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Synopsis 

The paper deals with the synthesis of passive networks and relies on general systems theory and control 
concepts. The network-synthesis problem is first interpreted in state-variable terminology, solved as a 
control problem and the solution is then translated back into network-theory terms. After a review of 
state-space formulations, an algebraic theory of synthesis is developed, beginning with a minimal state- 
space realisation, perhaps obtained through control-theory procedures, from which a synthesis of rational 
positivereal impedance matrices is obtained through a transformation on thc state. The method rests 
upon an appropriate basis change, in the state-space, obtained by factoring the Pmatrix of the control- 
theory positive real lemma. The minimum number of resistors and reactive elements is used. The paper 
also serves as a review of the 'state-of-the-art' for formal nport synthesis; the results lead to new methods 
of attacking open problems, as well as to methods of analysis and synthesis via digital computers. 

List of principal symbols 
F, G, H, J = constant state-variable matrices 

I, = k x k identity matrix 
L = constant matrix for p.r. lemma 
m = outwut dimension 

The desire to extend network theory to multiport situations 
led to the study of positive-real matrices. An n x n positive 
real matrix A(s) fulfills the following conditions [References 16 
(p. 217) and 171 (the asterisk denotes complex conjugation 
and the prime denotes matrix transposition): 

M = coupling-network (constant) impedance matrix 
n = input dimension )a) A(s) is analytic in the strict right-hand halfplane 

N = network (6) A*(s) = A(s*) in the strict right-hand halfplane 

P = state dimension (c) A(s) + A'@*) is a nonnegative definite matrix in the 

P = constant positive definite matrix for p.1. lemma strict right-hand halfplane. 

r = rank of resistivity matrix = number of resistors 
s = u + jw = complex frequency variable 

T, T, = state-basis change matrices 
u = input nvector 

W(s) = general transfer-function matrix 
Wo = factor of resistivity matrix at infinity 

x = state pvector 
y = output mvector 

A 

Z(s), Z(s) = prescribed impedance matrices 
F[q] = McMillan degree of [q] 
C = sign matrix 

A prime indicates transposition 

1 Introduction 
The disciulines of network theorv. control systems. 

and general systems have much in common; for example; 
network functions (or matrices) are generally particular cases 
of transfer functions (or matrices); again, -networks may 
profitably he examined from the state-space point of view, 
which is essentially a general-systems concept, primarily 
introduced to study control systems. 
, I t  is surprising, therefore, to find that there are not more 
links between the disciplines. Nevertheless, it is possible to 
woint to an ever increasine number of isolated examwles: - . . 
e.g. References 1-7, which are concerned with developing a 
state-swace descriwtion of a network. or References 8 and 9. 
which hiscuss positive real functions and matrices from a 
control viewpoint. Groundwork for a control viewpoint of 
the scattering-matrix synthesis problem is discussed in 
Reference 10, with further results reported in Reference 11. 

This paper is an attempt to lay another bridge across the 
gap. It is concerned with giving a passive-network synthesis 
via the application of general systems theory and control 
concepts to the impedance matrix. 

The early work of Cauer,lz Brune,13 Darlington14 and 
others, and later Bott and Duffin,15 represented some of the 
first snccessful attemnts to establish svnthesis nromdures for 
1-port networks. ~e ie ra l ly ,  the prohl& they considered was 
that of svnthetisine a network. even a mathematical descrio- - . - 
tion of it, usually a positive real function. 
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This definition is a natural extension of the definition of a 
positivereal function (Reference 18, p. 67). 

It is not difficult to show that, if it exists, the impedance 
matrix of a multiport network which is linear, finite, time- 
invariant and passive is a positive real matrix of rational 
functions (Reference 19, p. 153). It is, however, considerably 
harder to establish the converse, namely, that to a rational 
positive real matrix there corresponds a linear, finite, time- 
invariant, passive network with the given matrix as the 
impedance matrix of the network. 

This impedance-matrix synthesis problem, or, what amounts 
to a variant of it, the scattering-matrix synthesis problem, 
has been solved in various ways by a number of workers 
(Reference 16, Pt. II).19-23 Both reciprocal syntheses (those 
using resistors, inductors, capacitors and transformers, hut 
no gyrators) and nonreciprocal syntheses (those using also 
gyrators) have been considered, and they are summarised in 
References 24-27. None of these syntheses could he con- 
strued as depending on general systems or control-theory 
techniques for its establishment, though there are available 
methods of realising lossless networks from their state- 
variable de~cr ip t ion .~~  

Our approach in this paper is to express the network- 
synthesis problem in state-variable terminology as customarily 
applied to the theory of control, to solve the resulting control 
problem and then to reinterpret this solution in network- 
theoretic terms. 

In Section 2, we outline briefly, but it is hoped fully, the 
necessary statevariable preliminaries. The principal idea is 
that of a realisation of a matrix of rational transfer functions, 
which is essentially a collection of four constant matrices 
describing the transfer-function matrix. The theory of 
minimal realisations (where exactly what is minimal will be 
explained in Section 2) is also considered. Section 3 poses 
the impedance-synthesis problem in general systems-theory 
language, reducing it to a search for a realisation possessing 
certain properties (corresponding to the passivity of a resistive- 
coupling network). 

Section 4 is concerned with explaining an interesting 
control-theory lemma, which characterises the concept of 
positive reality in terms of the matrices of a minimal realisa- 
tion. Section 5 shows that this characterisation allows ready 
selection of a realisation possessing the properties mentioned 
as being sought after in Section 3, so that a passive synthesis 
can then be given. In this Section, the details of a synthesis 
procedure are also discussed, and it is shown that the 
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synthesis uses the minimal number of reactive and resistive 
elements. 

Examples of the synthesis procedure are discussed in Sec- 
tion 7, while Section 6 discusses reciprocal synthesis with 
special emphasis on RLnetworks. Section 8 discusses some 
of the remaining problems of the control-systems-network- 
theory interface. 

2 State-variable preliminaries 
Before turning our attention to the main problem in 

hand, we digress in this Section to point out some pertinent 
results of a general (continuous) systems nature. Linear, 
time-invariant, multivariable, finite-dimensional dynamical 
systems can he characterised by an m x n transfer-function 
matrix W(s) whose elements are rational functions of the 
variable s.29 The matrix W(s) relates the Laplace transform 
of the input nvector U(s) to the Laplace transform of the 
output mvector Y(s) through 

Y(s) = W(s)U(s) . . . . . . . . . . (1) 

It will be sufficient, for most of the material following, to 
restrict consideration to the case where W(s) has no pole 
a t  infinity, i.e. W(m) is finite. If W(s) does have a pole at 
infinity, its extraction can be made following standard 
techniques (eqn. 11, Section 3). 

Under these conditions, it is possible to describe the 
system via a time-domain statespace representation. In this 
representation, the input u and output y are mathematically 
related via an intermediate variable, the state x. The relevant 
equations are 

i = F x + G u  . . . . , . , . . . (20) 

y = H'x i- Ju . . . . . . . . . . (26) 

In these equations x, u, and y are vector functions of time, 
rather than Laplace transforms, as in eqn. 1; x is the time 
derivative of x. The vector x has a dimension p  (which we 
shall not specify for the moment), while the matrices F, G, H 
and J are all constant and of appropriate dimensions, 
respectively, p x p,  p x n, p x m and m x n. 

By taking the Laplace transform of eqn. 2 and eliminating 
X(s), it is straightforward to obtain, here I, is thep x p  identity 
matrix, 

Y(s) = [ J  + H'(s1, - F)-'G]U(s) . . . . (3) 

and it follows, by comparing eqn. 1 and eqn. 3, that the 
matrix W(s) of rational functions of s is related to the four 
constant matrices F, G, H a n d  J by 

W(s)=J+H'(sI ,-F)- 'G . . . . . . (4) 

Note that many authors use H where we use H'. 
It is clear that any quadruple {F, G, H, J }  determines a 

W(s) which is a matrix of rational functions of s, having 
W(m) finite. The converse, however, that W(s) determines 
a quadruple {F, G, H, J}, is not obvious immediately. From 
eqn. 4, it follows that J is determined as W(m), hut otherwise 
the existence of F, G and H i s  not apriori guaranteed. 

None the less, as is discussed for example in References 29- 
3l,..any W(s) does determine an infinity of triples {F, G, H}, 
suchthat eqn. 4 is satisfied with J = W(m). These references, 
with the work of Ho30 being especially significant, discuss 
methods of determining the triples, and consider in particular 
the question of determining all triples when one is known. 

Any quadruple {F, G, H, J} satisfying eqn. 4 is termed a 
realisation of W(s), while the triple {F, G, H} is termed a 
realisation for W(s) - W(m), since J i n  the quadruple is zero. 

The dimensions of the various possible F matrices which 
can occur in the triples are not the same; but it is true that 
there is a minimal dimension for the set of all matrices F 
appearing in the realisations of a prescribed W(s). For 
example, if W(s) is a constant matrix, it is clear from eqn. 3 
that this dimension is zero, or if W(s) is a scalar of the form 
uls, it is clear that this dimension is 1. 

A realisation {F, G, H, J }  for which F has a minimal dimen- 
sion is termed a minimal realisation. 

A most important feature of minimal realisations is that 
they are uniquely determined by W(s), except for arhitrary 
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prescription of the basis vectors of the s t a t e ~ p a c e . ~ ~  What 
Loncerns us more, however, is the way that this arbitrary 
prescription affects {F, G, H}. Reference 29, p. 157, shows 
that, if {F, G, H} is a minimal realisation of W(s) - W(m), 
any other minimal realisation is of the form {T-IFT, T-'G, 
T'H), where T is an arbitrary nonsingular matrix. Thus, if 
{F,, GI, HI} and {F2, G2, H2} are both minimal, the existence 
is guaranteed of a nonsingular T, such that 

The dimension of a minimal realisation, i.e. the dimension 
of the associated state-space or the order of the square 
matrixF, is termed the degree of W(s), written S[W]. 

The history of the concept of degree in network and control 
theory is an interesting one. Tellegen's definition of the 
order of a network (Reference 32, p. 322) proceeds on physical 
grounds by defining the order as the maximum number of 
natural frequencies obtainable by embedding the given net- 
work in an arhitrary passive network. This order definition 
agrees with the mathematical definition of McMillan 
(Reference 16, pp. 543 and 592) of the degree of a square 
matrix Z(s). which is shown to imulv that SIZl is the minimal . . . . . . 
~iuniber o i  reicttve elemenls i n  my passive synthesis of A\] 
whun % ( $ I  ix a uo,itivc rcal impedance matrix (Reference 26, 
p. 322). Since 'we can conceive of deriving a state-space 
representation of Z(s) by associating a state variable with 
each reactive element in a network synthetising Z ( S ) , ' , ~ , ~  it 
is not surprising to find that McMillan's definition is essentially 
the same as the one we have given. Still another mathematical 
definition of degree, motivated by a different set of physical 
contents. is eiven in Reference 33. Because of the corre- . .  
3pundlng phyrlall nieuninps uf these, i t  is llicrcfurc tbrtl~nate 
to find (Ilcfcrcnce 34. p. 5421 that these delinitia~nh are 
mathematically the same ihing, provided that poles at infinity 
are suitably dealt with. 

We shall be especially interested in the fact that the minim'al 
number of reactive elements in a synthesis of an impedance 
matrix Z(s), i.e. McMillan's 6[Z(s)], is the same thing as the 
dimension of a minimal (control-systems) realisation, provided 
that Z(m) is finite. 

3 lrnpedance-synthesis problem in 
systems-theory language 
Our solution of the synthesis problem 1s a control- 

theoret~c one, and, to achfeve the solution, it IS necessary to 
exmess the svnthesis uroblem in ssstems-theoretic lanauage. - - 

Formally, the synthesis problem is: given a positive real 
n x  n matrix Z(s) (whole elements are rational functions of s), 
find a finite cir&G connection of passive network elements 
synthetising Z(s). 

To motivate the synthesis procedure presented, it will be 
necessary to make some apparently restrictive assumptions 
concerning the final form of the synthesis. lliesc assumption~ 
include more than mcrely the issumprion uf the exislcnce o i  
n sjnthesis: thev will. ho\\ever. hc shoan lo be \;tl~d 3s a 
result of the synthesis techniques presented. 

A svnthesis mav contain anv of the followina tyues of . .. 
linear, passive, time-invariant network elements: resistors, 
gyrators (ideal). transformers, inductors and capacitors. The . .. 
first three classes are nondynamic, or memoryless. The last 
two classes are dynamic, and thus not memoryless: the 
behaviour of an individual element can, if desired, be 
specified with the aid of state variables. 

I t  is possible by a simple replacement to entirely eliminate 
one of these classes, namely the capacitors. It is now 
reasonably well known that, if a unit gyrator of impedance 
matrix 

is terminated at one port in a unit inductance, the impedance 
viewed at the other port is that of a unit capacitance (Fig. 1). 
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Consequently, all capacitors in a circult may be replaced by 
gyrators and inductors. 

Therefore, in any passlve nport network N synthet~s~ng 
Z(s), it IS poss~hle to always assume that the only dynamlc 

Fig. I 
Capacrror replacement 

elements used are inductors, and positive unit inductors at 
that, since transformers may he used to provide the 
normalisation. 

By dividing the elements of N into two classes, the non- 
dynamic elements and the unit inductors, assumed to be p 
in number, it is possible to regard N as an interconnection 
of two networks N1 and N2, where. N1 is an (n + plport, 
consisting of the nondynamic elements of N, and N2 is 
simply p unit inductors, uncoupled from one another. One 
of these inductors loads each of the last p ports of N 1 ,  as 
shown in Fig. 2. 

Fig. 2 
Inductor extraction 

Although N possess an impedance matrix Z(s) by assump- 
tion, there is no guarantee that Nl will possess an impedance 
matrix. For our purposes it will suffice to simply assume that 
an impedance matrix does exist for N1; this will indeed be 
the case for the synthesis to he considered. Because NI  
consists of purely nondynamic elements, this impedance 
matrix is constant: it is also oositive-real. when N, consists 
of purely passive elements. ~ h d p o r t  partition of NI  dktermines 
a corresponding oartition of its impedance matrix. which we 

Here the matrices z l l ,  z12, zzl and z 2 ~  have dimensions, 
respectively, n x n, n x p, p x n and p x p. 

It is now possible to express the input impedance at the 
first n ports of Nl  (when the latter is terminated in the unit 
inductors) in terms of the zij and the impedance matrix N2, 
i.e. sl,. The result, which may he derived by straightforward 
calculation, is 

Z ( s ) = z l ,  - z , , ( ~ I , + z ~ , ) - ~ z ~ ,  . . . . . (8) 

Eqn. 8 bears a striking similarity to eqn. 4; in, fact, we 
observe that one possible realisation of Z(s), in the sense of 
Section 2, is given by 

{F, G, H, J) = {-222, Z21r - ~ ; 2 , z l l ) .  . . . (9) 

This appears to have been first recognised by Youla 
(Reference 35, p. 30). 

Let us review the significance of eqn. 9. If Z(m) is finite, 
there are many quadruples {F, G, H, J) constituting a realisa- 
tion in the sense of Section 2. If we have on hand a synthesis 
of Z(s), and the nondynamic part of this synthesis possesses 
a constant impedance matrix M, this impedance matrix 
determines one particular realisation through eqn. 9. Drawing 
further on the material of Section 2, if the synthesis uses a 
minimal number of reactive elements, the realisation is a 
minimal one. Thus each minimal-reactive-element synthesis 
yields, via M, a minimal realisation. This fact is not especially 

... significant for our purposes here; we know how to construct 
minimal realisations without the necessity of synthetising a 
network first.30 

what is significant, however, is that eqn. 9 implies that 
each minimal realisation yields a minimal-reactive-element 
synthesis. Thus, given an impedance matrix Z(s) with Z(m) 
finite, we can determine a minimal realisation by the known 
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 method^.^^;^^,^^ This minimal realisation determines the 
impedance matrix of a network N,, through eqn. 9, such 
that, if N,  is synthetised and its last p ports are terminated 
in unit inductors, the resulting nport has an impedance 
matrix Z(s). The difficulty arises, however, in that, given an 
arbitrary minimal realisation, the impedance matrix of N1 

may not be positive real. If i t  is not, we cannot synthetise 
the corresponding N, using only passive elements, even 
though the given Z(s) is positive real. If M is positive real, 
the synthesis prohlem is easy (Reference 25, pp. 255-2611, 
being that of synthetisiug a purely resistive network. Further- 
more, we achieve thereby a synthesis of Z(s) with the minimum 
number of reactive elements. 

A second apparent difficulty, that of requiring Z(m) to 
be finite, is easily resolved. It is well known (see, for example, 
Reference 16 for the reciprocal case, and Reference 36, p. 3, 
for the general case) that a positive-real z(s) can he written as 

,. 
where L is a nonnegative definite-constant symmetric matrix 
and Z,(s) is positive-real with Z,(m) .finite. The matrix Z(s) 
can he synthetised as the series connectio_n of transformer- 
coupled inductors (of impedance matrix sL) and a network 
No [of impedance matrix Zo(s)]. It is, moreover, true that 
(Reference 36, p. 4) 

S[.~?(S)] = + S[Z,(S)] , . . . . . (12) 

where we are using the degree definition of McMillan; in 
other words, eqn. 12 says that we can achieve a minimal 

A 

reactive-element synthesis of Z(s) by series connecting two 
.A 

minimal-reactive-element syntheses, one of sL and one of 
Zo(s). We note also that, since Zo(s) is free of poles at infinity, 
S[Z,(s)] is also the dimension of a minimal (state-variable) 
realisation of Zo(s). 

In the case where Zo(s) has finite poles on the jwaxis, it 
is possible (but not actually necessary) to further simplify 
the synthesis prohlem by writing (Reference 36, p. 3) 

where Zl(s) and Z(s) are both positive real, Z,(s) has poles 
only on the jwaxis and Z(s) has poles in the strict left-hand 
halfplane. The matrix Zl(s) can be synthetised by known 
methods (References 19, p, 155, and 37, p. 27), as a series 
copection of transformer-coupled tuned circuits, possibly in 
conjunction with gyrators. Alternatively, if jwaxis poles are 
indeed separately extracted, Zl(s) can be synthetised by an 
application of the state-variable technique to it.38 

It is, moreover, true that 

SIZo(s)] = S[Z,(S)] + S[Z(S)] . . , . . (14) 

implying that a minimal reactive-element synthesis of Zn(s) 
derives from a minimal reactive-element synthesis of Zl(s) 
and Z(s). A minimal reactive-element synthesis of Z,(s) is a 
result of the procedures mentioned. 

As a consequence, we shall feel free to restrict attention 
to the problem of synthetising a positive real Z(s) which 
is finite at s = m and has poles only in the strict left-hand 
half plane. Moreover, the minimal number of reactive ele- 
ments in a synthesis of Z(s) is the dimension of a minimal 
realisation of Z(s). 

Returning now to the mainstream of the argument, we 
note that the prohlem of giving a minimal reactive-element 
synthesis for a rational positive-real Z(s) reduces to the 
following problem: Given a minimal realisation {F, G, H, J} 
of Z(s), assumed to be positive-real with Z(m) finite, and 
to have all poles in the strict left-hand halfplane, find a 
uonsingular T, such that the realisation {T-'FT, T-'G, 
T'H, J}  has 

. . . . (15) 
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positive real (where 4 denotes the direct sum), or, alter- 
natively, such that 

M + M ' > O  . . . . . . . . . . (16) 

The notation > O  is shorthand for nonnegative definite. 
Note that, from eqn. 5, all minimal reilisations will be of 

the form {T-'FT, T-'G, T'H, J }  for some T. 
We remark that, if Z(s) is not positive real, there is certainly 

no  possibility that a suitable Twill exist to obtain M positive 
reac. Even if Z(s) is positive real, the existence of T is not 
guaranteed a priori; this is because the existence of T is 
eouivalent to the existence of an imnedance matrix Mfor  N,. 
1d the next Sections we shall show how to find such a T. 

' 

4 Positive-real constraint as a 
control-theory concept 
The existence of T i n  eqn. 15, such that eqn. 16 is 

satisfied, is hopefully a consequence of{F, G,  H, J}  satisfying 
some set of conditions, and hopefully this set of conditions 
will be satisfied if Z(s) is positive real. Accordingly, we ask: 
what constraint is placed on the matrices in a minimal 
realisation {F, G, H, J }  of a transfer function Z(s) if the 
transfer function is constrained to being positive real? 

The answer to this question is contained in the following 
control-theory lemma:9 

Positive veal lemma. Let Z(s) be an n x n matrix of rational 
transfer functions with Z(m) finite. Let {F, G, H, J} be a 
minimal realisation for Z(s). Let all poles of Z(s) either he 
in the left-hand halfplane, or be simple on the jwaxis. Then 
necessary and sufficient conditions for Z(s) to be positive real 
are: there exist a symmetric positive definite matrix P, and 
matrices Wo, L, such that 

PF + F'P = - LL' . . . . . . . . (17a) 

PC = H - LWo . . . . . . . (176) 

While we shall not attempt to prove this result here, we 
shall make several remarks about it by way of giving a 
partial outline of the proof. The result was fust established 
for the case n = 1 in Reference 39, and for the case of 
arbitrary n in Reference 9. Reference 8 states, but does not 
prove, a less general theorem applying for arbitrary n. 

The fact (hat eqns. 17 imply that Z(s) is positive real is 
not hard to establish; the converse is considerably more 
difficult. however. and denends for its nroof on the follow in^ 
Jcc~~mposition, \,slid for poriti\.c real /( . ,I .  \\li~cli is cst.tblishr.d 
in Reference 40. Tor n2silit.e real Z(SJ. there cxi,r, a mtrix 
W(s), unique to within.multiplication byaconstant orthogonal 
matrix, such that 

with W(s) having several additional properties. 
The first additional property concerns the size of W, 

which is r x n, where u is the normal rank of the resistivity 
matrix Z(s) + Z'(-s). The nolmal rank of a matrix of 
rational transfer functions is the rank of that matrix almost 
everywhere, i.e. throughout the splane, except perhaps at a 
finite number of isolated points which result in certain 
minors of Z(s) + Z'(-s) being zero or infinite at these 
points only. Note that r g n. We comment that all factorisa- 
tions of the form of eqn. 18 have the same rank. 

The second and third additional properties are that W(s) 
is analytic in the right-hand halfplane, and that there exists 
at least one right inverse of W; i.e. timatrix W-'; such that 
WW-' = I,, with W-' also analytic everywhere in the 
right-hand halfplane. Equivalently, W has (strict) rank r in 
the right-hand halfplane. These additional conditions then 
ensure that W is unique to within multiplication by an 
arbitrary orthogonal matrix. We comment that it is com- 
putationally easy to get one W which satisfies eqn. 18 
(Reference 26, p. 168), but to obtain analyticity of W-!  
in the right-hand halfplane is very difficult. 

As pointed out earlier, we can restrict consideration to 
those Z(s) which have poles with negative real parts. It is 
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then possible to show that this particular W(s) has a minimal 
realisation {F, G, L, Wo}, the first two matrices of this 
realisation being identical to two of the minimal realisation 
of Z(s). This property will not, in general, be possessed by 
other W(s) satisfying eqn. 18. The matrix L in this realisation 
of Wis thematrix L of eqn. 17, while, naturally, Wo = W(m). 

The proof of the lemma now requires the exhibition of P,  
and a demonstration that eqns. 17 are satisfied. Eqn. 17c is 
readily checked, by putting s = m in eqn. 18. To define P, 
we start with any minimal realisation of the r x n W(s), and 
transform it so that its system and input matrices F and G 
are identical with the corresponding matrices of the minimal 
realisation of Z, thus obtaining L in the quadruple 
{F, G, L, Wo}. Eqn. 17a may then be solved for P, since it 
can he shown to have a unique symmetric positive definite 
solution. The proof of the lemma concludes by showing that 
eon. 176 is automaticallv satisfied. Details can be found in 
~kference 9. 

If the minimal realisation {T;lFT,. T;'G. TiH) of 
Z(S) - Z(m) is employed instead df {F, 'G, 4, a'ditferent P 
and L will be requ~red to satisfy the equations corresponding 
to eqn. 17. The new P and L in terms of the old P and L 
may be readily verified to be TiPT, and T'L,. In other words, 
as a consequence of eqn. 17, there results 

( T ; P T ~ ) ( T ~ ~ F T ~ )  + (T-~FT,~(T;PT,) = (T;L)(T;L~ ( 1 9 ~ )  

(T;PT1)(T;'G) = (Tiff) - (TiL) Wo 
. . . . (196) 

With these preliminaries, we can turn to the actual synthesis 
concepts. 

5 Synthesis procedure 
We recall (eqns. 15 and 16), that, if {F, G, H, J} is a 

minimal realisation of Z(s), the problem of finding a passive 
structure synthetising Z(s) reduces to finding a T, such that 

has its symmetric part positive semidefinite, 

The positive real lemma sets out conditions satisfied by 
F, G, H and J for Z(s) to he positive real. In particular, the 
lemma guarantees the existence of a symmetric positive 
definite matrix P satisfying eqn. 17. For such a matrix, one 
may define a square root P'12 which is also symmetric and 
positive definite (Reference 41, p. 76). 

Theorem 
If T = P-'12, eqn. 15 1s satisfied. 

Proof 
By dlrect calculat~on, 

Gpl/Z - ffrp- l /2  

. . 
I 

(7-0) 
From eqn. 17, one obtalns 

p1/2Fp-1/2 + p - ' / Z F i p ' / Z  = - p-'/2LL'P-1/2 @la) 

and P 1 ~ 2 G = P - L I Z H - P - 1 / 2 L W o ,  . . . . (216) 

Us~ng these relationships In eqn. 20, {recall that r = rank 
IZ(s) + Z'(-s)l} 



The latter equality may he verified by direct calculation. From (g) Using this P, form a new minimal realisation of Z given 
eon. 22. it is evident that hv {P112FP-L/2. p112~.  P-'l2H. Jl. - .  

(h) Synthetise the nonreactive (Loistant) positive real coupling 
(I6) impedance matrix 

since the right-hand side of eqn. 22 is of the form A'BA, - ~ ' p -  112 
where B is nonnegative definite. This proves the theorem. 

Havinr shown that Mis  the imwedance of a wassive network, I 
the question arises as to how to sGnthetise M. Thisis discussed; by a sefies of a transformer-resistor network and 
for example, in References 19, P. 156 and 25, P. 261. We use a transformer-gyrator network, both ~ f , ,  + ~ [ ~ l  ports. 
the fact that 2M = + M' + - M', and the fact that (i) Terminate the last p = S[Z(s)] ports of this network in 
M + M' and M - M' are both positive real impedances unit inpuctors to obtain a synthesis of Z(s). 
(the 6rst because M + M '  > 0; the second because it is skew). 
Then it can he seen that a synthesis of M is obtained by Examples of this procedure will he given in Section 7, for 
series-connecting transformer-coupled resistors [correspond- which Section 6 is not a prerequisite. 
int to ( M  f M')/21 and transformer-coupled gyrators -~ 

[corresponding to (M-- M')/2]. 
By way of an example, we consider in detail the synthesis Reciprocal RLsynthesis 

of ( M  + M'V2 and show that it uses r resistors. The svnthesis In this Section we annlv similar technioues to obtain ~ - --rr~. 

of (M - M;j/2 will use no resistors, and thus we shall he passive reciprocal coupling networks for  transformer) 
able to conclude that Z(s) can he synthetised with r resistors. circuits. 
Since r is the normii rank df the resistivity matrix As a preliminary, consider the more general situation where 
Z'(-s) + Z(s), this means we have achieved a synthesis capacitors, but no gyrators, are also present, as illustrated 
of Z(s) using the minimum number of resistors (References 19, in Fig. 3a, where k, inductors and k2 capacitors are assumed. 

I - - - - - - - -  1 

NC NC 

0 b 

Fig. 3 
Extracttons for reclproeal networks 

p. 132, and 22, p. 305), as well as a synthesis using the 
minimum number of reactive elements. 

From eqn. 22, it follows, as may be checked by direct 
multiplication, that 

This equation says that (M + Mr)/2 may he synthetised 
by terminating a multipart transformer of turns ratio 
[W, - L'P-'/2]/1/2 in r unit resistors (Reference 25, p. 256). 

The procedure for synthetising an arbitrary positive real 
impedance can now be stated: 

(a) Separate out the pole at infinity (if any), corresponding 
to a series extraction of transformer-coupled inductors. The 
remaining positive-real Z(s) has Z(m) finite. 
(b) (Actually optional.) Separate out poles on the jwaxis, 
corresponding to a series extraction of tuned circuits (also 
transformer-coupled in general). The effect of this is to leave 
a positive-real Z(s) to be synthetised which is of lower degree 
than before performing this extraction. Further, this Z(s) has 
strictly left-hand halfplane poles. 
(c), Find the four matrices comprising any minimal realisa- 
tion {F, G, H, J )  for the impedance Z(s) which remains to 
he synthetised, using any of the techniques outlined, for 
instance, in References 29, 30, 34 or 35. 
( d )  Find W(s), using Reference 40, such that Z(s) + Z'(-s) = 
W ' ( s )  W(s) with W(s) and W 1 ( s )  analytic in the right-hand 
halfplane. The rank of W(s) in the right-half plane is equal 
to the normal rank of Z(s) + Z'(-s). 
(e) Find a realisation of W of the form {F, G, L, Wo} which 
will he minimal if step (b) has been carried out. Thus L is 
determined. 
(f) Calculate P as the unique solution of the equation 
PF + F'P = - LL'. This matrix equation can he regarded 
as p(p + 1)/2 linear simultaneous equations for the elements 
of P,  p being the order of F or, what is the same thing, 
p = S[Z(s)]. Alternatively, P may he found from 

(F't)LL' exp (Fr)dt 

The resistive coupling network N, is described by the sym- 
metric impedance matrix 

Here the matrix is partitioned so that the last k2 rows and 
columns correspond to the capacitors. By connecting unit 
gyrators in cascade with each of these final k2 ports, Fig. 30 
is seen, from Fig. 1, to be equivalent to Fig. 36; the resulting 
network Nl  is of the form considered earlier, and has 
(References 42, pp. 4 and 28) 

leading to 

It is then important to note that [I,,,, i- (-IkJ]M is sym- 
metric, and that repeating the gyrator extraction on Nl  
yields Z, from M by equations identical to those (eqn. 26b), 
giving M in terms of Z,. One also observes, since passivity 
is unaffected by a gyrator extraction, that Z, of eqn. 25 will 
he positive real when (and only when) M i s  positive real. 

One can synthetise N,, given M o f  eqn. 26a, by synthetising 
Z, through a (reciprocal) resistor-transformer network 
(Reference 25, pp. 256 and 261), at least when m3, is non- 
singular. If m33 is singular, and a scattering matrix SM exists 
for M (as when M is positive real), a reciprocal synthesis 
results through a gyrator extraction from the network N ,  
which synthetises SM.  From these arguments, we conclude 
that a gyratorless minimal synthesis exists (when m33 is 
nonsingular or SM exists) for a given M (as in eqn. 15) if, 
and only if, there exists a nonnegative integer k2, a permuta- 
tion matrix PI (corresponding to a relabelling of inductor- 
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capacitor ports) and a sign matrix C = I,, + (-IkJ; such 
that [I, + C][I, + P,]M[I, + P',] is symmetric. It is con- 
venient to call such an M reciprocal, even though M itself 
is not symmetric. 

At this point we apply some of the ideas developed for 
scattering matrices by Youla and Tissi,Io referring to their 
work for omitted proofs. Thus, consider any minimal realisa- 
tion, k of a symmetric Z(s); then there exists a symmetric 
T, such that (Reference 10, p. 9) 

k = I T (  4 . .  (27) 

Since TIS symmetric, it can he d~agonalised to + I s  and -Is 
via a congruency transformation (Reference 41, p. 56): 

T = ToCTi . . . . . .  (284 

C = I,, + (-Ik,),p = kl + k2 . . . .  (286) 

from wh~ch we can form (for eqn. 10) 

. . . . . .  M = (I, T~-')̂ M(I,, 4 To) (29) 

On substituting eqn. 27 into eqn. 29, we find that [I, 4 C]M 
is symmetric; furthermore, k, and k2 are unique (Reference 10, 
p. 7). Thus, when Z(s) is symmetric, there exists a reciprocal 
Mfrom which a reciprocal synthesis results, a t  least when m,, 
is nonsingular or SM exists (certainly when M i s  positive real). 
Unfortunately, there seems to he no guarantee that M is 
positive real. Nevertheless, every other reciprocal MR results 
from M of eqn. 29 by 

M~ = (zn / T ~ - ~ ) M ( I ~  + T ~ )  . . . .  . (30) 

with TR satisfying (Reference 10, p. 7, lemma 6 )  

C = TRCTd . . .  (31) 

In the RLcase, since k2 = 0 and C = I,, we require T of 
eqn. 28 to he positive definite and TR of eqn. 3 to he 
orthogonal. 

Finally, consider a given symmetric positive real Z(s) with 
Z(m) finite, for which x'Z(s)x satisfies the standard RL I-port 
realisability conditions (Reference 18, p. 149) for all real 
nvectors x. By standard nport synthesis techniques 
(Reference 25, p. 270), a structure using transformers and 
oassive resistors and inductors exists. using in fact the - 
minimum number of inductors. By performing this synthesis 
in continued-fraction form. one can demonstrate the existence 
of an impedance matrix M,43 of the positive real type under 
discussion. From this, or any other reciprocal M, all reciprocal 
MR then result from eqn. 30 with TR orthogonal, or 

. . . . . .  MR = (In + (tR)M(In + TR) (32) 

Since such an MR is positive real, with M being derived 
through a congruency transformation, we conclude that 
every minimal reciprocal MR realising a positive real inductor- 
resistor Z(s) must itself he positive real. This result is in 
agreement with a similar one based upon scattering-matrix 
arguments (Reference 10, p. 14). Of course, by duality, an 
identical result holds for RCnetworks. 

7 Synthesis examples 
In this Section, we present two moderately easy 

examples, different parts of the theory being highlighted by 
each. 

The &st two terms are readily synthetised (see Figs. 4a and b 
for the separate syntheses). Thus we now consider the positive 
real 

a b 

Fig. 4 
Example 1: jwaxis extracfions 

A minimal realisation for Z is given by 

F=[-1]  G=[O, 11 

This may be derived by the techniques described in, for 
example, Reference 29, or may he found by inspection, since 
the F matrix is simple. Observe that 

is, naturally, satisfied. 
We also compute, by inspection or by using Reference 40, 

that 

Hence 
s -  l 
s f  1 

Furthermore, a realisation for W(s) is given by using F and 
G as for Z(s), and 

. . . . .  L = [-4, 01 Wo = [2, 21 (40) 

Note that, in the right-hand halfplane, W has strict rank 
equal to the normal rank of Z(s) + Z'(-s), 1.e. unity, and 
a right inverse is [1/2, 01'; W is, moreover, analytic in the 
right-hand halfplane. 

The next step is to form P through 

P F  + F'P = - LL' 

from which one readily determines that 

P=[8] . . . . . . . . . . .  (41) 

and thus that 

P1I2 = [2d2] . . . . . . . . .  (42) 

Then, although 

The f i s t  step is to separate out the term corresponding 
to the pole at infinity, and then to carry out the (optional) 
step of removing iwaxis pole terms. Thus 

Example 1 
Synthesis of the (positive real) impedance 

is not positive real, it is true that 

is positive real. We note that 
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The network N, of impedance matrix M thus has the 
synthesis of Fig. 5. 

?'-' 3' 

Fig. 5 
Synthesis of M for example I 

The network synthetis~ng Z(s) of eqn. 35 is found by 
terminating port 3 of N1 in a unit inductance, while the 
original 2 ( )  has the synthesis of Fig. 6, where the networks 

25, 

Fig. 6 

Circuit synthetisingz of eqn. 32 

shown in Fig. 4 have been included. It is interesting to com- 
pare the terminated N, with the similar result using two 
reactive elements obtained by the Bayard synthesis (Reference 
23, p. 88). 

Example 2 
Synthesis of the (positive real) impedance 

Having no poles on the jwaxis or at infinity to remove, we 
write 

Z(s) = 1 + s + 3  
s Z + s + l  

Transfer functions of the form 

with a, = 1 have a convenient canonical minimal realisation 
(which does not extend in a straightforward way to the 
matrix situation). This is given by Reference 29: 

Thus, for the Z(s) under consideration, we have 

Direct calculation yields 

and then we take 

A minimal realisation for W is then 

Forming the equation 

P F + F ' P =  - LL' 

we obtain 

which has 

The network N, has the positive real impedance 

We have then 
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while 

Fig. 7 shows a synthesrs for the nonreactive network N, 
derived by series-connecting networks of impedance matrices 

Fig. 7 
Synthesrs of coupling M for exomple 2 

I 

Fig. 8 
Final circuit to yield Z of eqn. 45 

(M + W / 2  and (M- Mf)/2. Terminating the final two 
ports in unit inductors yields Fig. 8 for the complete synthesis 
of the original Z(s) of eqn. 46. 

Observe that one of the penalties of obtaining a synthesis 
using simultaneously the minimum number of reactances and 
resistances is the presence of a gyrator in the realisation of the 
positive real function Z(s). However, by extracting the resistor 
and transforming the resulting lossless structure (atter adjoin- 
ing another port for further resistive termination), the some- 
what complicated procedures of Oono and Yasuura 
(Reference 19, pp. 149-153 and 168) yield a gyratorless 
circuit with the minimum possible number of elements. 

8 Conclusions 
The material presented highlights the strong interrela- 

tion between networks systems and control theory in an 
elegant manner. One of the classical problems of network 
theory has been solved by an investigation in terms of the 
state, using not especially advanced control-theory concepts. 
PROC. IEE, Val. 115, No. 7, JULY 1968 

An interesting and important feature of the synthesis is 
that it is primarily algebraic in character, rather than analytic, 
as, for example, the Brune synthesis. This is quite proper, 
for the synthesis problem is evidently in some sense a h i te -  
dimensional one, and thus apriori more reasonably attacked 
by algebra than analysis. 

The key point of the synthesis is the translation of the 
analytical concept of positive reality into algebraic properties 
of the matrices of a minimal realisation of Z(s). From this 
point on, the development of the synthesis becomes alge- 
braic. 

There are still a number of open problems, however. The 
present theory must certainly be regarded as incomplete when 
the synthesis of positive real functions leads to a network 
containing gyrators. In Section 6, we have attempted to out- 
line some of the difficulties which arise when a reciprocal 
or, by extension, a minimal-gyrator synthesis is sought. Very 
possibly, satisfactory results will be achieved by using the 
algebraic characterisation of reciprocity in Reference 10. 
Since, however, reciprocal synthesis may often have to use 
more than the minimum number of resistors (Reference 19, 
p. 1481, further investigations of the effect of positive reality 
and reciprocity on realisations is in order. 

Another pertinent problem is the development of a scatter- 
ing-matrix synthesis procedure, which uses, in a simple 
manner, some hitherto unestahlished property of minimal 
realisations of scattering matrices.ll A very positive step has 
been made in this direction in Reference 10; Reference 31 
discusses the statement of the network problem in control- 
system tcrms. Ne\'errhelcss, rhe method given here allows the 
synthesis of any m ~ i ~ ~ n a l  bounded re31 scattering ma~rix S(s), 
since one can form the positive real impedance matrix 
Z = 2(1, - S)-I - I. if I, - S is nonsingular. If I, - S 
is singular of rank p, one forms TOST; = So + I,-, with 
TO a constant orthogonal matrix (Reference 19, p. 155) 
(representing transformers) with I, - So nonsingular. This 
yields a realisation through ZO = 2(1, - - I,, which 
is a positive real impedance matrix. 

The question naturally arises as to how to obtain all passive 
minimal realisations. From Section 2, we know that every 
minimal realisation results from applying the transformation 
of eqn. 5 to a fixed one. In particular, this procedure yields 
all passive minimal realisations. Nevertheless, except for the 
RL (or RC) case treated in Section 6, the restrictions on the 
transformation T needed to retain passivity cannot as yet be 
speczcally stated. 

In a different, but somewhat related, manner, one can 
obtain all nonminimal realisations by the use of a previous 
theory.31 

Some remarks are in order on the computation difficulties 
of the synthesis described. The major problem is to determine 
W(s) from Z(sj + Z'(-sj. Certainly Reference 40 outlines 
the procedure, but the actual calculations are long and are 
considered by Youla to be somewhat inappropriate for 
programming. The other calculations required in the syn- 
thesis are refreshingly easy, and in the 1-port case lead to a 
fairly simwle svnthesis through use of the canonical minimal . . 
realisation described hy eq11.47. If n .simple mran< of finding 
IV(s) analytic in the right-hand halfplane is found, the mcrhod 
holds excellent as a possible means of synthesis via 
the computer, since the method of finding a minimal realisa- 
lion3" could hc so programmed. In fact, following ideas very 
similar to those of this paper, a conwnient computer :tnnlysls 
of networks has been 

In the field of integrated circuits, the material of this paper 
has some significant applications, since, on an admittance 
basis, minimal capacitor45 and in~ensi t ive~~ synthesis tech- 
niques result. 
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