Impedance synthesis via state—space techniques

Prof. B. D. 0. Anderson and Prof. R. W. Newcomb

Synopsis

The paper deals with the synthesis of passive networks and relies on. general systems theory and control
concepts. The network-synthesis problem is first interpreted in state-variable terminology, solved as a
contro] problem and the solution is then translated back into network-theory terms. After a review of

- state-space formulations, an algebraic theory of synthesis is developed, beginning with a minimal state—
space realisation, perhaps obtained through control-theory procedures, from which a synthesis of rational
positive-real impedance matrices is obtained through a-transformation on the state. The method rests
upon an appropriate basis change, in the state-space, obtained by factoring the Pmatrix of the control-
theory positive real lemma. The minimum number of resistors and reactive elements is used. The paper
also serves as a review of the ‘state-of-the-art’ for formal nport synthesis; the results lead to new methods
of attacking open problems, as well as to methods of analysis and synthesis via digital computers.

List of principal symbols

F G, H, J = constant state-variable matrtces
I, = k x k identity matrix
L = constant matrix for p.r. lemma
m = output dimension
M = coupling-network (constant) impedance matrix
n = input dimension
N = network
P = state dimension
P = constant positive definite matrix for p.r. lemma
¥ = rank of resistivity matrix = number of resistors
§ = o + jw = complex frequency variable
T, Ty = state-basis change matrices
» = input nvector
-W(s) = general transfer-function matrix
W, = factor of resistivity matrix at infinity
x == state pvector
. ¥ = output mvector
Z(s), Z(s) = prescribed impedance matrices
8lg] = McMillan degree of [g]
2 = sign matrix
A prime indicates transposition

1 Introduction

The disciplines of network theory, control systems,
and general systems have much in common; for example,
network functions (or matrices) are generally particular cases
~of transfer functions (or maftrices); again, networks may
profitably be examined from the state-space point of view,
which is essentially a general-systems concept, primarily
introduced to study control systems.
It is surprising, therefore, to find that there are not more
links between the disciplines. Nevertheless, it is possible to
point to an ever increasing number of isolated examples;
e.g. References 1-7, which are concerned with developing a
state-space description of a network, or References 8 and 9,
which discuss positive real functions and matrices from a
control viewpoint. Groundwork for a control viewpoint of
the scattering-matrix synthesis problem is discussed in
Reference 10, with further results reported in Reference 11.

This paper is an attempt to lay another bridge across the
gap. It is concerned with giving a passive-network synthesis
via the application of general systems theory and control
concepts to the impedance matrix.

The early work of Cauer,’® Brune,!* Darlington" and
others, and later Bott and Duffin,'® represented some of the
first successful attempis to establish synthesis procedures for
1-port networks. Generally, the problem they considered was
that of synthetising a network, given a mathematical descrip-
tion of it, usually a positive real function.
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The desire to extend network theory to multiport situations
led to the study of positive-real matrices. An 7 X » posiiive
real matrix A(s) fulfills the following conditions [References 16
(p. 217) and 17] (the asterisk denotes complex conjugation
and the prime denotes matrix transposition):

Ya) A(s) is analytic in the strict right-hand halfplane

(B) A*(s) = A(s*) in the strict right-hand halfplane

(c) A(s) + A’(s*) is a nonnegative definite matrix in the
strict right-hand halfplane.

This definition is a natural extension of the definition of a
positive-real function (Reference 18, p. 67).

It is not difficult to show that, if it exists, the impedance
mairix of a multiport network which is linear, finite, time-
invariant and passive is a positive real matrix of rational
functions {(Reference 19, p. 153). It is, however, considerably

, harder to establish the converse, namely, that to a rational

positive real matrix there corresponds a linear, finite, time-
invariant, passive network with the given matrix as the
impedance matrix of the network,

This impedance-matrix synthesis problem, or, what amounts
to a variant of it, the scattering-matrix synthesis problem,
has been solved in various ways by a number of workers
(Reference 16, Pt. II).1%-23 Both reciprocal syntheses (those
using resistors, inductors, capacitors and transformers, but
no gyrators) and nonreciprocal syntheses (those using also
gyrators) have been considered, and they are summarised in
References 24-27. None of these syntheses could be con-
strued as depending on general systems or control-theory
techniques for its establishment, though there are available
methods. of realising lossless networks from their state-
variable description.?®
" Our approach in this paper is to express the network-
synthesis problem in state-variable terminology as customarily
applied to the theory of control, to solve the resulting control
problem and then to reinterpret this solution in network-
theoretic terms.

In Section 2, we outline briefly, but it is hoped fully, the
necessary state-variable preliminaries. The principal idea is
that of a realisation of a matrix of rational transfer functions,
which is essentially a collection of four constant matrices
describing the transfer-function matrix. The theory of
minimal realisations (where exactly what is minimal will be
explained in Section 2) is also considered. Section 3 poses
the impedance-synthesis problem in general systems-theory
language, reducing it to a search for a realisation possessing
certain properties (corresponding to the passivity of a resistive-
coupling network).

Section 4 is concerned with explaining an interesting
control-theory lemma, which characterises the concept of
positive reality in terms of the matrices of a minimal realisa-
tion. Section 3 shows that this characterisation allows ready
selection of a realisation possessing the properties mentioned
as being sought after in Section 3, so that a passive synthesis
can then be given. In this Section, the details of a synthesis
procedure are also. discussed, and it is shown that the
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synthesis uses the minimal number of reactlve and remstwe
elements.

“Examples of the synthesis procedure are- d:scussed in Sec-
‘tion 7, while Section 6 -discusses reciprocal synthesis with
-special emphasis on RLnetworks. Section 8 discusses some
of the remaining problems of the conirol-systems-network-
theory interface. '

2 State-variable preliminaries

Before turning our attention to the main problem in

‘hand, we digress in this Section to point out some pertinent
resulis of a general (continuous) systems nature;, Linear,
time-invariant, multivariable, finite-dimensional dyramical
systems can be characterised by an m x n transfer-function
matrix W(s) whose elements are rational functions of the
variable 5.%° The matrix W(s) relates the Laplace transform
‘of the input mvector E/(s) to the Laplace transform of the
output mvector ¥(s) through

Yo) = WU . . . . . . . ... D

. It will be sufficient, for most of the material following, to
restrict consideration to the case where W{s} has no pole
~ at infinity, i.e. W(oo) is finite. If- W (s} does have a pole ai
infinity, its extraction can be made’ fol]owmg standard
tcchmqucs (egqn. 11, Section 3). ’

~Under these condltlons it is possible to describe the
system via a time-domain state-space representation. In this
representation, the input # and output y are mathematically
related via an intermediate variable, the state x. The relevant
equations are :

& =Fx+ Gu
y=Hx+ Ju

2a)
. @b

. In these equations x, #, and y are vector functions of time,
rather than Laplace transforms, as in egn. 1; % is the time
derivative of x. The vector x has a dimension p (which we
shall not specify for the moment), while the matricesF, G, H
and J are all constant and of appropriate dlmensmns
respectively, p X p,p X m,p X mand m X n.

" By taking the Laplace transform of eqn. 2 and eliminating
X{(s), it is straightforward to obtain, here I, is the p X pidentity
matrix,

Y6 =+ HGl,— F760E . B

and it follows, by comparing eqn. 1 and eqn. 3, that the
mafrix W(s) of rational functions of s is related to the four
constant matrices F, G H and J by

W)= J+ HGL — )6 . . . . . . @&

Note that many authors use H where we use H'.

It is clear that any quadriple {F, G, H, J} determines a
W(s) which is a matrix of rational functions of s, having
W(co) finite. The converse, however, that W(s) determines
a quadruple {F, G, H, J}, is not obvious immediately. From
‘egn. 4, it follows that J is determined as #(o0), but otherwise
the existence of F, G and H is not a priori guaranteed.

* “None the less, as is discussed for example in References 29-
_31,.any W(s) does determine an infinity of triples {F, G, H},
such'that eqn. 4 is satisfied with J = W/(o2). These references,
with the work of Ho? being especially significant, discuss
methods of determining the triples, and consider in particular
the question of determining all triples when one is known.

Any quadruple {F, G, H, J} satisfying eqn. 4 is termed a
realisation of W(s), while the triple {F, G, H} is termed a
realisation for W{s) — W(oo), since J in the quadruple is zero.
" The dimensions of the various possible F matrices which
can occur in the triples are not the same; but it is true that
there is a minimal dimension for the set of all matrices F
appearing in the realisations of a prescribed W(s). For
example, if W(s) is a constant matrix, it is clear from eqn. 4
that this dimension is zero, or if W(s) is a'scalar of the form
‘afs, it is clear that this dimension is 1.

A realisation {F, G, H, J} for which F has a minimal dimen-
sion is termed a minimal realisation.

A most important feature of minimal reahsatlons is that
they are uniquely determined by W(s), except for arbitrary
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viewed at the other portis that of a unit capacitance (Fig. 1).

prescription- of the basis vectors of the state-space.?” What
concerns us more, however, is the way that this arbitrary
prescription affects {F. G, H}. Reference 29, p. 157, shows
that, if {F, G, H} is 2 minimal realisation of W(s) — W{05),
any other minimal realisation is of the form {T—'FT, T-1G,
T'HY}, where T is an arbitrary nonsingular matrix, Thus, if
{Fy, G, H{} and {F,, G5, H,} are both minimal, the existence
is guaranteed of a nonsingular 7, such that

. .

F,=T-'FT .
G,=T-'G, . (5b)
H2 = T’Hl X (SC)

The dimension of a minimal realisation, i.e, the dimension
of the associated state-space or the order of the sguare
matrix-F, is termed the degree of W (s), written S[W'].

The hlstory of the concept of degree in network and controi
theory is an interesting one. Tellegen’s definition of the
order of a network (Reference 32, p. 322) procecds on physical
grounds by defining the order as the maximum number of
natural frequencies obtainable by embeddmg the given net-
work in an arbitrary passive network. This order definition

" agrees with the mathematical definition of McMillan

(Reference 16, pp. 543 and 592) of the degree of a square
matrix Z(s), which is shown to imply that 8[Z] is the minimal
number of reactive elements in any passive synthesis of Z(s)
when Z(s) is a positive real impedance matrix (Reference 26,
p. 322). Since we can conceive of deriving a state-space
representation of Z(s) by associating a state variable with
each reactive element in a network synthetising Z(s),1 24 it
is not surprising tofind that McMillan’s definition is essentially
the same as the one we have given. Still another mathematical
definition .of degree, motivated by a different set of physical
concepts, is given in Reference 33. Because of the. corre-
sponding physical meanings of these, it is therefore fortunate
to find (Reference 34, p. 542) that these definitions are
mathematically the same thing, prowded that poles at mﬁmty
are snitably dealt with,

We shall be especially interested in the fact that the. mlmmal
number of reactive elements in a synthesis of an impedance
matrix Z(s), i.e. McMillan’s 8{Z(s)], is the same thing as the
dimension of a minimatl (control—systems) reahsatlon provided
that Z(oo) is finite.

-3 Impedance-synthesis problem in

systems-theory language

Our solution of the.synthesis problem is a control-
theoretic one, and, to achieve the solution, it is necessary to
express the synthesis problem in systems-theoretic. language.

Formally, the synthesis problem is: given a positive real
A X nmairix Z(s) (whole elements are rational functions of s),
find a finite circuit connection of passwe network elements
synthetising Z(s).

To motivate the synthesis procedure presented, it will be
necessary to make some apparently restrictive assumptions
concerning the final form of the synthesis. These assumptions
include more than merely the assumption of the existence of
a synthesis; they will, however, be shown to be vahd as a
result of the synthesis techmques presented,

A synthesas may contain any of the following types of
linear, passive,. time-invariant network elements: resistors,
gyrators (ideal), transformers, inductors and capacitors. The
first three classes are nondynamic, or memoryless. The last
two classes are dynamic, and thus not memoryless the
behaviour of an individual élement can, if desired, be
specified with the aid of state variables. '

Tt is possible by a simple replacement to entirely eliminate
one of these classes, namely the capacitors. Tt is now
rcasonably wcll known that, 1f a umt gyrator of :mpedance
matrlx ’

o G -
zgz{_-l.,o}..........(e)

is terminated at one port in a unit inductance, the impedance
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Consequently, all capacitors in a circuit may be replaced by
eyrators and inductors.

‘Therefore, in any passive nport network N synthetlsmg

- Z(s), it is possible to always assume that the only dynamic

o

Fig. 1
Capacitor replacement

elements used are inductors, and positive unit inductors at
that, since transformers ma_y be used to provnde the
normallsatlon

By dividing the elements of N into two classes, the non-
dynamic elements and the unit inductors, assumed ‘to be p
in number, it is possible to regard N as an interconnection
of two networks Ny and N,, where N is an {n + p)port,
consisting of the nondynamic elements of N, and N, is
simply’ p unit inductors, uncoupled from oné another. One
of these inductors loads each of the last p ports of Ny, as
shown in Fig, 2.

o— . —
Fig. 2 | '

Inductor extraction.

. Although N possess an impedance matrix Z(s) by assamp-
tion, thereis no guarantee that N, will possess an impedance
matrix. For our purposes it will suffice to simply assume that
an impedance matrix does exist for Ny; this will indeed be
the case for the synthesis to be considered. Because N;
consists ' of purely nondynamic elements, this impedance
matrix is constant; it is also positive-real, when N, consists
of purely passive elements. The port partition of N, determines
a corresponding partltlon of its 1mpcclance matnx whlch we
write as

M- [iia_né_nfiz] '. N

Here the matrices zyy, 2,5, zy; and zy; have dimensions,
respectwely, nXauXppXaandp X p.

it is now possible to express .the input 1mpedance at the
first » ports of N, {when the latter is terminated in the unit
inductors) in terms of the z; and the impedance matrix N,
i.e. si,. The result, whlch may be derived by straightforward
calculatlon is

Z(S)"".Zu—212(51p-+222)"1221 N )

Eqn. 8 bears a striking similarity to egn. 4; in, fact, we
observe that one possible reahsatlon of Z(s), ln the sense of
Section 2, is glven by

{F G, H,J} = {29, 231, *212, zy}. S -(9)

This appears to have been first recognised by Youla
(Reference 35, p. 30),

Let us review the significance of eqn. 9. If Z{oo) is finite,
there are many quadruples {F, G, H, J} constituting a realisa-
tion in the sense of Section 2. If we have on hand a synthesis
of Z(s), and the nondynamic part of this synthesis possesses
a. constant impedance matrix M, this impedance matrix
determines one particular realisation through eqn. 9. Drawing
further on the material of Section 2, if the synthesis uses a
minimal number of reactive elements, the realisation is a
minimal one. Thus each minimal-reactive-element synthesis
yields, via M, a minimal realisation. This fact is not especially
significant for our purposes here; we know how to construct
minimal realisations without the necessny of synthetising a
network first. 3

What is significant, however, is that egn. 9 implies that
each minimal realisation yields a minimal-reactive-clement
synthesis. Thus, given an impedance matrix Z(s) with Z(co}
finite, we can determine a minimal realisation by the known

930

methods, 303435 TFhis minimal realisation determines the
impedance matrix of a network N, through equ. 9, such
that, if N, is synthetised and its last p porfs are terminated
in unit inductors, the resulfing zport has an impedance
matrix Z(s). The difficulty arises, however, in that, given. an
arbitrary minimal realisation, the impedance matrix of N,

Zn 2 J —H - -

M= l:zm Zzz:lﬁl:G ""F] - U0

may not be positive real. If 1t is not we cannot synthetise
the correspondmg N; using only passive ¢lements, even
though the given Z(s) is positive real. If M is positive Teal,
the synthesis problem is easy (Reference 25, pp. 255-261),
being that of synthetising a purely resistive network. Further-
more, we achieve thereby a synthesis of Z(s) with the minimum
number of reactive elements. ' -
A second apparent. difficulty, that of requiring Z(oo) to
he finite, is easily resolved, It is well known (see, for example,
Reference 16 for the reciprocal case, and Reference 36, p. 3,

for the general case) that 2 positive-real z (s) can be wriiten as
Z)=sL+Zots) . . . . . ... (D

where Lisa nonnegat1ve definite-constant symmetric matrlx

and Zy(s) is positive-real with Z[,(oc) finite. The matrix z (s)
can be synthetised as the series connectmn of transformer-

coupled inductors (of impedance matrix SL) and a network
Ny [of impedance matrix Zy(s)]. 1t is, moreover, true that
(Reference 36, p. 4)

[Z(s)]—S[sL]JrS[ZD(S)} e )|

where we are using the degree definition of McMillan; in
other words, eqn. 12 says that we can achieve a minimal

reactive-element synthesis of z () by series connectmg two

minimal-reactive-element syntheses one of sL and one of
Zo(s) -‘We note also that, since Zy(s) is free of poles at infinity,
8[Zy(s)] is also the dimension of a minimal (state-variable)
realisation of ZO(S)
In the case where Zy(s) has finite poles on the jwaxis, it
is possible (but not actually necessary) to further simplify
the synthesis problem by writing {Reference 36, p. 3)

Zf=Z(H+ Z(s) . . . . . . . . {13

where Z,(s) and Z(s) are both positive real, £,(s) has poles
only on the jwaxis and Z(s) has poles in the strict left-hand
halfplane. The matrix Z(s) can be synthetised by known
methods (References 19, p, 155, and 37, p. 27), as a series
connection of tra.nsformer-coupled tuned circuits, possibly in
conjunctlon with gyrators. Alternatively, if fwaxis poles are
indeed separately extracted, Z(s) can be synthetised by an
application of the state-variable technique to it.%8
It is, moreover, true that

(2] = Sz,@] +8[20] . . . . (4

implying that a minimal reactive-element synthesis of Zy(s)
derives from a minimal reactive-element synthesis of Z(s}
and Z(s). A minimal reactive-element synthesis of Zi(s) is a
result of the procedures mentioned.

As a consequence, we shall feel free to restrict attention
to the problem of synthetising a positive real Z(s) which
is finite at s.— co and has poles only in the strict left-hand
half plane. Moreover, the minimal number. of reactive ele-
ments in a synthesis of Z(s) is the dimension of a minimal
realisation of Z(s).

Returning now to the mamstream of the argument we
note that the problem of giving a minimal reactive- element
synthesis for a.rational positive-real Z(s) reduces to the

" following problem: Given a minimal realisation {F, G, H, J}
of Z(s), assumed to be positive-real with Z(oo) finite, and

to have .all poles in the strict left-hand halfplane, find a
nonsmgular T,.such that the realisation {T— \Fpr T 1G
T°H, JYhas .. .

J —H'T ] J-HTY
M = |:Tﬁ1.G _T,.lFT:| =, *l‘ T_l) [G _F] (I, +. T)
ST as)
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posmve real (where | denotes the direct sum), or, alter-
natively, such that

M+MZ>=0 . . . . . . . . .18

The notation =0 is shorthand for nonnegative definite.

Note that, from eqn. 5, all minimal realisations will be of
the form {T—1FT, T~1G, T'H, J} for some T. .

We remark that, if Z{(s) is not positive real, there is certainly
no possibility that a suitable 7" will exist to obtain M positive
real. Even if Z(s) is positive real, the existence of T is not
guaranteed a priori; this is because the existence of T is
equivalent to the existence of an impedance matrix M for N;,.
In the next Sections we shall show how to find such a 7.

-4 Positive-real constraint as a
control-theory concept

The existence of 7 in eqn. 15, such that egn. 16 is
satisfied, is hopefully a consequence of{F, G, H, J} satisfying
some set of conditions, and hopefully this set of conditions
wilt be satisfied if Z(s) is positive real. Accordingly, we ask:
what constraint is placed on the matrices in a minimal
realisation {F, G, H, J} of a transfer function Z{(s) if the
transfer function is constrained to being positive real?

The answer to this question is contained in the following
control-theory lemma:®

Positive real lemma. Let Z(5) be an # x n matrix of rational
transfer functions with Z(co) finite, Let {F, G, H, J} be a
minimal realisation for Z(s). Let all poles of Z(s) either be
in the left-hand halfplane, or be simple on the jwaxis, Then
necessary and sufficient conditions for Z(s) to be positive real
are: there exist a symmetric positive definite matrix P, and
matrices ¥, L, such that

PE+FP=—LL . . . . . . . . (179
PG=H—-LWy, . . . . . . . (1)
WWo=Jd+J . . . . . . . . (17

While we shall not attempt to prove this result here, we
shall make several remarks about it by way of giving a
partial outline of the proof. The result was first established
for the case » = 1 in Reference 39, and for the case of
arbitrary r in Reference 9. Reference 8 states, but does not
prove, a less general theorem applying for arbitrary ».

The fact that eqns. 17 imply that Z(s) is positive real is
not hard to establish; the converse is considerably more
difficult, however, and depends for its proof on the following
decomposition, valid for positive real Z(s), which is established
in Reference 40. For positive real Z(s), there exists a matrix’
- W{(s), unique to within multiplication by a constant orthogonal

matrix, such that

Z(s) + Z'(—s) =

with W (s) having several additional properties.

The first additional property concerns the size of W,
which is # X #n, where r is the normal rank of the resistivity
matrix Z(s) + Z'(—s). The normal rank of a matrix of
rational transfer functions is the rank of that matrix almost
everywhere, i.e, throughout the splane, except perbaps at a
finite number of isolated points which result in certain
minors of Z(s) + Z'(—s) being zero or infinite at these
points only. Note that r <{ 7. We comment that all factorisa-
tions of the form of egn. 18 have the same rank.

The second and third additional properties are that W (s)
is analytic in the right-hand halfplane, and that there exists
at least one right inverse of W; i.e. a-matrix W —1; such that
WW-t =7 with W-! also analytic everywhere in the
right-hand halfplane. Equivalently, W has (strict) rank r in
the right-hand halfplane. These additional conditions then
ensure that W is unique to within multiplication by an
arbitrary orthogonal mateix. We comment that it is com-
putationally easy to get one W which satisfies eqn. 18
~ (Reference 26, p. 168), but to obtain analyticity of w1

in the right-hand halfplane is very difficult.

"As pointed out earlier, we can restrict consideration to
those Z(s) which have poles with negative real parts. It is
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Wii—siWw(s) . . . . . (18

then possible to show that this particular W{(s) has a minimal
realisation {F, G, L, W}, the first two matrices of this
realisation being identical to two of the minimal realisation
of Z{s). This property will not, in general, be possessed by
other W(s) satisfying egn, 18. The matrix L in this realisation
of Wis the matrix L of egn. 17, while, naturally, W, = Wi{oo).

The proof of the lemma now requires the exhibition of P,
and. a demonstration that eqns. 17 are satisfied. Eqn. 17¢ is-
readily checked, by putting s = oo in eqn. 18. To define P,
we start with any minimal realisation of the r X r W(s), and
transform it so that its system and input matrices F and &
are identical with.the corresponding matrices of the minimal
realisation - of Z, thus obtaining L in the quadruple
{F, G, L, Wy}. Eqn; 174 may then be solved for P, since it
¢an be shown to have a unique symmetric positive definite
solution. The proof of the lemma concludes by showing that
eqn. 17h is automatically satisfied. Details can be found in
Reference 9.

If the. minimal realisation {T{'FTy, T7!G, T\H} of
Z(5) — Z(oo) is employed instead of {F, G, H}, a different P
and L will be required to satisfy the equations corresponding
to egn. 17. The new P and L in terms of the old P and L
may be readily verified to be 7pPT; and 1“L,. In other words,
as a consequence of eqgn. 17, there resuits

(TiPT T FTy) 4 (T~ T (TiPTy) = (T IXTi LY (194)

(T{PTXT; '6) = (T{H) — (T{ D)W,
(195}

WoWo=Jd+J . (i%)

With these preliminaries, we can turn to the actual synthesis
concepts.

5 Synthesis procedure

We recall (equs. 15 and 16), that, if {F, G, H, J} is a
minimal realisation of Z(x), the problem of finding a passive
structure synthetising Z(s) reduces to finding a 7, such that

J —H 15
M= TG —~TIFT B )

has its symmetric part positive semidefinite,
M+M>=0 . . . . . . . . . . (08

The positive real femma sets out conditions satisfied by
F, G, H and J for Z(s) to be positive real. In particular, the
lemma guarantees the existence of a symmetric positive
definite matrix P satisfying eqn. 17. For such a matrix, one
may. define a square root P2 which is also symmetric and
positive definite (Reference 41, p. 76).

Theorem
If T = P12, eqn. 15 is satisfied.

Proof -
By direct calculation,
J+J G'PY2 . g'p—1i2
M+ M = [Pa,'zg_Pq/zH _plUigpp—if2 _ P—I.’ZFfPUZ]

(20
From eqn. 17, one obtains

PU2FP-12 4 p=i2F'Pl2 — . p-T2LL’P=12 (214)

and PV2G = p-li2g— p-\RPLWw, . . . . . @2Ib)
Tsing these relatlonshlps in eqn. 20, {recall that r = rank
1z +2(—9%} .

Wy (=P~ 12LWy)
M + M’-: -1 — 7 p—

— P12 LW, p-l2pprp-1iz

wi 0 I, I[W, © }
“lo  ~prp]|lrn 1 |lo  —LPp 2

(22)
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The latter equality may be verified by direct calculation. From
eqn. 22, it is evident that

M+M>0 . . . . . .. . . .6

since the right-hand side of eqn. 22 is of the form. A4'BA,
where B is nonnegative definite. This proves the theorem.
Having shown that M is the impedance of a passive network,
the question arises as to how to synthetise M, This is discussed,
for example, in References 19, p. 156 and 25, p. 261, We use
the fact that 2M = M 4+ M’ + M — M’, and the fact that

M+ M’ and M — M’ are both positive real impedances:

(the first because M + M’ > 0; the second because i{ is skew).
Then it can be seen that a synthesm of M is obtained by
series-connecting transformer-coupled resistors [correspond—
int to (M4 M)/2] and transformer- coupled gyrators
[corresponding to (M — M"){2].

‘By way of an example, we consider in detail the synthesis
of (M + M’){2 and show that it uses r resistors. The synthesis
of (M — M2 will use no resistors, and thus we shall be
able to conclude that Z(s) can be synthetised with r resistors.
Since » is the normal rank of the resistivity matrix
Z'(—s) + Z{(s), this means we have achicved a synthesis
of Z(s) using the minimum number of resistors (References 19,

o— %Ikl
e
a
Fig. 3

Extractions for reciprocal networks

p. 132, and 22, p. 305), as well as a synthesxs using the
minimum number of reactive elements.

From eqn. 22, it follows, as may be checked by direct
multiplication, that

MM+ M) =} [Wa

I —L'p-12
» :| J[WO ] (23)
—p-12p

This equation says that (M + M")}{2 may be synthetised
by terminating a multiport transformer of turns ratio
[Wo — L'P~12]/4/2 in r unit resistors (Reference 25, p. 256).

The procedure for synthetising an arbitrary positive real

impedance can now be stated:

(@) Separate out the pole at infinity (if any), corresponding
to a series extraction of fransformer-coupled inductors. The
remaining positive-real Z(s) has Z(co) finite.

(&) (Actually optional.) Separate out poles on the jwaxis,
cofresponding to a series extraction of tuned circuits (also
transformer-coupled in general). The effect of this is to leave
a positive-real Z(s) to be synthetised which is of lower degrée
than before performing this extraction. Further, this Z(s) has
strictly left-hand halfplane poles.

{¢) Find the four matrices comprising any minimal realisa-
tion {F, G, H, J} for the impedance Z(s) which remains to
be synthetised, using any of the techniques outlined, for
~ instance, in References 29, 30, 34 or 335.

(d) Find W(s), using Reference 40, such that Z(s} + Z(—s5)=
W —s)W{s) with W(s) and W~ 1(s) analytic in the right-hand
halfplane, The rank of W/(s) in the right-half plane is equal
to the normal rank of Z(s) + Z’(—3).

(2) Find a realisation of W of the form {F, G, L, W} which
will be minimal if step () has been carried out. Thus L is
determined.

(/) Calculate P as the unique solution of the equation
PF 4+ F'P= — LL’. This matrix equation can be regarded
as p(p & 1)/2 linear simultanecus equations for the elements
of P, p being the order of F or, what is the same thing,
p = 0[Z(s}]. Alternatively, P may be found from

o0
P '( exp (F'1)LL’ exp (Ftdr
0
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{2) Using this P, form a new minimal realisation of Z given
by {P'2FP-12 pI2G, p-12[ J}.

(7) Synthetise the nonreactive (constant) positive real coupling
impedance matrix

—H'p-\2
} (24)

S
M= [P”ZG —plizpp-1i2]

by a series connection of a transformer—resistor network and
a transformer—gyrator network, both of # + 8[Z] ports.

(f) Terminate the last p = 8[Z(s)] ports of this network in
unit inductors to obtain a synthesis of Z{s).

EXamples of this procedure will be given in Section 7, for
which Section 6 is not a prerequisite.

6 Reciprocal RLsynthesis

In this Section we apply similar techniques to obtain
passive reciprocal coupling networks for RL (transformer)
circuits.

As a preliminary, consider the more general situation where
capacitors, but no gyrators, are also present, as illustrated
in Fig. 3a, where k; inductors and %, capacitors are assumed.

The resistive coupling network N, is described by the sym-
metric impedance matrix

RT=

1n Ziz Ziz |
Zc = Z’C = [2; Zan 3]},{[ . . . . - (25}
@ b mba

R kl kz

Here the matrix is partitioned so that the last &, rows and
columns correspond to the capacitors. By connecting unit
gyrators in cascade with each of these final &, ports, Fig. 3«
is seen, from Fig. 1, to be equivalent to Fig. 35, the resulting
network N; is of the form considered earlier, and has
(References 42, pp. 4 and 28)

4gt My My
M= | my  my my |, my; =

r I
—hh3 M3 Pl

my,i=1,2,3 (26a)

leading to
Zyp — 2132531233 - Zi3fgs!
33223 Ziafss
-_— I — ’ _—
— z33733%23 Zyp — Z33Z'% Zaazgl)  (26b)

O Y —1
Z33 223 Z33

_—
= z13233'23

. N
M =]z},
.t
—z33'2(3

it is then 1mportant to note that [, + (—R,)]M is sym-
metric, and that repeating the gyrator extraction on N,
yields Z, from M by equations identical to those (eqn. 265),
giving M in terms of Z,.. One also observes, since passivity
is unaffected by a gyrator extraction, that Z, of egn. 25 will
be positive real when (and only when) M is positive real.
One can synthetise N, given M of eqn. 264, by synthetising
Z, through a (reciprocal} resistor~transformer network
(Reference 25, pp. 256 and 261), at least when #1535 is non-
singular. If 44 is singular, and a scattering maftrix Sy exists
for M {(as when M is positive real), a reciprocal synthesis
results through a gyrator extraction from the network N,
which synthetises Sy;. From these arguments, we conclude
that a gyratorless minimal synthesis exists (when wmy is
nonsingular or Sy exists) for a given M (as in egn, 15) if,
and only if, there exists a nonnegative integer k., a permuta-
tion matrix Py (corresponding to a relabelling of inductor—
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capamtor ports) and a sign matrix X = I, & (— Ikz), such -

that [£, + Z][7, & P ML, & /4] is symmeétric. It is con-
venient to call such an M rec1proca1 even though M itself
is not symmetric.

At this point we apply some of the ideas devcloped for
scattering matrices by Youla and Tissi,!% referring to ‘their
work for omitted proofs. Thus, consider any minimal realisa-
tion, Mofa symmetric Z(s); then there exists a symmetric
T, such that (Reference 10, p. 9)

=, +T-HMUL LT . . . . . . @D

‘Since T is symmetric, it can be diagonalised to +1s and —1s
via a congruency transformation (Reference 41, p. 56):

T=TZT) . . . . . .« - . . . (283
=1, b (I p=k Tk . . . . (28D

from which we can form (for eqn. 10)
=, Ty MU, + Ty, . . . . . (29

On substituting eqn. 27 into eqn, 29, we find that [1, + Z]M
is symmetric; furthermore, &; and k, are unique (Reference 10,
p. D). Thus, when Z{s) is symmetric, there exists a reciprocal
‘M from which a reciprocal synthesis results, at least when 7133
is nonsingular or Sy exists (certainly when M is positive real).

Unfortunately, there seems to be no guarantee that M is

positive real. Nevertheless, every other reciprocal M, results
from M of eqn. 29 by

Mp=(,+ Tp DM, + T . . . . . (30)
with T satisfying {Reference 10, p. 7, lemma 6)
X=TgZTx . . . . . . . . . . @

In the RLcase, since ky =0 and X =17  WE require T of

eqn. 28 to be positive definite and TR of eqi. 3 to be
orthogonal.

Finally, consider a given symmetric positive real Z(s) with
Z(co) finite, for which x’Z(s)x satisfies the standard RL 1-port
realisability conditions (Reference 18, p. 149} for all real
nvectors x. By standard wmport synthesis techmiques
(Reference 25, p. 270), a structure using transformers and
passive resistors and inductors exists, using in fact the
minimum number of inductors. By performing this synthesis
in continued-fraction form, one can demonstrate the existence
of an impedance matrix A,* of the positive real type under
discussion. From this, or any other reciprocal M, all reciprocal
M, then result from egn. 30 with T orthogonal, or

Mp=U,+ TRMU,+TR). . . . . . (32)

Since such an My is positive real, with M being derived
through a congruency transformation, we conclude that
every minimal reciprocal My realising a positive real inductor-
resistor Z(s) must itself- be positive real. This result is in
agreement with a similar one based upon scattering-matrix
arguments (Reference 10, p. 14). Of course, by duality, an
identical result holds for RCnetworks.

7 Synthesis examples
In this Section, we present two moderately easy
examples, different parts of the theory being highlighted by
each.
Example 1
" SBynthesis of the (positive real) impedahcc

5t 25 12 5 -1
~ 241 s—i—l
Z(s) = s R X))
0 +2
2s

The first step is to separate out the term corresponding
te the pole at infinity, and then to carry out the (optional)
step. of removing jwaxis pole terms. Thus

0 2 0] -1
. s 2 417
Z(s) = R — - 5+ 1 . (34)
0 0 0 2 2
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The first two terms are readily synthetised (see Figs. 4a and &
for the separate syntheses). Thus we now consider the positive
real

5 481 2 4 o _ 8
Z(s) = S+ 1] e + s+1 . (35
0 2 0o 2 ]

D N
S N

Fig. 4
Example 1: joaxis extractions

A minimal realisation for Z is given by
F=[—1] G=1[0, 1]

247 . L. 36
H=[-8, 0] J:‘|:O 2} _

This may be derived by the techniques described in, for

_example, Reference 29, or may be found by inspection, since

the F matrix is simple. Observe that
Z=J+HE—-F~'¢ . . . . . . 3D

is, naturally, satisfied.
We also compute, by inspection or by usmg Reference 40,

that
s—1 1 -1
1 $ :
Z(s) + Z 4 L, 2[1“”}
)+ Z(=5) = s+l T s+ 1
s—1 s—1
(38)
Hence
s—1
Wis)=2 T 14
(s) [1 S+J e (39

Furthermore, a realisation for W(s) is given by using F and
G as for Z(s), and

L=[-4 0] We=1[2 21 . . . . . (40
Note that, in the right-hand halfplane, W has strict rank
equal to the normal rank of Z(s) + £(—s), i.e. unity, and
a right inverse is [1/2, OF; W is, moreover, analytic in the
right-hand halfplane.

The next step is to form P through

PF FP=— LL

from which one readily determines that

P={8] . . . . . . . . . . . . @A)
and thus that .
PR2=[24/21 . . . . . . . . . . (42
Then, although
[J *H] = F 3 (8)} R (5!
G —F 0 1 1

is not positive real, it is true that
J —H P~ 1/2 . 2 4 2’\/2
M= [ _ } =10 2 0 (44)
PIIZG _PIIZFP 1f2 |:0 2\/2 1
is positive real. We note that
S22 vz vl va vzl
@—[ 2 2 \/2}{‘/2} |
V2 42 2 1
(45a)
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. 0 2 /2
M_M [—2 0 vz:|
2 V2 42 0

V2 O 0 1[W/2 | o 17
LRI 4] -
1 —1]|—1 ol 0 42 —L

The network N, of impedance matrix M thus has the -

synthesis of Fig. 5.

Y

T

iIEIIEHE}
[ EII%:P

1

2 |-
ElEl
;
2.‘
B

Fig. 5 )
- Synthesis of M for example 1

The network synthetising Z(s) of eqn. 35 is found by

terminating port 3 of N; in a unit inductance, while the
original Z(s) has the synthesis of Fig. 6, where the networks

| .
. 2o It

172t
2

S
Sl EIET O
/2 -1
€€ |

|
pa—

Fig. 6
Circuit synthetising z of egn. 32

shown in Fig. 4 have been included. It is interesting to com-
pare the terminated N; with the similar result using two
reactive clements obtained by the Bayard synthesis (Reference
23, p. 88).

Example 2
Synthesis of the (positive real} impedance
2+ 25+ 4
2O =y (46)

Having no poles on the jwaxis or at infinity to remove, we
write

3
20=1+ 750

Transfer functions-of the form
n—1 .
X b
i=0
n .
2 a;st
i=o
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with &, = 1 have a convenient canonical minimal realisation
(which does not extend in a straightforward way to the
mairix situation). This is given by Reference 29:

o 1
jo o 1 -
F=1}|-" . ,
0 0 1
—ay * LT T |
0 &g
0 by
G=|'{,H=]" . @n
. 0_ .
1- bn——l

Thus, for the Z(s) under consideration, we have

0 1 0 3
Fﬁ_l: :IG= []H= l::’.f'm [ . @
—1 —1l - | 1

Direct calculation yields _
P s — s+ 2)

Z Z(—s5) =2
W+ ZC) =2 e s - @
and then we take '
2+s+2 2
W) = A/ 25— "= e
6] */s2+s+1 ‘/2+-s2+s'+1 (50)
A minimal realisation for W is then
0 1 0 /2
F= G = L= We =[v2]
-1 -1 1 0 o
Forming the equation
PF+ FP=—LL
we obtain
' 2 1
P = N 13
11 :
which has
31
ARV
12 _
P 1_2........(52)
Lv'5 /5
The network N, has the positive real impedance
5
1 5 0
J —H'P-li2
M= = iﬁ i fz 33
: Pl2g  _ pi2pp-1i2 |vs 5 5 3
2 31
V5. 5 5
We have then
[ 1 — 2 1
/5 4/5
M4 M 2 4 2
2 VL ‘5 5 (54a)
oz 1
| V5 5 5
i 2 1
1 L
_ f1] [I V5 V5 ] (54b)
~| -2
= 73
1
£/5
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while
M—M 3
7~ -1—\—/3 0 -1 . . . . (55
1
| tys 0
-1 3 1
v 1 | B | v
IR I T 301
L o, 1 | 75

(55h)

Fig. 7 shows a synthesis for the nonreactive network N;
derived by series-connecting networks of impedance matrices

2'o——

Fig. 7
Synthesis of coupling M for example 2

el e
e 509 s
Y

Final circuit to yield Z of eqn. 45

(M + M)2 and (M — M")f2. Terminating the final two
ports in unit inductors yields Fig. 8 for the complete synthesis
of the original Z(s) of eqn. 46.

Observe that one of the penaltles of obtalmng a synthesis
using simultaneously the minimum number of reactances and
resistances is the presence of a gyrator in the realisation of the
positive real function Z(s). However, by extracting the resistor
and transforming the resulting lossless structure (after adjoin-
ing another port for further resistive termination), the some-
what complicated procedures of Oono and Yasuura
(Reference 19, pp. 149-153 and 168) yield a gyratorless
circuit with the minimum possible number of elements.

8 Conclusions

The material presented highlights the strong interrela-
tion between networks systems and control theory in an
elegant manner, One of the classical problems of network
theory has been solved by an investigation in terms of the
state, using not especially advanced control-theory concepts.
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An interesting and important feature of the synthesis is
that it is primarily algebraic in character, rather than analvtic,
as, for example, the Brune synthesis. This is quite proper,
for the synthesis problem is evidenily in some sense a finite-
dimensional one, and thus a prwn more reasonably attacked
by algebra than analysis.

The key point of the synthesis is the translation of the
analytical concept of positive reality into algebraic properties
of the matrices of a minimal realisation of Z(s). From this
point on, the development of the synthesis becomes alge-
braic.

There are still a number of opeu problems, however. The
present theory must certainly be regarded as incomplete when
the synthesis of positive real functions leads to'a network
containing gyrators. In Section 6, we have attempted to out-
line some of the difficulties which arise when a reciprocal
or, by extension, a minimal-gyrator synthesis is sought. Very
possibly, satisfactory results will be achieved by using the
algebraic characterisation of reciprocity in Reference 10.
Since, however, reciprocal synthesis may often have to use
more¢ than the minimum number of resistors (Reference 19,
p. 148), Further investigations of the effect of posmve reality
and reciprocity on realisations is in order. i

- Another pertinent problem is the development of a scatter-
ing-matrix synthesis procedure, which uses, in a simple
manner, some. hitherto unestablished property of minimal
realisations of scattering matrices.)! A very positive step has
been made in this direction in Reference. 10; Reference 31
discusses the statement of the network problem in control-
system terms. Nevertheless, the method given here allows the
synthesis of any rational bounded real scattering matrix S(s),
since one can form the positive real impedance matrix
Z=26l, — 8\ —1I, if I, ~ S is nonsingular. If I, — S
i singular of rank p, one forms ToSTy =S, L 1,_, with
Ty a conmstant orthogonal matrix (Reference 19, p. 155)
(representing transformers) with I, — 8, nonsingular. This
yields a realisation through Zy = 2(f, — Sg)~ ! — I, which
is a positive real impedance matrix.

The question naturally arises as to how to obtain all passive

minimal realisations. From Section 2, we know that every -

minimal realisation results from applying the transformation
of egn. 5 to a fixed one. In particular, this procedure yields
all passive minimal realisations. Nevertheless, except for the
RL (or RC) case treated in Section 6, the restrictions on the
transformation 7' needed to retain passw1ty cannot as yet be
specifically stated.

In a different, but somewhat related, manner, one can
obtain all nonminimal realisations by the use of a previous
theory.3!

Some remarks are in order on the computation difficulties
of the synthesis described. The major problem is to determine
W{s) from Z(s) + Z'(—s). Certainly Reference 40 outlines
the procedure, but the actual calculations are long and are
considered by Youla to be somewhat inappropriate for
programming. The other calculations required in the syn-
thesis are refreshingly easy, and in the 1-port case lead to a
fairly simple synthesis through use of the canonical minimal
realisation described by eqn. 47. If a simple means of finding
W(s) analytic in the right-hand halfplane is found, the method
holds excellent promise as a possible means of synthesis via
the computer, since the method of finding a minimal realisa-
tion®® could be so programmed. In fact, following ideas very
similar to those of this paper, a convenient computer analysis
of networks has been developed.**

In the field of integrated circuits, the material of this paper
has some significant applications, since, on an admittance
basis, minimal capacitor*® and insensitive*® synthesis tech-

. nigues result.
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