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Correspondence 

A Multiport State-Space Darlington Synthesis 
Two recent papersl~l.191 have described a network synthesis of 

rational positive real functions or matrices via what may be loosely 
termed "statespace techniques." Brockettl'l actually restricted 
consideration to the case of positive-real functions 4s)  for which 
e( m) was zero; the synthesis was of the Darlington type, i.e., the 
statespace equations of a 2-port lossless network were given, where 
the lossless network presented the impedance z(s) at  one port when 
its other port was terminated in s. nnit resistor. 

In this correspondence we give extensions, ~ t h o u t  detailed 
proofs, to cover the synthesis of positive-real matrices Z(s) subject 
to the inessential restriction Z( m )  < m. Extensions of the Darling- 
ton synthesis to themultiport situation have been given by Bayardlsl 
for the reciprocal case and Newcomb141 for the nonreciprocal case, 
using classical appronohes. 

The state-space interpretation of these results rests ultimately on 
the following lemma. l6 l . l a l  

Lemma 1 

Let Z(s) be a rational ppositive-real matrix with Z( m) < m .  

Suppose IF, G, H, J ]  is a minimal realization for Z(s) in the sense 
that 

Z(S) = J + H'(SI - F)-'G (1) 

and F bas minimal dimension. The superscript prime denotes 
matrix transposition. Then there exist real matrices P ' ~  = P > 0, 
I,, and W o  such that 

PF + F'P = -LL' (24  

PG = H - LW, (2b) 

WAW, = J + J'. (24 
The significance of this lemma in frequency domain terms is as 

follows. If W(s) is a spectral factor of Z(s) + Z'(-s), i.e., 

Z(s) + Z1(-s) = W1(-s)W(s), (3) 
it can be taken to be of the form 

W(s) = W ,  + L1(sI - F)-'G (4) 

for some matrices W o  and L;  and there is positive defiuite sym- 
metric matrix P such that ( 2 4  and (2b) hold. 

In Anderson,i~i~l~i methods far computing the matrices P, L, 
and W o  are discussed; one method is essentially algebraic, and does 
not require explicit determination of a spectral factor of Z(s) 4- 
Z'( -s). 

In preparation for a. presentation of the synthesis procedure, we 
introduce the simple Lemma 2. 

Lemma 8 

With the relevant matrices defined as in Lemma 1, let T be a 
matrix such that 

T'T = P. (5) 
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Define 

F, = TFT-', G, = TG, H; = HIT-', L: = L'T-', (6) 

Then 

P, + F: = -L,L{ (7%) 

W:W, = J + J'. ( 7 ~ )  
To fix ideas, suppose the prescribed Z(s) is an n X n matrix, and 

that the matrix L, hits r columns. Let IE identify an n vector u with 
the currents at  the first n ports of an (n + r)-port network to be 
prescribed later, an 7 vector u ,  with the currents at  the remaining 
7 ports, an n vector y with the voltages at  the first n ports, and an 
r vector y, with the voltages at  the remaining r ports (see Fig. 1). 
Then, (see outline proof below): 
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Fig 1. (a) Losaleas netxvork ~f Lemma 4. 6) Idaa of ,Darlington- 
~ ~ ~ ~ ~ d - N e ~ r o o m b  synthesis (I, denotes r und reamtors). 

Lemma 9 

With F, ,  G,, Hi, L ,  defined as in Lemma2, and J and W O  defined 
as in Lemma 1, the following state-space equations define an 
(n + 1.)-port lossless network. 

L W  J - J  W : 
= ( G + ) + ( ) - u .  v5 (W 

The significance of this lassless network is contained in the 
following theorem, yielding in state-space terms a rnultiport deriva- 
tion af the Darlington synthesis. 

Theorem 

Let Z(s) be a pasitive-real matrix with Z( m) < m .  Starting with 
a minimal realization F,  G, H, J of Z(s), suppose an associated 
lossless network is defined by (8). If the last ports of this network 
are terminated in unit resistors, corresponding to setting 

then at the remaining n ports the impedance Z(s) is observed. 
Pmof: Setting in (Sa) and (8b) ul equal to -y,, and then 

substituting far y, from (Sc) leads to 



CORRESPONDENCE 

x = +(F, - F: - L,L:)X + G,u (104 
y = (G, + L,W,)'x + $(J - J' + W4Wa)u. (lob) 

On using (7), these become 

x = F,x + G,u (114 

y = H:x + JU (1 lb) 
and evidently the transfer function matrix relating U(s) to Y(s) is 
J + H:(sI - F1)-'GI, or Z(s). 

In summary, the synthesis procedure is as follows From Z(s) a 
minimal realization is formed, and corresponding to this realization 
matrices P,  L, and W o  are found by any of the available methods, 
which include an algebraic procedure and a spectral factorization 
procedure. The matrices of the minimal realization, together with 
P, L, and WO, can he used to define new matrices F I ,  GI, H Z ,  and LL, 
and in terms of these the equations of a lossless network can be 
written down. This lossless network has the property that when 
some of its ports are terminated in unit resistors, Z(s) is seen at  the 
remaining ports. 

Remarks 

1) The degree of the lossless network is the &me as that of Z(s); - 
consequently, a minimal reactive synthesis of the lassless network 
rives .a minimal reactive synthesis of Z(s). - 

2) A synthesis of Z(s) using a minimal number of resistors 
corresponds to taking L (Lemma. 1) of minimal dimension. Pro- 
cedures are a~ailable[~I,  161. 1'1 ifor ensu"ng that this is the case. 

3) The procedure spelled out above is merely designed to reduce 
any lossy synthesis problem to a considerltbly simpler lossless 
synthesis problem. The form of (8) actually makes an immediate 
solution of the lossless synthesis problem available. 

Sketch of Proof of Lemma 3 

With u, y, u,, having the meanings depicted in Fig. 1, the lossless 
network defined by (8) may be synthesized by terminating all hut 
the first ( n  t r)  arts of the nandvnnmic netniark N I ,  defined below, . . . -  
in unit inductors. 

The network N ,  is lossless, memoryless, and defined via the 
constant impedance matrix, evidently skew, 

4) It is suggested by (2%) that z'Pz is a Lispunov function for the 
network. The maneuvers of Lemma 2 are evidently designed to 
ensure that x'z is a Liaounov function, with -(Ll'zi2 its derivative. 
Since the decrease in the Liapunov function is related to the presence 
of resistors which dissioate enerav. it is not surorismr to see fram -. . - 
(8) and (9) the coupling of the resistors to the lassless ( n  + T)-port 
in terms of the matrix L,. 

5) The following restatement of Lemmas 1 and 2 together with a 
sufficiency statement, fram Anderson, 161 hits potential application 
in those areas of system theory outside of network synthesis where 
positive-real matrices appear. 

Lemma 4 
Let Z(s) he a matrix of rational functions of s, with Z( m )  < m .  

Then Z(s) is positive real if, and only if, it possesses a minimal 
realization IF,, GI, HI, J J  such that 

far some matrices L, and Wo. 
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