Structural Stability of Linear Time-
Varying Systems

Absfract—An application of Popov cri-
terion generalizations for time-varying sys-
tems is considered in regard to the tolerance
of small amounts of memoryless sector
nonlinearities existent in any practical reali-
zation of a linear system. It is shown that
such nomnlinearities can be tolerated if they
are sufficiently small, without disturbing
system stability.

Any physical realization of a linear sys-

tem can never be completely linear, and
consequently engineers have had to adopt
as an article of faith the assumption that
such physical realizations are structurally
stable, i.e., that the perturbation of system
parameters does not affect the gross per-
formance of the system, particularly such
features as the stability of the system.

In this correspondence the structural
stability of classes of linear, time-varying
systems is considered. To fix ideas maore
definitely, variations from linear behavior
are considered so that a normally linear ele-
ment is assumed to be composed primarily of
a linear (possibly time-varying) part, to-
gether with a small amount of time-varying
nonlinearity assumed to be confined to a
sector. Fig. 1 illustrates the relation between
input and output of the element at some
fixed value of time ;.

For convenience, a single such element ig
considered, Extension to the case of many
such elements is readily possible, and such
extension has been done for time-invariant
systems.! The nonlinear part of the nenideal
‘element is extracted from the remainder of
the system to appear in a feedback loop as
shown in Fig, 2.

When the nonlinear sector-limited feed-
back is absent, stability of the linear system
is assumed to prevail. (The precise sort of
stability will be discussed subsequentty.) The
effect of the nonlinear feedback on the sys-
tem stability must be explored.

Two distinct viewpoints will be taken of
the linear part of the closed-locp system,
corresponding to both the finite and infinite
dintensionality of this component. In the
first instance, it is assumed that the input #,
the output y, and the state % are related by

&= Fx 4 Gu {1a)
y=Hx (1b)

where it is also assumed that F, G, and I are
bounded; [F, G] is uniformly completely
controllable, [F, H’] is uniformly com-
pletely observable, and the transition
matrix $(f, 1) associated with (la) is ex-
ponentially bounded, i.e.,

H‘I-"(t, 7)” < o €xp [—oalt — 1)} @

for some positive constants e, and es.

In the second instance, it will be as-
sumed that the impulse response w(t, #) is
exponentially bounded, i.e.,

|wit, )| <eazexp[—alt ~7) (3
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Fig. 1. Nonlirearity characteristics. {a} Ideal.
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Fig. 2. Closed-loop system.

for some positive constants ez and ay. (Note
that for finite dimensional systems of the
sort considered, (3) is a consequence of (1),
(23, and the boundedness of G and H.) For
infinite dimensional systems, it is addition-
ally required that for the open-loop system
any zero input response ¥o(:) commencing
at an arbitrary time #, should be bounded
and square integrable,

For the first class of systems, Liapunov
stability of the closed-loop system will be
considered, while for the second class, con-
sideration is given to the square integrabil-
ity and boundedness of the output of the
closed-joop system. By way of simplifica-
tion, if either of these conditions prevail, the
closed-loop system wili be called stable.

Let us now restrict the nonlinearity of
Fig. 2 to being confined within a sector
bounded by the horizontal axis and a line of
slope L. Otherwise the nonlinearity is arbi-
trary. A specialization of results in Moore
and Anderson? and Moore? establishes that
the closed-loop system is stable if

Rit,7) — 9@ — 1) = (B — 9)a{f — 1)
+ wlt, 1 — o) FwlEHlr—8 @)
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is & covariance for an arbitrary positive con-
stant ». Here 3(—+) is the unit impulge and
1(t—7} is the unit step function. In terms of
the notation usged in Moore and Anderson?
and Moore? the matrices 4{-} and B(-) of
these references are taken as the identity and
zero matrices, respectively.

Qur goal here is to show that with (3)
holding (recall that this is assumed for
infinite dimensional systems, and is a conse-
quence of the assumptions made for finite
dimensional systems), there exists a k for
which the guantity R, ») —9é(t—r) in {(4)
is a covariance. In other words, it is glways
possible to tolerate some sector nonlinearity
without perturbing stability.

The key to demonstrating the existence
of a k is to note that w{{, +)1{—+) maps L.
functions into L, functions and, as an opera-
tor, is bounded. To see this, consider the
inequalities

|20 | =| L R WATE

gf‘ |, 7) || wie) | dr
< f Jm,exp[—ou(f——r)”u(r)fdf. (5)

Now it is known (see Titchmarsh,? theorem
65) that exp [—eay(f—1) |1{t—7) for positive
ety i a bounded map of L;functions into L,
functions; moreover |#(-)} is an L; function
if u{-) is an I, function. Consequently
{2{-)) is majorized by an L; function and is
thus an L, function itseli. Moreover a bound
of w(i, r}1{t—7) evidently exists. -

The adjoint of the operator w(t, +}1 (¢ —1)
is w(r, £1(r —£) and must map L into La; in
fact, it has the same norm as wi, 7)1 {f-—7).5

Now consider the integral

Ty Ty
1= le f R, )
— 330 — 1) ul)u(didr (6

which must be positive for every T3, Ty,
and #(-) for {4) to define a covariance, Set-
ting a bound on the operator w(t, ) 1{t —~7) of
W, it follows that

Ty Ta
> f (B - m)a2(t) dl— 2W f Wit )
T, 7,

Consequently, by choosing & and 4 such that

kE—n>2W, the positivity of I may be

guaranteed. In other words, by taking the

slope 71 of the nonlinearity bound small

enough (in fact, smaller than a quantity de-

termined from w(f, v)) the closed-ioop sys-
tem is guaranteed stable.
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