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Abstract 

An error bound for transfer function order reduction is derived, when frequency weighted balanced truncation is the 
order reduction method. The bound is valid for both one-sided (input or output) and two-sided weighted balancmg 
approximations with stable weights, which can otherwise be arbitrary. The error bound formula is valid for both 
discrete-time and continuous-time problems. Examples are studied to demonstrate effectiveness of the error bound. 
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1. Introduction 

Controller design methods for physical systems with high-order models normally result in a high-order 
controller and, for many reasons, it is desirable to reduce the controller order, 1.e. to find a controller of 
a lower-order, performing satisfactorily in certain sense. Examples of these performance criteria include (but 
are not limited to) preserving of the closed-loop stability robustness and closed-loop transfer function [I]. All 
the controller reduction problems aimed at achieving these goals can be stated as problems of frequency 
weighted transfer function order reduction with the frequency weighting implying that it is important for the 
reduced order controller to approximate the original full order controller better at  some frequencies, than at 
others. 

One of the methods for order reduction in the frequency weighted case is the frequency weighted balanced 
reduction technique. 

It is highly desirable to be able to predict an error in approximating an original full order controller by 
a reduced one, or at least to know an error bound. If such a prior error bound is known, it allows an 
intelligent estimation of the effect of a given degree reduction. For example, given a maximum acceptable 
error value, one may be able to determine a minimum order the controller can be reduced to, or, given 
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a desired order of a reduced controller, one can predict an error this reduction brings (or at least bound it). 
This makes trade-off between the order of a reduced controller and the related approximation error easier to 
deal with. 

Furthermore, knowledge of a prior error formula might allow one to compare alternative approaches to 
controller reduction, employing different frequency weightings aimed at achieving different objectives. For 
example, it allows one to optimise a trade-off between a stability margin achieved and the closed-loop 
transfer function being preserved, both possible objectives of the order reduction process [I]. 

Lower and, more importantly, upper frequency domain error bounds for the balanced truncation 
approximation in the nonweighted case are well known and have been described in [2,3,4]. However, no 
error bound formula has been available for the balanced truncation frequency-weighted problem. 

The contribution of this paper is that an upper error bound for frequency weighted balanced controller 
reduction is obtained. The bound is valid for both one-sided (input or output) and two-sided weighted 
balancing approximation for stable weights which can otherwise be arbitrary. The error bound formula is 
valid for both discrete-time and continuous-time problems. 

An outline of this paper is as follows. In Section 2 the algorithm for weighted balanced reduction is 
reviewed. The main result, the error bound formula itself, is presented in Section 3. An example (showing 
tightness of the bound) is given in Section 4, followed by some concluding remarks in Section 5. 

2. Background 

In this section the algorithm for nonweighted balanced reduction and the error bound are reviewed. Also, 
the algorithm for balanced weighted reduction is recalled. 

Let us consider a stable transfer function K, given by a minimal state-space realization: 

K(s) = C(s1 - A ) ' B  + D. (2.1) 

Also, consider a stable input weight V(s) and a stable output weight W(s), realized in their minimal 
state-space form as 

Then the weighted reduction problem is to find a stable lower-order transfer function K, (of order r), such 
that the norm 11 W(s)[K(s) - K,(s)] V(s) 1, is minimal, or at- least is approximately minimal. 

A key application of interest is when K(s) is a controller and V(s) and W(s) are obtained by one of the 
methods described in [I]. (In a number of the methods of [I], V(s) or W(s) is the identity.) Such a controller 
may be open loop unstable; the scheme presented here is restricted to reducing the order of the stable part of 
K(s), to yield the stable part of K,(s); the unstable part of K(s) is copied with K,(s). 

Let us recall first the nonweighted case. 

Definition. Given an nth order, linear time invariant, asymptotically stable system with transfer function 
matrix K(s), a minimal realization of K(s) = C(s1 - A ) ' B  + D is internally balanced if {A, B, C )  satisfy the 
following Lyapunov equations 

A A ~ + A A + B B ~ = O ,  (2.4a) 

A A + A ~ A + C ~ C = O  (2.4b) 

A = diag(&, A,, ..., A,), where Aj  2 A<+, > 0, i = 1,2, ..., n - 1. (2.5) 

In Eq. (2.4a), A is the controllability gramian, and in (2.4b), A is the observability gramian. Thus, a system is 
balanced when its controllability and observability gramians are equal and have a diagonal form. 
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Partition the system {A, B, C} and A as 

where A,, A, E R ,,,, B, E R ,,,, C, E R,,, and r < n. Then the reduced-order system {A,, B,, C,) is a good 
approximation of the system {A, B,C} if A, 9 A,+,. In fact, the following two properties are true: 

Lemma 2.1 (Pernebo and Silverman [6]). For a balanced asymptotically stable system {A, B,C) satisfying 
(2.1), and with A in the.form of(2.5) satisfying (2.4) and partitioned as in (2.6), $2, > then both subsystems 
{A,, B,, C,) and {A,,, B,, C2} are asymptotically stable. 

Lemma 2.2 (Enns, Glover [2,4]). With the same hypothesis as Lemma 2.1, there holds afrequency error bound 

IC(jw1 - A ) ' B -  C,(jol - A,)'B,I,  < 2(?.,+, +...+An) = 2tr(A2). (2.7) 

Now, consider asymptotically stable frequency-weighting functions and associated minimal state-variable 
realizations W(s) = C,(sl - A,)-'B, + D, and V(s) = C,(sl - A,)-'B, + D,. The basic idea is to change 
the gramians to reflect the introduction of the frequency weighting, to diagonalize these "weighted" gramians 
and then to truncate. 

The frequency-weighted transfer function W(s)K(s) V(s) has a representation with the following state-space 
matrices: 

A, BwC BwDCV BwDDv 

0 A BCV ) , = , C =  (Cw DwC DwDCv), e= DwDDv. 
0 0 Av 

Let 

be the solutions of the following Lyapunov equations: 
- - -  
P A ~  + AP + BBT = 0, 
- - 

(2 8 4  

Q A + A ~ Q + C ~ C = O  (2.8b) 

Now, P and Q can be regarded as the frequency-wiighted controllability and observability gramians for the 
original transfer function K(s). For later reference, we aoie that P; is determined for A,, Bv alone and Qw is 
determined for A,, C, alone. 

Consider a coordinate basis change to {A, B, C} which makes P,,, = Q.,, = Z = diag(a1,a2, ..., a,), 
oi > mi+,, i = 1,2, ..., n - 1. This new realization {A, B,C) is called a frequency-weighted balanced reali- 
zation. (The coordinate basis change is easy to determine.) 

Partition {A, B, C} as in (2.6) and Z as 

where Z, E Rrx, and r < n. 
Now, as previously, the reduction is achieved by eliminating the rows and columns of A, B and C corres- 

ponding to Z2 in Z. The reduced order transfer function of order r is given by 

K ,  = ~ , ( s l  - A,) 'B,  + D. (2.10) 
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A detailed, computer oriented description of this weighted balanced truncation algorithm is given in [ 5 ] .  

3. Main result 

The major aim of this section is to derive an upper error bound for balanced frequency-weighted controller 
reduction. This result is stated in the following theorem. 

Theorem 3.1. Let K(s),  V(s)  and W(s)  be a stable transfer function of order n and stable weighting functions, 
respectively. The minimal state-space realizations are given by (2.1), (2.2) and (2.3), respectively. Also, let K,(s) 
(given by (2.10)) be a reduced order transfer function of order r, obtained by thefrequency-weighted (with the 
weights V(s)  and W ( s ) )  balanced reduction technique. Assume that K ,  is stable, which is guaranteed if V(s) or 
W(s)  is constant, see [2,3].  Then the following error bound holds [compare with (2.7)]: 

where 

ah=I l~h-~ l I ,11C~@~p$ '2~ lm and B h = l l Q ~ @ w B w l I , / l ~ h - l l l ,  

and 

E , - ~ ( S )  = A X ~ ; ~ ~ , - ~ ( S ) B , - ,  t b , .  r k l ( s )  = C , - ~ + , , ( S ) A : ; ~  + c,, 

( s )  = ( I  - A ) @,(s) = ( s l -  A,)-', @,(s) = (sI - A,)-' 

and bk and c, are the kth row of B, and the kth column of C,, respectively, and A. = A, B, = B, C. = C 

For proof, see the appendix. 

Remark 3.2. Since the L ,  bound on the error is expressed in terms of other L ,  bounds, it might be thought 
that the advantage of the bound is minor. Several points should however be noted. 

The order of the transfer functions Ex- and r, _ ,  (viz. k - 1 for k = r + 1, . . . , n) will often be much less 
than that of W ( s ) [ K ( s )  - K,(s)] V(s), viz. (n + r) + deg W + deg V.  Accordingly, the L ,  bounds will be 
much easier to compute. 
The transfer functions C y @ y ~ ~ ' Z  and Q ~ @ ~ B ,  are independent of K(s) ,  depending just on the weights 
V(s)  and W(s),  and so their norms only need to be computed once. 
In the light of the above points, the bound formula lends itself to easy examination of a number of different 
trial values for r, leading to a subsequent selection. 

Remark 3.3. The parameters a, and Bx are finite. Indeed, 1 1  E,- 1 1 ,  and / T,-, I / ,  are finite since the reduced 
controller is stable. Also, (1  @, I ( ,  is bounded since the weight V is stable and the unique solution Pv of the 3-3 
block of Lyapunov equation (2.8a) is bounded since (A,,B,) is a controllable pair. Therefore, I /  C,@~P$" 1 1 ,  
is bounded. Furthermore, / c,@,P$'~ I ,  depends on the input weight V only since P ,  depends on A ,  and 
B,  only. Similarly, ~ / Q ~ @ , B , / ,  is bounded and depends on the output weight W only. 

It is easy to check also that the quantities C , @ ~ P ~ ' ~  and Q ~ @ , B ,  do not depend on the coordinate 
basis choice for V(s)  and W(s).  

We can actually express a bound on 1 1  C , @ , P ; ' ~ / I ,  by using the upper bound of the solution P, of the 
Lyapunov equation. As has been shown in [6] and [S], P,  < I /  GI12SST, where G is a positive definite 
symmetric matrix dependent on AV only, and S = [B,A,B, ... A>-'B,] is the controllability matrix of 
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{ A v ,  B,). Thus, the norm I C,@,P$'~ I ,  can be bounded in terms of A,, B, and C v  as follows: 

l l c v @ V ~ : ' ~ l l ,  < llGIl:'2 IICv@vSll,. 

A similar result can be derived for a bound of the norm ( I Q $ ~ ~ ~ B ~  11, in terms of A,, Bw and C,. 
We can also argue that if a different frequency weighted balanced realization is used, the same norm 

I E,-, 1 1 ,  results. Indeed, the frequency-weighted balanced realization is unique to within a sign change of 
a state variable when the singular values of the balanced gramian are distinct. Different balanced realizations 
are related by a transformation T, = diag[ti, i = 1,2, . . . , k ]  and ti = 1 .  It is not hard to conclude from this 
that / E,, 1 1 ,  is invariant under a transformation T,. 

Actually, examples suggest that I En- 1 ,  and 1 1  T ,  1 1 ,  are bounded by quantities proportional to &as 
a, 0. However, a proof of this has yet to be established. If true, the bound formula of the theorem would 
depend on a, linearly, for k = r + 1, ..., n. 

Many frequency-weighted approximation problems have just a one-sided weighting. Then the main result 
becomes 

Corollary 3.4. Let K(s), V(s)  and W ( s )  be a stable controller of order n and stable weighting functions. Then 
a reduced order transferfunction K,(s) of order r, obtained by single-sided frequency weighting (with either input 
weight V(s) or output weight W(s ) )  is stable (see [ 3 ] )  and the following error bounds are true: 

Remark 3.5. In the nonweighted case, when W(s)  = V(s)  = 1, 1 1  K ( s )  - K ,  (s) 1 1 ,  G 2 ~ ; = v + l  a,. 

4. Examples 

We now present three examples to illustrate how the hound on the weighted controller reduction error, 
obtained in accordance with the above theorem, compares to the actual weighted controller reduction error. 

4.1. Example 1 

This example has been studied in [2] .  The stable controller to be reduced is given by its transfer function 

K(s)  = (s2 + 2.8s + 1.6)/(s3 + 2.9s2 + 3.1s + 1.5). 

The stable input weighting is in the form 

V(s)  = (s" 2.9s' + 3.1s + 1.5)/(s3 + 3.8s2 + 4.4s + 1.6) 

and there is no output weighting. 
The weighted Hankel singular values are (0.53999,0.12355,0.0042758) and the reduced controllers of order 

2 and 1 are 

Kz(s )  = 1.0135(s + 1.1373)/(s2 + 1.3384s + 1.0715) and K l ( s )  = 1.1694/(s + 0.83068), 

respectively. 
The actual weighted controller reduction errors are 

E, = ) ) [ K ( s )  - K2(s)]  V ( s ) / ) ,  = 0.0085342 and E ,  = 1 )  [K(s )  - K,(s)]V(s)) l ,  = 0.31977 

for the reduced controllers of order 2 and 1 respectively. 
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When we estimate these values by calculating upper bounds of the errors using Theorsm 3.1, we have: 

I / C ~ @ , ( ~ W ) P ~ ~ ~  l m  = 0.31911, 1132(j~)Ilm = 0.18476, l lEl( jw)l ,  = 0.75851, 

cr2 = 0.24205, a,  = 0.058959 

and the bounds are 
- - 

Ez = 2(a: + ~ 3 a : ' ~ ) " ~  = 0.011793, E ,  = E~ + 2 ( ~ ;  + a 2 a ; ~ 2 ) 1 ~ 2  = 0,33290. 

Comparing the actual error values with their calculated upper bounds, we can see that the bound differs 
4% from its actual value for the reduced controller of order 1, and the difference is 38% for the reduced 
controller of order 2. Thus, we can say that the approximated values are close to the real ones. 

4.2. Example 2 

As a second example, we consider a plant, given by its transfer function 

G(s) = ( S  + 0.8)(s + 2)/(s + 1.5)(s2 + 1.4s + 1) 

or, in a state-space form 

- 2.9 - 3.1 - 1.5 
1 0 0 1, B,=(i] ,  C,=( l  2.8 I.*), D , = .  
0 1 0 

An LQG compensator was designed to control this plant. There were used state weighting 
Qc = I ,  + lOOC~C,, control weighting R, = 1, state noise covariance Q ,  = I ,  + 100~ ,B :  and measure- 
ment noise covariance Rf = 1 .  

The design procedure resulted in the controller 

K(s)  = 10.3544(s + 1.86183)(s + 0.745649)/(s + 19.8229)(s + 2.00134)(s + 0.800627). 

Weighting functions, chosen to preserve (as far as possible) the closed-loop transfer function (see e.g. [ I ,  51) 
are in the form: 

input weighting 

outnut weiehtine 

(Because K(s)  is scalar, we could work with a single-sided weighting V(s) W(s). However, our goal here is to 
indicate the effect of two-sided weighting.) 

The weighted Hankel singular values a are (0.052428, 0.011097, 0.00048095) and the weighted balanced 
reduced controllers of order 1 and 2 are 

Kl(s )  = 10.372/(s + 21.312) and K,(s) = (10.384s + 11.916)/(s2 + 21.299s + 26.205), 

respectively. 
The poles of the transfer functions with the controllers of reduced order are 

(- 19.4486, - 1.0836 + 0.7547j, - 1.2917 f 0.2295j) and (- 20.8123, - 1.29, - 1.0546 i 0.8346j) 

for the loops with the 2nd order and 1st order controllers respectively. Thus, the closed loops are stable. 
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The actual weighted balanced controller reduction errors are 

El = I W(s)[K(s) - Kl(s)] V(s)ll, = 0.016581 and E2 = 1 W(s)[K(s) - Kz(s)lV(s)ll, = 0.0010472 

for the reduced controllers of order 1 and 2, respectively. 
When we estimate these values by calculating upper bounds of the errors using Theorem 3.1, we have 

and the bounds are 

Comparing the actual error values with their calculated upper bounds, we can see that the bound differs 
77% from its actual value for the reduced controller of order 1, and the difference is 80% for thereduced 
controller of order 2. Thus, we can conclude that the bound in the double-side weighted case is not as tight as 
for single-side weighting (Example 1). But, anyway, the approximation is very good. 

, . 

4.3. Example 3 

The third example deals with a controller having its poles close to the jw-axis. 
Let us consider the stable controller to be reduced, given by its transfer function 

K(s) = (s2 + 2.8s + 1.6)/(s5 + 2.911s4 + 3.1319s3 + 1.5341s' + 0.01653s + 0.000015). 

The poles are { -  1.5, - 0.7 + j0.71414, - 0.01, - 0.001). Thus two poles approach the jw-axis very 
closely. 

The stable input weighting is given in the form V(s) = K-'(s)/[(s + 1)'(s + 2)]. 
The weighted Hankel singular values a are 1797.19, 1.6265,0.07408,0.0004583) and the weighted balanced 

reduced controllers of order 1.2.3 and 4 are 

K4(s) = (0.00145s3 - 0.0138s2 + 1.06s + 1.04)/(s4 + 1.33s3 + 0.992s' + 0.0108s + 9.78. 

respectively. , , 

The actual weighted balanced controller reduction errors Ei = (([K(jo) - Ki(jw)] V(jw) \I,, i = 1,2,3,4 
are . ~ 

When we estimate these values by calculating upper bounds of the errors using results of Theorem 3.1, 
we have: 11 C,@,(~W)P~'~ 11- = 0.41013, llEl(jw) 11, = 2.5504. lo9, (jE2(jw) (1, = 9.4683. lo4, 11E3(jw) (1, = 
4.8518. lo4, IlE,(jw)/l, = 8.0189. lo3, a2 = 1.046. lo9, a, = 3.8832. lo4, a4 = 1.9899. lo4, g5 = 3.2888.103 
and the bounds are . , 
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As we can see, actual errors may be large when the controller has poles close to the imaginary axis. Also in 
this case the upper bound, derived in Theorem 3.1 and based on the inequality 

becomes very conservative. 
Let us try to make the bound tlghter by using the inequality 

I I E ~ ( J ~ ) C V @ V ( J ~ ) P ~ ~ ~ + I  1 1 -  < l l ~ i ( ~ ~ ) l l m  I 1  C V @ V ( J ~ ) ~ ~ ~ ~ + I  l l m .  

That gives us the following reduction error bounds: 
- 

E4 = 0.015098, & = 3.3371, E ;  = 18.906, = 51.388 

As we can see, this approach gives us better bounds, though still very conservative. 
The bounds are worse when lEi(jm)l and ICv@v(jm)P:3i+ll assume their maximum values at mutually 

distant frequencies. 
Finally, let us try to improve the results by bounding the reduction errors by the norms 

l l  Ei(jw) Cv @v(~m)P:3i+ / I  m .  

That gives us extremely tight reduction error bounds: 
- 

= 0.00091892, Eb, = 0.074513, Ei = 0.25299, EF = 321.25. 

In this case the bounds differ from the actual errors by 0.07%, 93%,11% and 0.02% for reduced controllers 
of order 1, 2, 3 and 4 respectively. 

5. Conclusions 

The controller reduction approach discussed in this paper involves a frequency weighted error between the 
full and reduced order transfer functions. The weighted balanced reduction technique was applied to reduce 
the order of the transfer function. An error bound formula for frequency weighted balanced truncation was 
obtained. 

Three examples were used to demonstrate the effectiveness of the error bound formula. The first example 
involves an input weighting, the second one double-sided weighting. The calculated error bounds were close 
to the actual error values for both examples. 

The third example studies the case of a transfer function having its poles close to the imaginary axis. It has 
been shown that the bound derived in the main theorem of the paper is conservative, but a way to improve 
the bound has been shown as well. It is widely held that in the unweighted case, the standard bounds are also 
conservative when poles are close to the jo-axis. 

Issues of interest which remain open are the possibility of improving the error bound formula and of 
determining cases when the bound is tightlweak. In 121, the question is considered for the unweighted 
reduction problem of when the bound is tight and weak. It is probably weak when the weighted system's 
transfer function has alternating poles and zeros almost along the jw-axis and tight when there are 
alternating poles and zeros along the negative real axis. This conclusion may carry over to the weighted case. 
The examples allow no real definitive conclusion on this point, although they tend to support the carry-over 
hypothesis. 

Appendix A. Proof of Theorem 3.1 

With the partitions of {A ,  B, C )  and Z as in (2.6) and (2.9), introduce the following notation: 
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r,(s) = Cr4,(s)A12 + C Z .  

As it has been shown in 131. K  - K r  = rpA;'E,.  Thus, 

I W ( K  - K,)  VI/ 2, = m a x A m , , [ W ~ , ~ , : ' E V  V v H E :  A ; H T p  W"] = max A,,,[A;' n,A;"@,], 
a 

where il,(s) = E h )  V(s)  VH(s)s"P(s) and @,(s) = r r ( s )  W H ( s )  W(s)T,(s). Let us make the further definition: 
@(s) = (s1 - A)-'. 

Then, as is shown below, the following formulae are true: 

d ; l n ,  = C ,  + [o I I P ~ ~ @ ; c ; E P  + d ; ' ( z Z  + E , c ~ @ ~ P : ~ [ o  I ] ~ ) A ; ,  

A;"@, = Z2 + [0 I ] Q ~ z @ w B w T ,  + d ~ ~ ( 2 ,  + T , B & @ E Q ~ ~ [ o  IIT)A,.  

Indeed, from the 3-3,?-3 and 2-2 blocks of the Lyapunov equation (2.8a), one can obtain: 

PVA: + AvPv + BVBF = 0, PZ3A: + APZ3 + BCVPv + BDvB; = 0, 

C A ~  + AZ + P,,c;B~ + B C ~ P : ~  + BD,D:B~ = O. 

Then, using the equations above, one can obtain: 

n, = E, vvH E P  = br I I B V V ~ B ~ [ A ~ ~ ~ ~  l lH  
= [ ~ , , b ,  I ] B { C ~ @ , B , B ~ @ ' : C :  + D,B;@;c: + c,@,B,D: + D , D ; ) B ~ [ A , , ~ ,  1 1 ~  

= C A Z I ~ ,  11 { - [PZ,A: + APz3 + BCvPv + B C ~ @ ~ ( P , A :  + A,P,)] @;c:B' 
- B C , @ ~ [ A ~ P : ,  + P:,A~ + P,C;B~]  

- Z A ~  - AC - pz3C:BT - B C ~ P ; ~ ) [ A ~ , ~ ~ ,  I IH.  

Then, li', can be rewritten as 

H T T  I I ,  = CAZI~J ,  11 { -  [ P Z ~ A :  + A P z ~ I @ v C V B  - B C V @ V [ A V P ~ ~  + p:3AT1 

- ZAT - AC - PZ3c;BT - B C ~ P : ~ ]  I I H  
H T T  

= [ A z 1 4 ,  I ] { -  [ p Z 3 A ;  + APz,]@vCVB + B C ~ @ ~ P ~ C ~ B ~  

- B C ~ Q ~ [ A ~ P : ,  + P : ~ A ~ ]  - B C ~ @ ~ P ~ C : B ~  - ZAT - AZ 

- ~ ' z ~ c T V B ~  - B C V P : ~ )  CAzlbr l lH. 
and using the same equations above, 

L', = [AZ14J, I ]  { @ ~ ' P 2 , @ ~ ~ ; B T  + B C v @ v ~ : 3 @ - H  - Z A ~  - A Z )  [Az1$ ,  1IH 

H T;-H = A,Z2 + C2dY + E , c ~ @ ~ P : ~ [ o  d,lH + [O A,]P23@vCv,, . 

Thus, 
H T - H  

d ; ' n , =  C ,  + [O I I P Z ~ @ V C ~ ~ ~  + d ; l ( z Z  + - , C v @ v ~ f 3  c [O i l T ) d f l .  

Similarly, using the Lyapunov equation (2.8b), one can obtain 

= Z Z  + [O I ] Q : Z @ W B W ~ ,  + d L H ( C 2  + r 7 B & @ ~ Q l Z [ 0  l l T ) d , .  

Now consider the case when the state dimension is reduced by one, i.e. r = n - 1. Then 

Ai!lIIn-l  =(a,,+ En- ,Cv@vP:3[~ . . .0  l I T ) ( 1  + A ; ! ~ A ; - ~ ) ,  
H A ~ l @ , - l = ( a , + [ O . . . O  l ] Q : 2 @ w ~ w ~ , - ~ ) ( l  + A ~ - ~ I A . - I ) ,  
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and 

/ I  W(K - K,-1)V112, = ~(cT, + ~ , , C ~ @ ~ P ~ , [ O . . . O  llT)(a, + [O ... 0 
H 

x(1 + ~ ; J , d f - ~ ) ( l  + A,lAn-l)IIm 

< ~ ( c T , +  I E , , I I ,  I I C ~ @ ~ P T ~ [ O . . . O  l l T ~ l m )  

x(an + ll[O ... 0 ~ I Q ~ ~ @ w B w I I ~  Ilrn-1 llm). 

At this point we need the following inequalities: 

To show that they are true, let us first consider the following positive definite submatrix of the gramian @: 

1 Q. I q12,1...q12.n \ 

T Then, it follows that a,Qw - q12,nq12.n > 0. Hence, we obtain 
T 

IICO ... 0 l l ~ : ~ @ ~ B w l I ~  = I I ~ I ~ , ~ @ w B w I I ,  S , ~ I ~ Q ~ @ W B W I I ~ .  

Similar derivations lead to the first inequality (Al). 

According to these inequalities, 1) W(K - K,-,)VIIZ, S 4(a. + a,&)(a. + pa&), where a, = 

llS.-l I ,  11 c ~ @ ~ P ~ ~ ~  1 ,  and p, = I Q~@.B.I, r ,-,  I , .  Thus, the reduction error can be bounded as 

I W(K - K.-,)VII, s ~ J u :  + (E. + p , ) ~ ; ~ ~  + U,P,,U.. 

The result can be extended to the general case of r $ n - 1. In fact. 

I W(K - K , ) V ,  = I W(K - K.-I + K,-1 - Kn-2 + ... + Kr+l  - Kr)VlIm 

As we have shown, 1) W(Kk - K x 1 )  VJ/, 4 2 ,/oi + (ak + /3h)o:12 + akPxoh. Then the main result of the 
theorem follows immediately. 
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