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ABSTRACT

If a known linear system is excited by Gaussian white noise, the calculation of the
output covariance of the system is relatively straightforward. This paper considers the
harder converse problem, that of passing from a known covariance to a system which
will generateit. The problem is solved for covariances Ry(z, 7} with [R,(7, 1){ < «o forall ¢
and such that the y-process is Gauss-Markov, i.¢., it may be obtained as the output
of a linear finite-dimensional system excited by white noise.

1. Introduction

A simple statement of the spectral factorization problem is the following.
Suppose that a linear system is driven by white Gaussian noise and that the
covariance of the output is known; state the equations that describe the system.

This problem has been solved in 2 number of ways for the case when the system
is finite-dimensional and time-invariant[1, 2, 3] and has a wide area of application.
For the more general case when the system is finite-dimensional, fime-varying
(with the time-variation such that no actual changes in system structure occur
as time evolves) and with the ouput containing a white noise component, the
spectral factorization problem has recently been solved [4]. The various theorems
involved have also found application in areas of whitening filter theory [5],
state-estimation theory {6] and impedance synthesis [7].

This paper complements [4] by considering time-varying spectral factorization
results for the case when the specified output covariance, call it R,(z, ), does not
contain a white noise component (so that R (¢, 7) is finite for all £). This situation
will be referred to as the singular case. We comment that the solution of the
singular problem is more difficult than that of the nonsingular problem (where
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R,(t, 7) contains a (— =) or white noise part) and is in fact dependent, at least in
the developments that follow, on the nonsingular spectral factorization results.

Since [4] gives a detailed discussion of the time-varying spectral factorization
problem, its history, and its applications, this information will not be repeated
here. In the material that follows, we first review relevant Riccati differential
equation theory and various analysis results for systems driven by white noise.
The time-varying spectral factorization (nonsingular case) resulis are then
briefly reviewed. Using the results of the introductory sections and further results
developed as required, we solve first the spectral factorization problem for the
most straightforward case corresponding to a situation where single differentia-
tion of the system output introduces white noise, and then introduce extensions
to cover the more general cases when multiple differentiations of the system out-
put are required to obtain white noise.

2. Riccati Equation Theory

In the time-varying spectral factorization procedures of {4] and this paper,
Riccatl matrix differential equations of the form

e P P(F' hk) (F——k-—fﬁ—)P PhlhlP klk
J1 Jl J1 J'1

with a non-negative definite symmetric initial condition P(¢,) are encountered.
Both Fand P are r x n'matrices, k, and A, are n-vectors and j, is a nonzero scalar
and all quantities may be time-varying. Associated with F is its transition matrix
@z, 7) defined from

- d
2y a(D(t, 7) = F{H) D¢, 7); O(r, 7y =L

~ The physical significance of the quantities in (1) will be discussed later as
required; meanwhile some results concerning the existence of solutions of (1)
given in [4] and based on optimal control results [8, 9] are now summarized.
We first define R, (7, 7) and R, {1, 7)|(,=0) a5

(3) Ry {t, D) = RO, Dk (D1 =)+ kDD (r, Dy (DI —1)+F (D)8 —7)
4) Ryilt, Dlwmoy = B (OO, 1) P ()0 (7, to)hy(7)

where 1(f) is the unit step function and (1) is the Dirac delta function. Interpreta-
tions of Ry, (1, 7), Ryi{t, 7)| =0y and [R,1(7, 7)—R,1 (2, 7)| (4= ] Will be reviewed in
Section 3. ‘

Sufficient conditions for the solution P(-) of (1) to be well defined over
[#5, 2;] are that (Al) and either (A2) or (A3) be satisfied where:

(A F(-), ky(+), 5,(7) and f,{-) are finite-valued and continuous with j,(z)
nonzero for all 7.

(A2) [Ry1(2, 7)— Rya{t, 7)¢y=0y—n8(z —7)] is a covariance for some positive 7.
(For the limiting situations where f,—— oo and/or #{—0, the condltlon
(A4) given below must also be satisfied.)
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(A3) There exist a time T; and extensions of R, &y, k; and j, defined on
t1, t;+T4] such that (Al) is satisfied on [¢,, ¢+ 71} and [R,(z, 7)—
Rty )|cu=c] given from (3) and (4) is a covariance on [t,, #; +7];
simultaneouslty all states of the system X = Fx at time #; must be-
observable from an output y = Ajx over [#;, £, +T].
(A4) F(-)is uniformly asymptotically stable and F(-) and H(-) are bounded
{for the case [f,, t;] nonfinite).

3. Analysis Results
Consider the single-inpu, single-output system having state-space equations
(5) X = Fx+gu; ¥, = hix+ju

(where g is an n-vector), with the initial state x(z,) being a Gaussian random
variable having zero mean and a covariance matrix P(f;). Suppose also that the
system (5) is driven by white noise of zero mean and a covariance 3(¢ — 7).

For the case when P(t,), F, by, j; in (5) and some #-vector &k, are such that
(A1) and either (A2) or (A3) are satisfied, then the solution of (1) will be well
defined. This means that if we were to set

: ky~Ph
Ji
then the vector g(¢) would be well defined for all # € [t,, #4].
In [4], analysis results may be found which apply to the system (5) with the
g vector given by (6). These yield:

)] E[x(DH)x'(1)] = P(), 1=t

where P(-) is the solution of (1); moreover, the covariance of y is precisely
R,:(2, 7) in (3). Furthermore, if for the system (5), u is set to zero but the initial
state covariance is left unchanged, it is straightforward to compute that the
output covariance is now the quantity we have called R,,(2, 7){(, =, in equation
(4). It is then easy to see that [R,;(#, 7)—R,,(t, 7)|(u=0] Would be the output
covariance of (5) if the initial state vector x(f,) Is set to zero (i.c., P(¢,) is replaced
by the zero matrix) while the input % is again white noise of zero mean and co-
variance 8(t—7).

Further applications of the analysis resuit in [4] yield that the output co-
variance of the system

(8) % = Fx+gu, y=hx
with an initial state covariance matrix P(¢,) is
G R, o) = OO0, POt~ 1)+ R (OP()D (s, t)h('r).l(-r—r)

where g is still given as in (6), /1 is an n-vector and P(-) is the solution of (1) with
initial condition P(z,).
The above analysis results will be used in Sections (4) and (5)
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4. Synthesis Results. Nonsingular Case

A re-interpretation of some of the results discussed in the two preceding
sections gives the solution to the time-varying spectral factorization problem for
the nonsingular case (see also [4]). These results are now given for later reference.

THEOREM 1. If R, (¢, ) is specified as in (3) (i.e, hy(*), k1(0) f1(),
O(-,-) and thus F(-)} are given), then for each P(ty) chosen such that (1) has a well
defined solution P(-) (or such that (A1) and either (A2) or (A3) are satisfied), there
is a system defined by the quadruple F(-), g(-), hy(*). j1(+) having the form of (5)
(with g() given in terms of P(-); see (6)) and having the following properties: with
an initial state covariance P(t,) and a white noise zero mean input having a co-
varignee 3(t— 1), the system state covarignee E[x(f)x'(£)] is P(¢), the solution of
(1), and the outpwt covariance is the specified covariance R,(t, 7).

We note that if the covariance R,,(¢, 7) is specified in the following form

(10) R, (t, 7) = A" (Bt~ 1)+ BO)ADI(r— D) +jT ()8 ~ 1),
then an F(-), /,;(-) and k() may be determined from A{-) and B(-} as discussed
in [4].

5. Synthesis Results. Singular Case

The spectral factorization problem is now considered for the case when the
specified covariance is

(11) R(1, 7) = IO, Dk(D)I{t— )+ k(O (7, Hh() (7 1),

where & and k are n-vectors. It is assumed that R(¢, 7} is differentiable in the
sense that the 82 R (¢, 7)/@¢d7 exists. Since R,(7, 7) is a covariance and #*R (2, 1)/
210t exists then 2R (¢, 1)/ @rdr also is a covariance [10]. Explicit calculation yields

32Ry(t., T)
otor
(12) + B @)+ B OFDOW(, Dk(r)~ F(OR(DI{E—7)
‘ +[E'(D =K' OF O (r, O[A(x)+ F (DA(]1(z = 1).
With the identifications

= [k~ 2 (DF (h(8)— h (Ok(DIS(t—7)

(13) hy = h-+F'; ky = k—Fk; j, = Jkih—hik,
the covariance #*R,(¢, 7)/2té7 becomes identical with the covariance R,,(t, 7) of
(3).

We now state and prove the key lemma.

LEMMA 1. Cousider the case when R(t, ) is specified as in (11) (A(*), k(-),
O(-,-) and thus F(-) are given) over an interval [ty, 1], and O*R(t, T)/8to7 exists
and is written in the form (3) with the identifications (13) holding and with (Al)
satisfied. Then a necessary and sufficient condition for the solution P of (1) (assumed
to be well defined) to satisfy

(149 ' Ph=1Fk
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SJor all t e[1,, t,] is that the non-negative definite symmetric initial condition P(t;)
Jor (1) satisfy

15) : - Pltodhlto) = Kkizo).

Furthermore, if (15) holds, the system (8) (see also (6)) with an initial state co-
variance P(t,) when driven by white noise having a covariance 8(t —7) has as its
state covariance E[x(£)x'(¢)] = P(¢) the solution of (1), and as its output covariance
the specified covariance (11).

Proof. If (14) holds, (I5) obviously holds. For the converse, suppose that
P(¥) is the solution of (1) with non-negative definite symmetric initial condition
P(z,) satisfying (15). Some elementary manipulations using (1}, {6), (13) and
(14) yield

(16) E , (e—Ph) = (F—%’fi) (c—Ph);  (k—Ph)|,—q = 0.

This means that Ph = k for all £z, £,).

The output covariance of the system (8) is given from the analy51s results
of the previous section as R,(f, 7) in (9). When (15) holds, so does (14), and then
(9 rewritten using the substitution Ph = k becomes the specified covariance
Rz, 7) given in (11). This establishes the lemma.

Following on from the previous lemma, we give two further lemmas which
are useful in constructing a non-negative definite symmetric P(z,) satisfying (15)
and such that the solution of (1) will be well defined. When such a P(z,) is found,
then the problem of passing from the covariance (11) to the system (8) with
output covariance equal to (11) is solved. The particular P(#,) constructed is the
minimal non-negative definite symmetric P(z,), written P, (f,), which satisfies (15)
and has the property that [P(t,) — P, (¢,)] is non-negative definite symmetric for
all non-negative definite symmetric P(¢,) satisfying (15). To sce that such a P, (1)
exists, we have

LEMMA 2. Suppose we are given n-vectors hty) and k(t,) for which there exists
at least one non-negative definite symmetric matrix P(ty} for which (15) holds.
Then a non-negative definite symmerric P,(to), minimal in the sense above, exists
such that P (t)h(t,) = k(t,). Moreover P,(t;) = O if h'(t)k(to) = O and other-
wise

(17 P,(to) = k{to)lk'(t)h(16)]™ 'K’ (do)-

Proof. For the case h'(,)k(£,) = 0, we have that for any P(z,) satisfying (15),
R (t)P(t)h{ty) = 0 and thus P(io)k(ty) = 0, ie., k() = 0. Then clearly
P.{t;) = 0 has the required properties.

For the case h'(1)k(t,) # 0, it is readily checked that P,(ty) given by (17)
satisfles (15). Consider now an arbitrary n-vector z resolved into the sum of a
vector parallel to k(¢,) and a vector in the manifold orthogonal to k{1p), i.e.,

(18) z = ak(ty)+MB
(19) Mk(ty) = O,
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witere « is a scalar, 8 is an (#— [)-vector and M is an »n x (- 1) matrix of rank
(n—1) whose columns form a basis in the manifold orthogonal to k(#,). The
vector A(f,) may also be resolved in a similar manner as

(20) _ hito) = vk(to)+ M8,

where y is a scalar and § an (r— 1)-vector. Now v # 0, since otherwise A'(¢,)k(t,)
= 0. This means that z may be written as

@0 2 = Ghite)+Mp

where & = ofyand § = B—a8/y. Let P(t,) be any non-negative definite symmetric
matrix satisfying (15); then from (17) and 21),

2[P(t0) — Poltolz = [h'(£)6-+B M1 {P(t,)
(22) . : o =kt (to(to)] e (1) M dh(t) + MP)
= B'M'P(t)MP.

The second equality follows when we expand and use (15) and (19). Since P(z,)
is non-negative definite symmetric, we may conclude that [P(¢,)— P.(t,)] is
non-negative definite symmetric and thus P,(z,) given by (17) is the required
minimal P(¢;} satisfying (15). 7
A further result, established in [11], relates the existence of solutions to the
Riccati equation (1) with differing initial conditions: as a consequence of the
non-negativity in (1) of k,4}/j?, the “coefficient’ of the term involving P quad-
ratically, the existence of a solution to (1) with a symmetric initial condition
P,(ty) implies the existence of a solution for any symmetric initial condition
Po(t,) for which P,(1;) ~ P,{t,) is non-negative definite. This result immediately
establishes:

LEMMA 3 If there is one non-negative definite symmetric P(t,), call it Pl(to)
satisfying (15) and such that the solution of {1) with initial condition P(t,) is well
defined, then the solution of (1) with initial condition P,(t,) as defined above will be
well defined.

Lemma 1 may now be modified using the results of Lemmas 2 and 3 to yield:

THEOREM 2. Suppose a covariance R\(t, 7) is specified in (11) (A(- ) k(+),
®(-.-) and thus F(-) are given) over an interval [y, t|]; suppose R.(t, 7} is differenti-
able with R,,l(t T}y = D®R(t, 7)/eter given by (3), with the identifications (13)
holding and condition (A1) satisfied. If it is known that the solution of (1) is well
defined for some (unknown) non-negative definite symmetric initial condition
P(ty) which also satisfies P(to)h(t,) = k(to), then an initial condition P,(ty) may
be chosen as zero for the case h'(1)k(t;) = 0and as (17) for the case h'(t)k(ty) # 0,
and the solution of (1) with this initial condition P, (t,) will be well defined. Moveover,
if the system (8) (see also (6)) resulting from this solution has an initial state co-
variance P (t,), and the system is driven by white noise having a covariance 8(i — ),
the system will have as its output covariance the specified covariance (11).

This theorem provides a solution to the spectrai factorization problem under
the following conditions:
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(a) The prescribed R,(¢, 7) is known to have resulted from some system with
the F matrix and % vector as predicted from R,(z, 7), or:

(a’) The prescribed R,(¢, 7) is known to have resulted from some system,
and in (11), the pair F, k is completely reachable at every time ¢ and the
pair F, h completely observable at every time #. (Condition (a’) implies
condition (a), because the constraints on F, k and 4 guarantee definition
of the state-vector of a system generating R(t, 7) to within an arbitrary
coordinate basis change [I2], and the existence of solutions to the
Riccati equations associated with R(t, 7) is a coordinate free property;
see {13])

(b) The 8(¢—r) term in 8*R (¢, 7){8¢td7 is identically nonzero.

The reasoning used to see that these two conditions guarantee solvability of
the spectral factorization problem is as follows. By (b), the Riccati equation (1)
can be formed since j(z) in (1), which is the 8(t—7) term in *R(t, T)[6tor (see
(13)) is everywhere nonzero. By (a), there is some non-negative definite symmetric
P(z,) for which P(z,)h(ty) = k(t,) and which serves as an initial condition for
(1)—otherwise there could be no system generating R,(?, 7). The ability to form
the Riccati equation and its solvability are the two conditions set out in the
theorem which guarantee the constructability of a system generating R, (¢, 7).

The physical interpretation of condition (b) is that a system generating
R,(t, 7) must have at least one integration in each feedforward path between
input and output, and the sum of all path gains through paths consisting of
precisely one integration must be nonzero. If this sum is zero (or if there is no
path with only one integration), then j,(¥) = 0 for all £; this situation will be
considered in the next section. A situation where j,(¢) is zero for some ¢ and
nonzero for other ¢ is ruled out on the grounds that this would imply a structural
change of the underlying system differential equation. Admittedly one can con-
ceive of a time-varying system where such structural changes occur; but the
theory here cannot cope with such difficulties.

6. More General Resuits

In the previous section, the spectral factorization constructive procedure
required that the derivative 9°R(z, 7)/0¢é7 of the specified covariance Rz, 7)
include a term j7{¢)8(z— 7) with j,(f) nonzero for all z. We now consider the more
general case where we require the mth differentiation of R(¢, v} with respect to
t and 7 to yield a covariance R, (1, v) = é*"R,(t, 7)/ér"3™ having the form
Ryt 7) = By (DO, 7Y ()1 — 1)+ Kr (DD (7, Y (7)1 (7~ 1)

+/A()8(t—7)

where fori=1,2,---,m

@) h=ho A Fhig k= ko= Flooy = Rk =ik
(Note: by = h, ky = k)
We further require that
(A5) F(-), k), h(+) and j,(-) are finite valued and continuous with j,(¢)
nonzero forallzand j () = 0(f = 1,2,---, m—1) for all #.

(23)
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We shall find that this sitnation can be handled in principle like that considered
earlicr (2 = 1), but the algebra becomes much more involved.

A linear system excited by white noise with an output covariance possessing
the above properties must be such that the sum of all path gains through paths
including precisely 1 series integrations is nonzero, and the sums of all path gains
through paths including precisely 1,2, - -, m— | integrations are zero. Ifj(-) = Q,
i=1,2,-+-, m—1 and j,(f) is zero for some ¢, nonzero for other ¢, this corre-
sponds to the earlier disallowed situation where there are structural changes in
the linear system differential equation.

LEMMA 4. Let m be such that Ry,,,(t, ) exists and has the form of (23), (24)
with (AS5) satisfied. Then

(23) kyhy = kghy

JorOsp=m—1,0<g=m—1!andforp = m,0<g<m-2.

Proof. We can assume without loss of generality that p—g=0. Clearly the
result (25) holds for p—g = 0 trivially, and for p—g = 1 for 0<p<m—1 and
0<g=m—1 by the fact that j(-)=0,i= (1, 2, - -, m—1) (sce (24)). Assume
that (25) holds for p—g =0,1,2, ---, r 0<pgm—1, 0<g<m—1); we shall
show by induction that if r=1, (25) holds for p—¢ = r+1, O<p<m-1,
0<g<m—1I). Now

(26&) - t;-?rhq = kt;hq+r
(26b) ;+rkg+1 = k¢;+1hq+r

and we may assume that g+4r+1<m—1. Differentiating (26a) and using (24)
and (26b), we obtain

(27) ké+r+1kq = kt;hq-l‘r-i- 1>
and it now becomes clear that (25) may be established for 0<p<m~1 and

0<qg<m—1 using induction.
Now differentiate (25) with p = m—1,g =0, 1,--+, m—2. We obtain

kphytkyilgny = Ky By i
Now k,,_1h, .1 = kgyJy,—, since g<m—2, and the desired result follows.

We now define H,, = [k, hy, Ay -, byl and K, = [k, kys kayr o0, ke i]
and establish a more general form for Lemma 1. :

. LEMMA 5, Consider the case when R(t, 7) is specified as in (11) (h(+), k(-),
(+,") and thus F(') are given) over an interval [t,, t,] and 8*" R (t, 7)/r™0+™ exists
and is written in the form (23) with the identifications (24) holding and (A5) satisfied.
Then necessary and sufficient conditions for the solution P of the Riccati differential
equation

- Mk ki, Phh, P Kk,
(28) P=P(F —-_—2)+(F— = )P+ 7 + J_z’

with a non-negative definite symn?g;gic initial condition P(t,) to satisfy Ph = k for
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all t & [y, 1] are that the solution of (28) with initial condition P(t,) be well defined
and that P(,) satm"y

@) Pt ) = Kalto)

For the case when Ph = k is satisfied for‘all t, the system
.(30) 7 X = Fx+gu; y=h'x

with initial state coﬁariance Pts) and o

‘ k.—Ph
(31) g=——",
Jm
when driven by white noise having a covarignee 8(t — 1), has as its state covariance
Elx(t)x"(0)) the solution of (28) and as its output covarlance the specified covariance

(11).
Proof. Consider the derivative of (k; —Ph Jwherei =0,1,2, =1
Et (k!“"‘Ph,) = k:'_Phi—Phi
.. Ph Lk kb Ph
(32) — ki+1 —{—Fki—F_Ph’i—P]ii_}_l 1"!‘ ' "! 1?” I
. Jnl Jm
I hy Ph,
Cﬂllcﬂlh ‘P‘hﬂl m (using (24) and (28)).

.}m ) .]m
Application of Lemma 4 (k,h; = h.k; for 0<i<m—2) and (31) yields

(33) %(k,.—mi):( g@")(k —Ph)+ (ks y—Phyy,) for 0<i<m—2.

m

For the case { = m—1, the relation j? = k), _ — ik, .., yields, from (32),

' gh
(34) (km i th 1) = (F"'jﬂ) (km 1 th 1)

m

We shall now show using (33) and (34) that a necessary and sufficient con-
dition for P(HA() = k(t) to hold for all ¢ is that (29) hold. Necessity follows by
observing from (33) in turn that Ph = &, - -, Ph,,.., = k,,_, for all ¢. Thus these
equations hold for ¢, and (29} holds. Conversely with (29) holding, (34) yields
Ph,,, 1 = k,,..p Tor all ¢, and then (29) and (33) yleld in sequence Ph,,_, = k,,_.,

, Ph =k for all ¢,

The second part of the lemma is a straightforward generalization of the result
in Lemma 1.

We now give a constructive procedure for determining a particular P(¢,)
satisfying (29); this is a generalization of the resuits of Lemma 3.

LEMMA 6. Given the nxm matrices H (1;) and K, {t,) such that (29) is
satisfied for some non-negativé definite symmetric P(ty), then H, (3K, (t;) is non-
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negative definite symmetric, and a non-negative definite solution of (29) is provided
by

(3%5) Poft) =0 if H(15)K(t) = 0
and otherwise by '
(36) Po(to) = Knlto)[Hn(t0)K,(10)] # K(to),

where * denotes a pseudo-inverse, ie., if H(ts)K,(to) is nonsingular, this is the
ordinary inverse, and if H (1)K, (ty) is singular, the pseudo-inverse is defined as
follows. With V any orthogonal matrix such that

A 0
(37) Ho(t)K,(to) = V'| |4
0 0
where A, is a diagonal nonsingular matrix, then
i # (3 As_l 0

Moreover, P(ty)— P, (2} is non-negative definite for all non-negative definite sym-
metric P(ty) satisfying (29).

Proof. Let P(1,) be a non-negative definite symmetric matrix satisfying (29).
Then H,(t)P(t) H (ty) = H,{t,)K,,(t,) is non-negative definite symmetric.

If H,(1,)K,(to) = 0, then P(ty) H,(t;) = 0, i.e., K, (t;) = 0, and it is clear
that P,(t,) as specified by (35) has all the desired properties.

If H,{t;)K,(1o) is nonsingular, it is straightforward to verify that P,{¢,) as
- given by (36) satisfies (29).
If H,(t,)K,(t,) is singular and nonzero, we define

(39 [Hut: Hyol = H,(10)V'; [Kurt Kpal = Kilto) V.
This means that (37) may be written as
(40) H{11Km1 Hri!leZ — AS 0

H;nzl{ml HmZJKmZ 0 . 0

and thus H,,K,., = 0.
Since there is some non-negative definite P(#,) satisfying (29), 0 = H,,K,, =
Hnr;zP (to)}ImZ 1mplies

(41) P(IO)H;HZ = -'KMIZ = 0
Moreover,
Polto) Hulto) = Kulto)lHu(t) K, ()] #* Ko (t0) H,.{to) , (using (36))
AT 0
= Km(to)V'[ 6 0] VK, (to} (o) (using (38))
As_l 0 !:ll .
=. [K’ml; Kn.?.} 0 0 ’2, {H-I'HIV’{]rJHZ V] (USIHg (39))
= mlAs_l JLIULImIV: H;::Z V]
= [Ka V0] (using (40) transposed)

= K,(to) (using (39) and (41)),
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It remains to be shown that P{t;) — P,,(z,) is hon-negative definite. The proof
is a generalization of that given in Lemma 3.

Let z be an arbitrary n-vector. Observing that H,, K, = A, and that A, is
nonsingular, we see that the n x s matrix K,,; has rank s. Let M be an #x (n—s5)-
matrix whose columus span the manifold orthogonal to that spanned by the
colums of K,,;. Then

(42) Z= -K:nl‘x'l_MB; M’ w1 = 0
for some s-vector « and (n—s)-vector 5. Moreover,
(43) H, =K, C+MD

for some sx s matrix C and (n—s)x s matrix D; the matrix C is nonsingular
because multiplication of (43) on the left by X, gives

(44) Kooy = Ky Ky ©

and both K, H,, and K, K, have full rank, viz. s. Hence we may write
(45) z = Hyyy+ M3 |
for some s-vector y and (m—s)-vector 8. Now let P(¢,) be an arbitrary matrix
satisfying (29). It follows that P(¢;)H,1 = K. Moreover,

ZI{P(IO) —"Pm(l‘g)]Z

= (Y’H?;ll + SIM’)[P (tO) - Kml(Kr:tlel)— IKJ:tl-j(Hmiy + Ma)‘j

= (" Hpy + 8" M) Pt Hyyy + M) —y H, K,y

= 8 M'P(t,)MS.

(46)

The second equality follows from M'K,, = 0, and the final equality from
P(ty)H,4 = K,y and M'K,,, = 0. We conclude that [P(ty)—P,.(#,)] is non-
negative definite and this establishes the lemma.

The results of Lemmas 2, 5, and 6 may now be applied to yield the main
result of this section.

THEOREM 3. Consider the case when R(t, 7) is specified as in (11), (h(-),
K(*), ©(-,") and thus F(-) are given) over an interval [ty, t,], and R.(t, =) is differen-
tiable with Ry, (t, 7y = &*™R/(t, 7)/8("87™ given as in (23} with the identifications
(24) holding and (AS) satisfied. Then if it is known that the solution of (28) is well
defined for some wnon-negative definite symmetric initial condition, the initial
condition P,(t,) given by (35) or (36) is such that the associated solution of (28) is
well defined. Moreaver, if the system (30) and (31) resulting from this solution has an
initial state covariance P,(t,) and is driven by white noise having a covariance
8(t — 1), the system will have as its state covariance the solution of (28) and as its
output covariance the specified covariance (11).

The same remarks, mutatis mutandis, as were made following Theorem 2
may now be made.

Theorem 3 thus essentially completes the solution of the speciral factorization
-problem, save for the few remarks following on the significance of m.
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It is clear that the search for a nonzero f,.(f) implied by the successive differen-
tiations of a prescribed covariance need not be pursued past m = #, and if (1)
is zero for i = 0, 1,- - -, n there is no generating system with feedthrough from
input to output. This implies that any covariance associated with the system
output can only arise from a nonzero initial state-covariance, and the g-vector
of a generating system should be taken as zero. The F matrix and % vector are
immediately known from the covariance. A prescribed covariance as in (11) must
be capable of being written as in (4), and the identification of P(z,) in (4) when
given the form (11) is straightforward.

7. Example
We consider the generation of
CY)! R(t, 7) = a(®b(D) (¢ — ) +b(D)a(7)1(r—1)

for 0<¢, 7<T where ¢ and & are continuous functions, uniquely determined
from R(¢, 7) to within an arbitrary constant, by a system of the form

(48) x = glthu y = a(t)x.

Here, the system F matrix is taken as zero; u is of course white ndise, and the
function g(7) is required together with an initial state covariance for (48).
We form

2

(49) otor

R(t, ) = [b@)a(t) —b(1)a(0)]3(t— ) |
a1t — )+ (a1 (= —1).

Notice that

d{b(t ,
Lo | = ouo-s0aoeo
and positivity of the coeflicient of 8( — 7} corresponds to b(t)/a(t) being strictly
increasing, a condition claimed by Doob [14] to be necessary for (47) to be a
covariance. That the condition is not necessary follows by noting that if
b(r) = pya(r) with constant p, >0, then (48) with g = 0 and E[x*(0)] = p, yields
a system generating R(7, 7).

Suppose now that b(f)a(f)—b(#)d(t)>0 for all z. Then according to the
preceding theory, we form .

. (pa—by? _ b(0)

0 ba—bd Po= o)

The solution of this equation is p(f) = B(r)/a(r). (From the earlier theory itis a
consequence of (50) that p(Ha(t) = b(r). Because a(z) and b(¢) are scalars, p(f)
can be regarded as following from this relation rather than (50); substitution in
(50} will of course verify the solution.) The function g(?) is given (see (6)) by

(s1) o) = pi—b =_\/ba-—bd-

ha—bd a
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.~ 8. Conclusion

In this paper, the spectral factorization problem has been solved for linear
systems with the following constraints:

(a) The systems are ﬁmte-dlmensmnal with at least one integration in every
feedforward path between input and output;

(b) The systems are single-output, and as a consequence of the synthesis
procedure are single-input;

(c) No structural changes are allowed in the differential equations of
underlying systems.

The natural question arises as to whether any of these assumptions can be
removed. There appears to be no straightforward way of extending the ideas of
this paper to cope with infinite dimensional systems; indeed, the gap between
the difficuities of solving infinite dimensional and finite dimensional problems
would have to parallel the gap for the correspanding time-invariant problems;
for infinite dimensional problems, sophisticated results of complex variable
theory are required while for finite dimensional problems, polynomial factoriza-
tion will suffice.

The extension of the ideas to multiple-output systems is, by contrast, com-
paratively straightforward. The main idea is again to use Riccati equations,
and again differentiation of a prescribed R,(t, 7) is needed in order to generate a -
8(f— ) term. Because R,(7, 7} is now a matrix, so is the coefficient of the 8(1— )
term, and for the Riccati theory to work, this matrix must be nonsingular. This
implies that integers m1,, m,,* * -, m, must be selected, where Ry(¢, 7} is r x r, such
that the matrix with i—j term

oy

[

sz (Botts D,

has a nonsingular matrix coefficient of the §(t—7) term. The matrix

mp+m g

(-Ry(rs 1'-))i. i

gmige™i
is the covariance of the set

iy,
:1717:(1 = 1727"'31’)-

As will be appreciated, the definition of P,(t,) becomes considerably more
complex, though in principle the same, as for the single output case.

A spectral factorization procedure involving structural changes would appear
to be possible if these changes occurred at discrete instants of time. It would be
necessary to solve Riccati equations over the time interval between two structural
changes, and somehow match boundary conditions for the equations at the end.
of these intervals,
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