (see
Reference i, pp. 496 and 501) that
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Qur purpose is to prove the following result.

Smoothing—filtering comparison: Let @ = wq be the frequency
for which x(w) = S(w)/N, is maximum. Then
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This relationship is further interpreted below.
depends on the following facts:

Its proof
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F/(x) < Oforall x >.0. This is straightforward to check.
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To see this, recall that e, maximises (xw) = S(w)/Na,
and then use the fact that f{x(w)} will be minimised when
0 = Wo.

Eqn. 4 foliows from the inequality in (b) by integrating
with respect {0 @.

An advantage of smoothing over filtering is that it leads
to a lower error variance. Eqn. 4, by putting a lower limit on
P,/P;, puts an upper bound on the amount of improvement
which it is possible to obtain from smoothing. The bound
will not necessarily be attained. " Computation of the upper
bound is straightforward, and is, in ferms of simply
"o {5(w)/No}, the maximum signal/noise ratio at any
frequency. By ‘plotting the function f(x) defined in (a)
against x, and relabelling the axes, we obtain the universal

y:
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curve of Fig. 1; this is a graphical representation of the
result of eqn. 4, and shows that, the greafer the gains which
come from smoothing, the highcr is " {S(w)Ng}., Ata
lower signal,v'nmse ratio, the gains are very small.

If (f) is a vector process, we can argue as follows First,
suppose that N, = HQI Then? .

P, = E[{s(t) -3, (r) {S(E) = 5,(t)]
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Now let {%;(w)} denote the eigerivalues of S(w). Then _
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Using arguments as in the scalar case, it follows that
P1 > ll(wo)/‘no (9)

{1+ Ag{wo)/no} In{1 + Az(ea0) 10}
where A{tg) = 7 Li{w). (Note that the 4,(w) are all real.)

In this case, the curve in Fig. 1 still applies, except that the
horizontal axis now is associated with A;(we)/rme. If Nois a
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Fig. 1 Smoothing improvement against maximum signal/noise
ratio

Note the form of the x axis scales: this scale is linear up to 10 and then logarithmic

general positive-definite matrix, one can use modified error
formulas, the modification involving insertion of a weighting
matrix:?

= E[{s(t)—5,(6)) No™{s(th — $,(O}]
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P, = E[{s())— 50} No™ s(t) — £,()]

—21— f trace [{No~* S(0)+ 1} "1 No=1 S(w)ldw (11)
and one has
P Hrlwg)

. {12
{1+ﬂ1(wo)}lﬂ{1+ﬂx(wo)} a2



where _ _
ufwe) = (% MNg™ 18} . . . . . . (3

Again, therefore, the curve of Fig. 1 applies. This time, re-
interpretation of the variables associated with both axes is
required. :
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