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Correspondence

A Multiport State-Space Darlington Synthesis

Two recent papersi!l.] have described a network synthesis of
rational positive real functions or matrices via what may be loosely
termed “state-space techniques.” Brockettl! actually restricted
consideration to the case of positivereal functions z(s) for which
2{ o) was zero; the synthesis was of the Darlington type, ie., the
state-space equations of & 2-port lossless nelwork were given, where
“the lossless network presented the impedance z(s) at one port when
its other port was terminated in a unif resistor.
~In this correspondence we give extensions, without detailed
proofs, to eover the synthesis of positive-real matrices Z(s) subject
to the inessential restriction Z( ©) < . Extensions of the Darling-
ton synthesis to the multiport situation have been given by Bayard B
for the reciprocal case and Newcomb[4) for the nonreciproeal case,
using classical approaches.

The state-space interpretation of these results rests ultimately on
the following lermma.[51.16]

Lemma I

Let Z(s) be a rational positivereal matrix with Z(«) < o,
Suppose {F, G, H, J} is a minimal realization for Z(s) in the sense
that

Z(s) = J + H'(sI — F)7'G N
and F has minimal dimension. The superscript prime denotes

mafrix transposition. Then there exist real matrices P'.= P > 0,
L, and W, such that

PF+ PP = —LL’ (2)
PG = H — LW, (2h)
WiWe = J + J'. (2¢)

The significance of this lemma in frequency domain terms is as
follows. If W(s) is a spectral factor of Z(s) + Z'(—s), Le.,

Z(s) + Z'(—~s) = W/(—s)W(s), 3
it can be taken to be of the form
W) = Wy + L'(sI — F)7'G (4)

for some matrices Wy and L; and there is positive definite sym-
metric matrix P such that (2a) and (2b) hold.

In Anderson, 51081 methods for computing the matrices P, L,
and W, are discussed; one method is essentially algebraic, and does
.not require explicit determination of a spectral factor of Z{(s) +
Z{—s).

In preparation for a presentation of the synthesis procedure, we
introduce the simple Lemma 2.

Lemma 2

With the relevant matrices defined as in Lemma 1, let T be a
matrix such that

T'T = P. (5)
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Define
F,=TFT, ¢, =TG, H = T, L= LT (6)
Then

Fal "|“ F{ = _LIL; (73')
Gl = Hl - LIWD (7b)
Wiw, =J + J'. (7¢)

To fix ideas, suppose the preseribed Z{s) is an n X n matrix, and
that the matrix L, has r columns. Let us identily an n vegtor 4 with
the currents at the first n ports of an (n -+ #)-port network to be
preseribed later, an 7 vector % with the eurrents at the remaining
+ ports, an n vector y with the voltages at the first » porls, and an
r vectar ¢, with the voltages at the remaining r ports (see Fig. 1).
‘Then, {see outline proof below}:
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Fig. 1. {a) Lossless network of Lemma 4. (b) Idea of Darlington—
Baysrd—Newcomb synthesis (1, denctes r unit resistors),

Lemma 3

With Iy, G4, H1, L) defined ag in Lemma 2, and J and W, defined
as in Lemma 1, the following state-space equations define an
{(n <+ 1)-port lossless network,

&= 3F — Fz + (en + L—2”i)u - \1;5 w  (8)
LW\ g — J Wi
y = (G1 +=5 °)‘x + (——2 )u o \/gul (8b)
L
Yy = —\/ix V2 U, {8c)

The significance of this lossless network is contained in the
following theorem, yielding in state-space terms a multiport deriva-
tion of the Darlington synthesis.

Thearem

Let Z(s) be a positive-real matrix with Z( ») < o. Starting with
a minimal realization F, G, H, J of Z(s), suppose an associated
lossless network is defined by (8). If the last ports of this network
are terminated in unit resistors, corresponding to setting

U = Y,y (9)

then at the remaining n ports the impedance Z(s) is observed.
Proof: Setting in (8a) and (8b) u: equal to —y;, and then
substituting for y: from (8c) leads to



CORRESPON DENCE
& = 3(F, — F{ — LL)z + Gu (102)
y = (G, + LiWy'z + 3(J — J + WiWou. (10b)
On using (7), these become
&=z + Gu (11a)
y=Hiz+ Ju _(llb)

and evidently the transfer function matrix relating U(s) to Y(s) is
J + H{(sl — Fi)1G4, or Z(s).

In summary, the synthesis procedure is as follows. From Z(s) a
minimal realization is formed, and corresponding to this realization
matrices P, L, and Wy are found by any of the available methods,
which include an algebraic procedure and a spectral factorization
procedure. The matrices of the minimal realization, together with
P, L, and W, can be used o define new matrices F1, ('3, H,, and Ly,
and in terms of these the equations of a lossless network can e
written down. This lossless network has the property that when
some of its ports are terminated in unit resistors, Z(s) is seen at the
remaining ports.

Remarks

1) The degree of the lossless network is the same ss that of Z(s);
consequently, a minimal reactive synthesis of the lossless network
gives a minimal reactive synthesis of Z(s).

2) A synthesis of Z{s) using a minimal number of resistors
corresponds to taking I (Lemma 1) of minimal dimension. Pro-
cedures are available(?1,[51.[8] for ensuring that this is the case.

3) The procedure spelled oub #bove is merely designed to reduce
any lossy synthesis problem to a considerably simpler lossless
synthesis problem. The form of {8) actually makes an immediate
solution of the lossless synthesis problem awvailable,

Sketch of Proof ef Lemma 3

With w, ¥, 41, having the meanings depicted in Fig. 1, the lossless
network defined by (8) may be synthesized by terminating all but
the first {n + #) ports of the nondvnamic network N, defined below,
in unit inductors.

The network N. is lossless, memoryless, and defined via the
constant impedance matrix, evidently skew,

(n) {r)

J — W, _( LIWO)’_
W3 I
Za o= ——2 0. - 12
42 42 ©. (2
I W, _ L, 10
_G] + 2 \/5 E(Fl Fl) |
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4) It is suggested by (2a) that &'Pz is a Liapunov function for the
network. The maneuvers of Lemma 2 are evidently designed to
ensure that 2’z is a Liapunov function, with —(Ly'z)? its derivative.
Since the decrease in the Liapunov function is related to the presence
of resistors which dissipate energy, it is not surprising to see from
(8) and (9) the coupling of the resistors to the lossless {n -}- r)-port
in terms of the matrix L.

5) The following restatement of Lemmas 1 and 2 together with a
sufficiency statement, from Anderson,is) has potential application
in those areas of system theory outside of network synthesis where
positive-real matrices appear,

Lemma 4

Let Z(s) be a matrix of rational functions of s, with Z( =) < =,
Then Z(s) is positive real if, and only if, it possesses a minimal
realization {F, G, Hi, J1 such that

Fy + Fi == —IL,L] (7a)
Gl = H]_ - L1W0 (7b)
WiW, =J + J' {7c)

for some matrices I, and W.
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