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ABSTRACT 

If a known linear system is excited by Gaussian white noise, the calculation of the 
output covariance of the system is relatively straightforward. This paver considers the . . 
harder converse problem, that of passing from a known covariance to a system which 
wil1generateit.Thevroblem issolved for covariances Rdt,  r) with lR.(t,Ol< m for all t , 
and iu-h lh31 the y-prowss is Gauss-Marko,, i.c., i t  miy he oh~31ne.l ss [he outpot 
of ;I lincnr finite-dimcnsion;~l s)stcrn c~cited by nl~ite noise. 

1. Introduction 

A simple statement of the spectral factorization problem is the following. 
Suppose that a linear system is driven by white Gaussian noise and that the 
covariance of the output is known; state the equations that describe the system. 

This problem has been solvedin a number ofways for thecase when the system 
is finite-dimensional and time-invariant [I, 2,3] and has a wide area of application. 
For the more general case when the system is finite-dimensional, time-varying 
(with the time-variation such that no actual changes in system structure occur 
as time evolves) and with the ouput containing a white noise component, the 
spectral factorization problem has recently been solved [4]. The various theorems 
involved have also found application in areas of whitening filter theory [5] ,  
state-estimation theory [b] and impedance synthesis [7]. 

This paper complements [4] by considering time-varying spectral factorization 
results for the case when the specified output covariance, call it Ry(t, T), does not 
contain a white noise component (so that R,(t, T) is finite for all t). This situation 
will be referred to as the singular case. We comment that the solution of the 
singular problem is more difficult than that of the nonsingular problem (where 
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R,(t, T) contains a S(t- r) or white noise part) and is in fact dependent, at least in 
the developments that follow, on the nonsingular spectral factorization results. 

Since [4] gives a detailed discussion of the time-varying spectral factorization 
problem, its history, and its applications, this information will not be repeated 
here. In the material that follows, we first review relevant Riccati differential 
equation theory and various analysis results for systems driven by white noise. 
The time-varying spectral factorization (nonsingular case) results are then 
briefly reviewed. Using the results of the introductory sections and further results 
developed as required, we solve first the spectral factorization problem for the 
most straightforward case corresponding to a situation where single differentia- 
tion of the system output introduces white noise, and then introduce extensions 
to  cover the more general cases when multiple differentiations of the system out- 
put are required to obtain white noise. 

2. Riccati Equation Theory 

In the time-varying spectral factorization procedures of [4] and this paper, 
Riccati matrix differential equations of the form 

with a non-negative definite symmetric initial condition P(to) are encountered. 
Both Fand P are n x n matrices, k, and h, are n-vectors and j, is a nonzero scalar 
and all quantities may be time-varying. Associated with P is its transition matrix 
Q(t, T) defined from 

The physical significance of the quantities in (1) will be discussed later as 
required; meanwhile some results concerning the existence of solutions of (1) 
given in [4] and based on optimal control results [8, 91 are now summarized. 

We first define R,,(t, T) and R,,(t, .T)I (,,= ,) as 

where l(t) is the unit step function and S(t) is the Dirac delta function. Interpreta- 
tions of R,,(t, T), Ryl(t, T)I 0) and [R,,(t, 7)-R,,(t, ~)1(,,=,,] will be reviewed in 
Section 3. 

Sufficient conditions for the solution P(.) of (1) to be well defined over 
[to, t,] are that (Al) and either (A2) or (A3) be satisfied where: 

(Al) F(.), k,(.), h,(.) and jl( .)  are finite-valued and continuous with j,(t) 
nonzero for all f. 

(A2) [R,,(t, T) - R,,(t, ~ ) l ( ,  =,, -+(t - T)] is a covariance for some positive 7. 
(For the limiting situations where to-- rn and/or t,+rn, the condition 
(A4) given below must also be satisfied.) 



(A3) There exist a time TI and extensions of R, hi, k, and j, defined on 
[t,, t, +Ti] such that (Al) is satisfied on [t,, t, +TI] and [R,,(t, 7)- 
R,,(t, ~ ) 1 ( ~ = ~ ) ]  given from (3) and (4) is a covariance on [to, t,+T,]; 
simultaneously all states of the system i = Fx at time t, must be 
observable from an output y = h;x over It,, t, +TI]. 

(A4) F( . )  is uniformly asymptotically stable and F( . )  and H(. )  are bounded 
(for the case [to, t,] nonfinite). 

3. Analysis Results 

Consider the single-input, single-output system having state-space equations 

(where g is an n-vector), with the initial state x(to) being a Gaussian random 
variable having zero mean and a covariance matrix P(to). Suppose also that the 
system (5) is driven by white noise of zero mean and a covariance 6(t -7). 

For the case when P(to), F, h,, j, in (5) and some n-vector k, are such that 
(Al) and either (A2) or (A3) are satisfied, then the solution of (1) will be well 
defined. This means that if we were to set 

then the vector g(t) would be well defined for all t E [to, t,]. 
In [4], analysis results may be found which apply to the system (5) with the 

g vector given by (6). These yield: 

where P(.) is the solution of (1); moreover, the covariance of y is precisely 
R,,(t, T) in (3). Furthermore, if for the system (9 ,  u is set to zero but the initial 
state covariance is left unchanged, it is straightforward to compute that the 
output covariance is now the quantity we have called R,,(t, ~)j(,=,, in equation 
(4). It is then easy to see that [R,,(t, T)-R~,(~,  T ) / ( ~ = ~ ) ]  would be the output 
covariance of (5) if the initial slate vector x(to) is set to zero (i.e., P(to) is replaced 
by the zero matrix) while the input u is again white noise of zero mean and co- 
variance S(t - 7). 

Further applications of the analysis result in [4] yield that the output co- 
variance of the system 

(8) i = ~ x + g u ,  y = h'x 

with an initial state covariance matrix P(to) is 

where g is still given as in (6), h is an n-vector and P(.) is the solution of (1) with 
initial condition P(to). 

The above analysis results will be used in Sections (4) and (5). 
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4. Synthesis Results. Nonsingular Case 

A re-interpretation of some of the results discussed in the two preceding 
sections gives the solution to the time-varying spectral factorization proble~n for 
the nonsingular case (see also 141). These results are now given for later reference. 

THEOREM 1. If Ryl(t, T )  is specified as in (3) (i.e., h,(.), k,(.), j,(.), 
a ( . ; )  and thus F(.) are given), then for each P(to) chosen such that ( 1 )  has a well 
definedsolution P(.) (or such that ( A l )  and either (A2) or (A3) are satisfied), there 
is a system defined by the quadruple F(.), g(.), hl(.) ,  j l( .)  having the form of (5)  
(with g(.) given in terms of P(.); see (6)) and having the followingproperties: with 
an initial state covariance P(to) and a white noise zero mean input having a co- 
variance S(t - T) ,  the system state covariance E[x(t)x'(t)] is P(t), the solution of 
( I ) ,  and the output covariance is the specified covariance Ry,(t, T) .  

We note that if the covariance R,,(t, T )  is specified in the following form 

then an F(.), h,(.) and k l ( . )  may be determined from A(.) and B( . )  as discussed 
in 141. 

5. Synthesis Results. Singular Case 

The spectral factorization problem is now considered for the case when the 
specified covariance is 

where h and k are 11-vectors. It is assumed that Ry(t, T )  is differentiable in the 
sense that the a2RY(t, ~ ) / 2 t a ~  exists. Since Ry(t, T )  is a covariance and a2Ry(t, 7)/ 
2127 exists then a2R,(t, 7 ) /2 t2~  also is a covariance [lo]. Explicit calculation yields 

(12) + [hr(t)+ h'(t)F(t)l@(t, ~ ) [ k ( ~ ) - F ( ~ ) k ( ~ ) l l ( t -  T) 

+ [kr(t)- k'(t)F'(t)]'Z"(~, t )[h(~)+F'(~)h(r)I l(r-  t). 

With the identifications 

(13) h,=h+Fr1z; k l = i c - F k ;  jl=J-, 

the covariance a2~ , ( t ,  7 ) / 2 t 2 ~  becomes identical with the covariance Ryl(t,  7 )  of 
(3). 

We now state and prove the key lemma 

LEMMA 1. Consider the case when R,(t, T) is specified as in (1 1 )  (It(.), k(.), 
@(.;) and thus F(.) are given) over an interval [to, t,], and a2RY(t, ~ ) / 2 t a ~  exists 
and is written in the form (3) with the identifications (13) holding and with ( A l )  
satisfied. Then a necessary andsuficient condition for the solution P of (1) (assumed 
to be well defined) to satisfy 



for all t t [to, t,] is that the non-negative definite syrn~netric initial condition P(to) 
for (1) satisfy 

Furthermore, if(15) holds, the system (8) (see also (6)) with an initial state co- 
variance P(to) when driven by white noise having a covariance S(t - T) has as its 
state covariance E[x(t)x'(t)] = P(t) the solution of (I), and as its output covariance 
the specified covariance (11). 

Proof. If (14) holds, (15) obviously holds. For the converse, suppose that 
P(t) is the solution of (1) with non-negative definite symmetric initial condition 
P(t,) satisfying (15). Some elementary manipulations using (I), (6), (13) and 
(14) yield 

This means that Ph = k for all t E [to, t,]. 
The output covariance of the system (8) is given from the analysis results 

of the previous section as R,(t, T) in (9). When (15) holds, so does (14), and then 
(9) rewritten using the substitution Ph = k becomes the specified covariance 
R,(t, T) given in (11). This establishes the lemma. 

Following on from the previous lemma, we give two further lemmas which 
are useful in constructing a non-negative definite symmetric P(to) satisfying (15) 
and such that the solution of (1) will be well defined. When such a P(to) is found, 
then the problem of passing from the covariance (11) to the system (8) with 
output covariance equal to (1 1) is solved. The particular P(to) constructed is the 
minimal non-negative definite symmetricP(t,), written P,,,(t,), which satisfies (15) 
and has the property that [P(to) -P,,(to)] is non-negative definite symmetric for 
all non-negative definite symmetric P(to) satisfying (15). To see that such a P,,,(to) 
exists, we have 

LEMMA 2. Suppose we are given n-vectors h(to) and k(to) for which there exists 
a t  least one non-negative definite symmetric matrix P(t,) for which (15) holds. 
Then a non-negatiue definite symmetric P,,,(to), minimal in the sense above, exists 
such that P.,(t,)h(t,) = k(t,). Moreover P,,,(to) = 0 ifh'(to)k(to) = 0 and otlzer- 
wise 

Proof. For the case h'(to)k(to) = 0, we have that for ally P(to) salisfyiilg (15), 
h1(to)P(to)h(t0) = 0 and thus P(to)h(to) = 0, i.e., k(to) = 0. Then clearly 
P,"(t0) = 0 has the required properties. 

For the case h'(to)k(to) f. 0, it is readily checked that P,,,(t,) given by (17) 
satisfies (15). Consider now an arbitrary iz-vector z resolved into the sum of a 
vector parallel to k(to) and a vector in the manifold orthogoilal to &to), i.e., 
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where a is a scalar, j3 is an (n- 1)-vector and M is an n x (n- 1) matrix of rank 
(n-1) whose columns form a basis in the manifold orthogonal to k(to). The 
vector h(to) may also be resolved in a similar manner as 

(20) = yk(to)+MS, 

where y is a scalar and S an (n- I)-vector. Now y # 0, since otherwise h'(t,)k(t,) 
= 0. This means that z may be written as 

(21) z = &h(to) + Mg 

where & = a/y a n d j  = j3-a8/y, LetP(t,) be any non-negatlve definite symmetric 
matrix satisfying (15) ;  then from (17) and 21), 

z'[P(fo) -P,,,(to)lz = [h'(to)&+b'~'l  {P(to) 

(22) -k(to)[k'(fo)h(to)l-'k'(to))[~(fo) +@I 
= ~ ' M ' P ( ~ , ) M J .  

The second equality follows when we expand and use (15) and (19). Since P(t,) 
is non-negative definite symmetric, we may conclude that [P(t,)-P,,(to)] is 
non-negative definite symmetric and thus P.,(t,) given by (17) is the required 
minimal P(to) satisfying (15). 

A further result, established in [ l l ] ,  relates the existence of solutions to the 
Riccati equation (1) with differing initial conditions: as a colisequence of the 
non-negativity in (1) of h,h;/j:, the "coefficient" of the term involving P quad- 
ratically, the existence of a solution to (1 )  with a symmetric initial condition 
P,(to) implies the existence of a solution for any symmetric initial condition 
P,(t,) for which ?,(to)-P,(t,) is non-negative defimte. This result immediately 
establishes: 

LEMMA 3. I f  there is one non-negative definite symmetric P(t,), call it P,(to), 
satisfying (15) and such that the solution of (1) with initial conditiolz P,(t,) is well 
defied, then the solution of ( 1 )  with initial condition P,,(to) as defined above will be 
well defined. 

Lemma 1 may now be modified using the results of Lemmas 2 and 3 to yield: 

THEOREM 2. Suppose a covariance R,(t, T )  is specified in ( 1 1 )  (It(.), I<(.), 
a(. . .) and thus F ( . )  aregiven) over an interval [to, t,]; suppose Ry(t, T) is differenti- 
able with Ry,(t, .T) = aZRy(t, ~) /a tar  given by (3), with the identifications (13) 
holding and condition ( A l )  satisfied. I f  it is known that the solution of (I) is well 
defined for some (unknown) non-negative definite symmetric initial condition 
P(to) which also satisfies P(to)h(t,) = k(to), then an initial condition P,>,(t,) may 
be chosen as zero for the case h'(t,)k(t,) = 0 andas (17) for the case h'(t,)k(to) # 0, 
and thesolution of ( 1 )  with this initialcondition P,(t,) will be welldefmed. Moreover, 
if the system (8) (see also (6)) resulting from this solution has an initial state co- 
uariarzce P,3,(to), and the system is driven by white noise lzaviizg a covariance S(t- T) ,  

the system will have as its output covariance the specified covarzaizce (1 1). 
This theorem provides a solution to the spectral factorization problem under 

the following conditions: 



(a) The prescribed Ry(t, T) is known to have resulted from some system wit11 
the F matrix and h vector as predicted from Ry(t, T), or: 

(a') The prescribed Ry(t, T) is known to have resulted from some system, 
and in (1 I), the pair F, k is completely reachable at every time t and the 
pair F, h completely observable at every time t. (Condition (a') implies 
condition (a), because the constraints on F, k and h guarantee definition 
of the state-vector of a system generating Ry(t, T) to within an arbitrary 
coordinate basis change 1121, and the existence of solutions to the - . .  
Riccati equations associated with Ry(t, T) is a coordinate free property; 
see [13].) 

(b) The S(t-T) term in aZR,(t, r ) /a ta~  is identically nonzero. 

The reasoning used to see that these two conditions guarantee solvability of 
the spectral factorization problem is as follows. By (b), the Riccati equation (1) 
can be formed since j:(t) in (I), which is the S(t-T) term in a2R,(t, ~ ) / a t a ~  (see 
(13)) is everywhere nonzero. By (a), there is some non-negative definite symmetric 
P(to) for which P(t,)h(t,) = k(t,) and which serves as an initial condition for 
(1)-otherwise there could be no system generating R,(t, 7). The ability to form 
the Riccati equation and its solvability are the two conditions set out in the 
theorem which guarantee the constructability of a system generating R,(t, 7). 

The physical interpretation of condition (b) is that a system generating 
Ry(t, T) must have at least one integration in each feedforward path between 
input and output, and the sum of all path gains through paths consisting of 
precisely one integration must be nonzero. If this sum is zero (or if there is no 
path with only one integration), then jl(t) = 0 for all t; this situation will be 
considered in the next section. A situation where jl(t) is zero for some t and 
nonzero for other t is ruled out on the grounds that this would imply a structural 
change of the underlying system differential equation. Admittedly one can con- 
ceive of a time-varying system where such structural changes occur; but the 
theory here cannot cope with such difficulties. 

6. More General Results 

In the previous section, the spectral factorization constructive procedure 
required that the derivative aZR,(t, ~ ) / a t a ~  of the specified covariance R,(t, T) 

inc1ud.e a term j:(t)S(t- T) with jl(t) nonzero for all t. We now consider the more 
general case where we require the mth differentiation of R,(t, T) with respect to 
t and T to yield a covariance R,,,(t, T) = a2"'R,(t, 7)/atrna?m having the form 

(23) 
RynXt, 7) = h,L(t)@(t, ~)k,,,(~)l(t- ~)+k,k(f)@'(~, t)h.,(~)l(~-t) 

+ j;(t)S(t - T) 

wherefori = 1,2;..,m 

(24) hi = hi- +F'hi-, ; Icj = k,_ -Fk,- ,; ji = ,/k;hi-l -h:k ,_,. 
(Note: h, - h, k,, - k.) 
We further require that 

(A5) F(.), k,(.), h,,,(.) and j,,(.) are finite valued and continuous with jrn(t) 
nonzero for all t and ji(t) = 0 (i = 1, 2,. . . , m - I) for all t. 



Spectral Factorization of Time-varying Covariance Functions: The Singular Case 17 

We shall find that this situation cau be handled in principle like that considered 
earlier (m = I), but the algebra becomes much more involved. 

A linear system excited by white noise with an output covariance possessing 
the above properties must be such that the sum of all path gains through paths 
including precisely m series integrations is nonzero, and the sums of all path gains 
through paths includingprecisely 1,2; . . , m- 1 integrations are zero. Ifji(.) = 0, 
i = 1,2; . ., m- 1 and jm(t) is zero for some t, nonzero for other t, this corre- 
sponds to the earlier disallowed situation where there are structural changes in 
the linear system differential equation. 

LEMMA 4. Let m be such that R,,,(t, T) exists and has the form of (23), (24) 
with (A5) satisfied. Then 

(25) kih, = kih, 

f o r O p m - l , O < q < m - 1  andforp = m , O q s m - 2 .  
Proof. We can assume without loss of generality that p-qrO. Clearly the 

result (25) holds forp-g = 0 trivially, and forp-q = 1 for O p < m - 1  and 
O s q s m -  1 by the fact that j , ( . )  = 0, i = (1, 2, . . ., m- 1) (see (24)). Assume 
that (25) holds forp-q = 0, 1, 2, ..., r (O<pSm-1, Osq<m-I);  we shall 
show by induction that if r >  1, (25) holds for p-q = r +  I, (Osp<m- 1, 
Osqsm-1). Now 

(264 k;+,h, = k;h,+, 

(26b) k;+,h,+l = Ici+ih,+, 

and we may assume that q + r +  1 s m- 1. Differentiating (26a)'and using (24) 
and (26h), we obtain 

(27) k;+,+,h, = k;h,+,+,, 

and it now becomes clear that (25) may be established for O<psm-1 and 
O<q< m- 1 using induction. 

Now differentiate (25) with p = m-1, q = 0, 1;. ., m-2. We obtain 

k;h,+kA-lh,+l = k;+,h",-l+k;h,. 

Now kL- lh,+, = ki+ Ilz,,-l since q <  in-2, and the desired result follows. 
We now define Hm = [h, lz,, h,; . ., h ,"-, ] and 4, = [k, Ic,, k,; . ., k ,,,_ ,] 

and establish a more general form for Lemma 1. 

LEMMA 5. Consider the case when R,(t, 7) is specifred as in (1 1) (h(.), k(.), 
(.;)and thus F( . )  are given) over an interval [to, ti] and a2"'~,(t, ~ ) / a t " ' a ~ ~  exists 
and is written in theform (23) with the identifrcatiorzs (24) holdingand(A5) satisfied. 
Then necessary and sufficient conditions for the solution P of the Riccati dzTerentia1 
equation 

with a non-negative definite symmgfric - .  initial condition P(t,) to satiSfy Ph = k for 



all t E [to, t l ]  are that the solution of (28) with initial cotzditiorz P(t,) be well defined 
and that P(to) satisfy 

For the case when Ph = k is satisjied for all t, the system 

(30) i = ~ x + g u ;  y = h'x 

with initial state covariance P(t,) and 

when driven by ~vlzite noise having a covariance S(t- T), has as its state covariance 
E[x(t)x'(t)] the solution of (28) and as its output covariance the specifred covariance 
(11). 

Proof. Consider the derivative of (ki-Ph,) where i = 0, 1,2; . ., m- 1 : 

d 
- (kt-phi) = it,-Phi-Ph, 
dt 

(32) 
Plz,,,ki,hi kt,tl~,~2P/~i 

= kiil+Fk;-FPh;-Pl~;+l+T+-i- 
J"2 Jm 

- -- , h i  - Plz,,,h,2% . z (using (24) and (28)). 
j i  .I", 

Application of Lemma 4 (Ic,;,h, = hkk, for 0 c i s  nz-2) and (31) yields 

For the case i = m- I ,  the relation j,; = k:lz ,,,_, -h;,Ic ,,,_, yields, from (32), 

We shall now show using (33) and (34) that a necessary and sufficient con- 
dition for P(t)h(t) = k(t) to hold for all t is that (29) hold. Necessity follows by 
observing from (33) in turn that Ph = k;  . ., Ph,,_, = k,n_l for all t. Thus these 
equations hold for t, and (29) holds. Coilversely with (29) holding, (34) yields 
Ph,n_l = k,,_, for all t ,  and then (29) and (33) yield in sequence Ph,,_, = k ,,_,, 
. ., Ph = k for all t. 

The second part of the lemma is a straightforward generalization of the result 
in Lemma 1. 

We now give a constructive procedure for determining a particular P(to) 
satisfying (29); this is a generalization of the results of Lemma 3. 

LEMMA 6. Given the n x m  matrices H,,(t,) and K,,(t,) such that (29) is 
satisfied for some non-negative definite symmetric P(t,), then HL(to)K,(t0) is non- 
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negative definite symmetric, and a non-negative definite solution of (29) isprovided 
by 

(35) P,(to) = 0 if H;(to)K(to) = 0 
and otherwise by 

(36) Pm(to) = Km(to)[Hm(to)Kn,(to)l # K,Xto), 
where # denotes a pseudo-inverse, i.e., if H;(to)K,,,(to) is nonsingular, this' is the 
ordinary inverse, and if H,L(to)Km(to) is singular, the pseudo-inverse is defined as 
follows. With V any orthogonal matrix such that 

where A, is a diagonal nonsingular matrix, then 

Moreover, P(t,)-P,2,(to) is non-negative definite for all non-negative definite sym- 
metric P(to) satisfying (29). 

ProoJ: Let P(to) be a non-negative definite symmetric matrix satisfying (29). 
Then HA(to)P(to)H;,(to) = H~(to)K,K,,(to) is non-negative definite symmelric. 

If HA(to)K,,(to) = 0,  then P(to) H,,,(to) = 0, i.e., K,,(to) = 0, and it is clear 
that Pm(to) as specified by (35) has all the desired properties. 

If Hi,(to)K,(to) is nonsingular, it is straightforward to verify that Pm(to) as 
given by (36) satisfies (29). 

If H,,(to)K,(to) is singular and nonzero, we define 

(39) [Hm, : H,,21 = Hm(to)V'; [K,,I : K,z,21 = K,,,(to) V'. 
This means that (37) may be written as 

(40) [ H A 2 K l  HAIKml H:IK.z] H;,zK.z = :] 
and thus H,:,,K,, = 0. 

Since there is some non-negative definite P(to) salisfying (29), 0 = H,i,K,,,, = 

H,:,zP(~o)H,,,z implies 

(41) P(to)H,,,z = Kt,,, = 0. 
Moreover, 

P,,,(t~)H~,~(to) = K,,(t~)[H;~(to)K,,,(to)I # K,:,(to)H,,,(to) (using (36)) 

(using (38)) 

0 KiZ1 
= K,>,I: fL21 ["il ] [ ] [H,,rlVH,,,2Vl (using (39)) 

0 K,bz 

= K,,IA;'KAI[H,,IV: H,,,zVl 

= [K,.,V: 01 (using (40) transposed) 

= &(to) (using (39) and (41)). 
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It remains to be shown that P(to)-P,,(to) is non-negative definite. The proof 
is a generalization of that given in Lemma 3. 

Let z be an arbitrary n-vector. Observing that H;,K,,, = As and that A, is 
nonsingular, we see that the n x s matrix K,", has ranks. Let M be an n x (11 -s)- 
matrix whose columns span the manifold orthogonal to that spanned by the 
colums of K,,. Then 

(42) z=K,,,,a+M/3; M'Kml=O 

for some s-vector e and (n-s)-vector p. Moreover, 

(43) H,, = KmlC+MD 

for some s x  s matrix C and (n-s) x s matrix D ;  the matrix C is nonsingular 
becanse multiplication of (43) on the left by K,,, gives 

(44) K,L,H",, = K,.,K",,C 

and both KA,H,,,, and K,:,,K,,,, have full rank, viz. s. Hence we may write 

(45) z = I<,,y+MS 

for some s-vector y and (m-s)-vector S .  Now let P(to) be an arbitrary matrix 
satisfying (29). It follows that P(to)H,,,, = K,,. Moreover, 

z'[P(to) -P,,(to)lz 

(46) 
= (Y 'HA + ~'~)[P(~o)-~,,~I(~~~IH~,~I)-'K~~II(H~,IY +MS)? 

= (Y'H,:,, + S'M')P(~O)(H,,,IY+M~)-Y'H,:,IY~IY 
= S'M'P(to)MS. 

The second equality follows from M'Y , ,  = 0,  and the final equality from 
P(t0)H,", = K,, and M'K,,, = 0. We conclude that [P(to)-Pm(to)] is non- 
negative definite and this establishes the lemma. 

The results of Lemmas 2, 5, and 6 may now be applied to yield the main 
result of this section. 

THEOREM 3. Consider the case when R,(t, 7) is specijied as in ( l l ) ,  (I?(.), 
K(.),  Q(., .) and thus F( . )  aregiven) over an interval [to, t,], and R,(t, 7)  is differen- 
tiable with R,,,,(t, T) = a ' ' ' '~~( t ,  7)/atmaP given as in (23) witll the identifications 
(24) holdiug and (AS) satisfied. Then f i t  is known that the solution of (28) is well 
defined for sonze izon-negative defnite symmetric initial condition, the initial 
condition P.,(t,) gioerz by (35) or (36) is such that the associated solution of  (28) is 
loell defined. Moreover, f the system (30) and (3 1) resulting from this solution has on 
initial state covariance P,,(to) and is driven by white noise having a covariance 
S(t - 7), the system will have as its state covariance the solution of (28) and as its 
output covariance the specified covariarzce (1 1) .  

The same remarks, mutatis mutandis, as were made following Theorem 2 
inay now be made. 

Theorem 3 thus essentially completes the solution of the spectral factorization 
problem, save for the few remarks following on the significance of m 
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It  is clear that the search for a nonzero j,,,(t) implied by the successive differen- 
tiations of a prescribed covariance need not be pursued past m = n, and if ji(t) 
is zero for i = 0, 1;. ., n there is no generating system with feedthrough from 
input to output. This implies that any covariance associated with the system 
output can only arise from a nonzero initial state-covariance, and the g-vector 
of a generating system should be taken as zero. The Fmatrix and h vector are 
immediately known from the covariance. A prescribed covariance as in (I 1) must 
be capable of being written as in (4), and the identification of P(t,) in (4) when 
given the form (11) is straightforward. 

7. Example 

We consider the generation of 

for 0 2  t, 72 T where a and b are continuous functions, uniquely determined 
from R(t, 7)  to within an arbitrary constant, by a system of the form 

Here, the system F matrix is taken as zero; u is of course white noise, and the 
function g(t) is required together with an initial state covariance for (48). 

We form 

+d( t )b ( . r ) l ( t -~ )+b( t )d (~ ) l (~ - t ) .  
Notice that 

and positivity of the coefficient of S(t - T) corresponds to b(t)/a(t) being strictly 
increasing, a condition claimed by Doob [14] to be necessary for (47) to be a 
covariance. That the condition is not necessary follows by noting that if 
b(t) = p,a(t) with constantp, zO, then (48) with g = 0 and E[xZ(0)] = p, yields 
a system generating R(t, 7). 

Suppose now that b(t)a(t)-b(t)ci(t) > 0  for all t. Then according to the 
preceding theory, we form 

. ( p i  -by  
p = =  

b(O) 
= a0 

The solution of this equation is p(t) = b(t)/a(t). (From the earlier theory it is a 
consequence of (50) that p(t)a(t) = b(t). Because a(t) and b(t) are scalars, p(t) 
call be regarded as following from this relation rather than (50); substitution in 
(50) will of course verify the solution.) The function g(t) is given (see (6)) by 



8. Conclusion 

In this paper, the spectral factorization problem has been solved for linear 
systems with the following constraints: 

(a) The systems are finite-dimensional, with at least one integration in every 
feedforward path between input and output; 

(b) The systems are single-output, and as a consequence of the synthesis 
procedure are single-input; 

(c) N o  structural changes are allowed in the differential equations of 
underlying systems. 

The natural question arises as to whether any of these assumptions can be 
removed. There appears to be no straightforward way of extending the ideas of 
this paper to cope with infinite dimensional systems; indeed, the gap between 
the difficulties of solving infinite dimensional and finite dimensional problems 
would have to parallel the gap for the corresponding time-invariant problems; 
for infinite dimensional problems, sophisticated results of complex variable 
theory are required while for finite dimensional problems, polynomial factoriza- 
tion will suffice. 

The extension of the ideas to multiple-output systems is, by contrast, com- 
paratively straightforward. The main idea is again to use Riccati equations, 
and again differentiation of a prescribed R,(t, T )  is needed in order to generate a 
S(t - 7)  term. Because R,(t, 7) is now a matrix, so is the coefficient of the S(f - T) 
term, and for the Riccati theory to work, this matrix must be nonsingular. T h ~ s  
implies that integers m,, m,; . ., m, must be selected, where R,(t, .T) is r x r, such 
that the matrix with i-j term 

has a nonsingukar matrix coefficient of the S(t -7) term. The matrix 

is the covariance of the set 

As will be appreciated, the definition of P,,(t,) becomes considerably more 
complex, though in principle the same, as for the single output case. 

A spectral factorization procedure involving structural changes would appear 
to be possible if these changes occurred at discrete instants of time. It would be 
necessary to solve Riccati equations over the time interval between two structural 
changes, and somehow match boundary conditions for the equations at the end 
of these intervals. 
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