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It is easy to check that (T, is a length function of order n [13, Appen- 
dix, Lemma A.31. Define a partial function f: A* x {0,1,2, .  . .} + 

{0,1,2, .  . .} by 

Clearly, f is a partial recursive function. By Theorem 3.2 of [4], 
there exists a partial recursive function g: B’ x {0.1,2,. . .} -+ A* 
that satisfies for n > 2N the following: 

a) the domain D ( n )  of g ( . , n )  is a prefix code, and g ( . , n ) :  

b) if g ( z , n )  = y, then y E A” and Z(z) = u,(y), 
D ( n )  + A” is one to one and onto, 

where B = (0,l)  and B’ is the set of all finite words from B.  By 
the definition of conditional Chaitin complexity (in old fashion), for 
y E A’ with Z(y) 2 2 N ,  
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Blind Equalization Without Gain Identification 

Sergio Verdu, Fellow, IEEE, Brian D. 0. Anderson, 
Fellow, IEEE, and Rodney A. Kennedy, Member, ZEEE 

Abstruct- Blind equalization up to a constant gain of linear time- 
invariant channels is studied. Dropping the requirement of gain iden- 
tification allows equalizer anchoring. This results in the elimination of 
a degree of freedom that causes ill-convergence of conventional blind 
equalizers, ahd affords the possibility of using simple update rules based 
on the stochastic approximation of output energy. Unlike conventional 
blind equalizers, truncations of the nonrecursive infinite-dimensional 
realizations of those equalizers inherit the convergence properties of 
their infinitely parametrized counterparts. A globally convergent blind 
recursive equalizer for channels without all-pass sections is obtained 
based on the exact equalization of the minimum-phase part of the channel 
and the identification of its nonminimum-phase zeros. 

Index Terms-Blind equalization, deconvolution, ARMA models, adap- 
tive filtering. 

I. INTRODUCTION 

Finite-dimensional discrete-time linear time-invariant systems are 
popular models for digital communication channels that introduce 
intersymbol interference. In many (but not all) situations intersymbol 
interference is removed prior to data demodulation by means of an 
equalizer-a linear time-invariant system whose transfer function is 
equal to the inverse of the channel transfer function. If the receiver 
does not know the actual transfer function of the channel, the need 
arises €or an adaptive equalizer which is updated using the channel 
outputs. In addition, classical adaptive equalization methods [ 121 rely 
on the input being a training sequence of data which is known by 
the receiver. 

The objective of blind equalization is to drop the requirement of 
a training sequence which in many applications (such as multiuser 
channels) is too cumbersome to be realistic. Thus, a blind equalizer 
has access to the output, but not the input, of the channel. 

That information is enough to identify the channel (asymptotically) 
because the input data is a non-Gaussian i.i.d. sequence. (Although 
the results hold for other modulations, we assume throughout, for 
the sake of clarity, that the input data is i.i.d. equally likely to 
be +1 or -1.) Then, the channel coefficients can be obtained by 
solving systems of equations dependent on higher-order statistics of 
the channel output sequence (e.g., [7]). Intense research efforts are 
currently under way in order to make such an indirect solution a 
viable alternative for on-line equalization. Instead, blind equalization 
imposes a specific structure on the adaptive scheme so that it can be 
easily implemented: the equalizer coefficients are updated according 
to a stochastic approximation scheme governed by a cost function 
that satisfies the following admissibility conditions: 

C1) it depends on the input data and the unknown channel only 
through the channel output; 
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CHANNEL ECUALIZER 
C2) the local minima of its expected value (as a function of the 

equalizer coefficients) occur at systems which differ from the 
channel inverse transfer function by at most an arbitrary delay 
and a change of sign. 

Because of the practical importance and conceptual interest of 
blind equalization, the search for an admissable cost function has 
attracted the attention of a number of researchers during the last 
fifteen years. Admissible cost functions have been found for doubly- 
infinite transversal equalizers [3], [6], [8], [15]. A shortcoming of 
these solutions is that their causal implementations are known to 
converge globally only for minimum-phase channels. (A restriction 
that arises from the invertibility of the semi-infinite channel convolu- 
tion operator discussed in [5].) More importantly, finite-dimensional 
(realizable) approximations of those blind equalizers exhibiting global 
convergence have not been reported. Even within the domain of 
relatively simple classes of minimum-phase channels (e.g., first-order 
autoregressive), implementable blind equalization remains an open 
problem (see [lo] for an up-to-date account of the main efforts and 
the fundamental issues in this open problem.) As in [4], [5], we 
study (in addition to infinite-dimensional nonrecursive equalizers) 
finite-dimensional implementable blind equalizers which achieve the 
inverse of the channel transfer function exactly. Our starting point is 
the observation (made previously in [19]) that condition C2) for the 
admissibility of the cost function is unnecessarily restrictive. Indeed, 
because of the symmetry of the alphabet {+l, -l}, it is irrelevant 
whether the data is recovered exactly or the equalizer introduces 
an arbitrary constant gain, even if that gain is a priori unknown. 
Note that this remains true even in the presence of noise at the 
receiver input (as the signal-to-noise ratio is unchanged). Even if 
the input alphabet is not polarity-symmetric, it is perfectly tolerable 
to remove the intersymbol interference leaving a residual gain, which 
can be easily estimated if necessary for demodulation purposes by an 
automatic gain control subsystem. Therefore, Condition 2 is replaced 
by the following: 

C2') The local minima of the expected value of the cost function 
occur at systems which differ from the channel inverse 
transfer function by at most an arbitrary delay and an 
arbitrary gain factor. Those systems will be referred to in 
the sequel as valid equalizers. 

In Section 11, we solve the open problem motivated by the 
counterexample in [5] of whether there exist finitely-parametrized 
blind equalizers for which it is possible to prove global convergence 
as long as the channel can be equalized by an FIR. Using the cost 
function and the equalizer anchoring proposed in Section 11, we 
take two different approaches in Section 111 in order to deal with 
arbitrary stable channels. The first one is the traditional approach of 
double-infinite nonrecursive equalization, for which, unlike the cost 
functions considered in the past, the convex cost function considered 
here allows the proof of convergence of truncated versions of the 
equalizer to approximations of the desired channel inverse. The 
second approach is based on a recursive blind equalizer that exhibits 
global convergence to the desired system for any stable channel 
without all-pass factors. 

c 

11. BLIND EQUALIZATION OF AUTOREGRESSIVE CHANNELS 
Assume that the channel is described by the difference equation: 

N 

T k  = c a t T k - - 2  + G X k ,  (1) 
t=1 

where { X k }  is the data sequence, { T k }  is the channel output sequence 
(Fig. l) ,  and the receiver knows that the channel is autoregressive 
and the value of N. If the receiver knew the channel coefficients, 

(al, . . . . a N )  (a scaled version of) the input data could be simply 
recovered with an FIR equalizer: 

N 

Y k  = T k  - % T k - z .  (2) 
z = l  

In the absence of such knowledge, the output of an infinitely long 
nonrecursive equalizer, 

(3) 

will asymptotically coincide with &{zk} if the equalizer is updated 
according to the Godard algorithm [8] or the Shalvi- Weinstein 
algorithm [ 151. Even though those algorithms assume a doubly- 
infinite equalizer, in this case a causal equalizer is sufficient because 
the invertibility condition of [4] is satisfied for an autoregressive 
channel. No such convergence property has been shown for any 
realizable (i.e., finitely parametrized) blind equalizer. In particular, 
it has been shown in [4] that the FIR equalizer 

N 

Y k  = X r T k - t  (4) 
,=O 

may end up converging to local minima instead of the desired solution 
f & [l, -al, , - a ~ ] .  For example, if N = 1, a1 = -cy, and 
G = 1, see [5] the Godard equalizer has four local minima located 
at f[l - cy] and f [ d m / d m ] .  The location of those 
points of convergence is continuous in cy at cy = 0, because if 
cy = 0, both f [ l  01 and f [ O  11 are valid equalizers. This behavior 
is a consequence of the overparametrization of the equalizer brought 
about by the requirement of Condition C2). However, as we argued 
in Section I, Condition C2') is all we really need and the natural 
choice suggested by (2) is to fix the first equalizer coefficient to 1 
and set the equalizer structure 

N 

Y k  = T k  - X z T k - t .  (5) 
, = 1  

Next, we will propose a simple algorithm for updating (XI . . . A,) 
based on the observation of { r k }  which converges to (a1 . . . a ~ )  as 
long as the channel is stable. For now, notice that in contrast to (2), 
for every (al . . . a,) there is only one valid equalizer (5).  In order to 
introduce our proposed cost function note that the combined transfer 
function of the cascade of channel and equalizer is equal to 

and therefore the energy of the output is (since the input is i.i.d.) 
equal to 

00 

G 2 + G Z ~ X ~  > G z  
1 = 1  

with equality if and only if ( A l ,  . . , AN) = ( a l , .  . . , a ~ ) .  Therefore, 
the output energy has a global minimum when the equalizer is equal 
to the inverse of the channel. 

This motivates the choice of the cost function as proportional 
to the instantaneous value of the output energy: yz/2. (The same 
conclusion would be achieved with any other absolute moment of 
the output.) Notice that this cost function cannot be used with the 
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classical approach to blind equalization (CMA, Godard, etc.) where 
all FIR coefficients are degrees of freedom, as the global minimum 
would- correspond to an equalizer with zero transfer function. The 
gradient of the cost function with respect to the equalizer coefficients: 
x = [ x ~ , . . . , x N ] ~  is 

v Y : / 2  = - Y k r k - l ,  (6) 
where T k - 1  = [ T ~ - ~ T ~ - Z . . . T ~ - N ] ~ ,  and the updating Of the 
equalizer coefficients proceeds according to 

= + P y k T k - 1 ,  (7) 
where p is the algorithm step size. It remains to check whether 
the proposed cost function satisfies Condition C2'). To that end 
we show that its expected gradient does not vanish except at 
the global minimum. Denote the parameter-error vector 6 = 
[XI - a l , . . . , X ~  - a r ~ ] ~ ,  then 

where the first equation follows from (1) and (5) and the second 
equation follows from the causality of the channel and the fact that 
the input is an independent sequence. Finally, it is sufficient to check 
that the N x N correlation matrix R = E [ r k - l r  ;-,I is positive- 
definite: a straightforward computation shows that the ( i ,  j) entry of 
R is ~ ~ o h l h l + l t - - j l ,  where {ho,hl ...} is the channel impulse 
response; therefore, for any N-vector z, the quadratic form zTRz 
is equal to the energy of the output of the channel when driven by 
a finite duration sequence . . . O , z 1 ,  . . . z ~ ,  0 .  . .. If the finite length 
input is not identically zero, i.e., z # ( O , . . . , O )  then the output 
sequence cannot be identically zero because the channel is causal. 

The conclusion is that the equalizer in (5) updated according to (7) 
will converge to the inverse of the autoregressive channel regardless 
of the initial setting of coefficients (with suitable scheduling of the 
step size p). This solves the open problem suggested in [5]. The 
close connection of the form of the update equation (7) to the more 
general recursive prediction error method [ l l ]  will be examined in 
Section 111-B. 

111. BLIND EQUALIZATION OF ARMA CHANNELS 
We consider in this section the general case of a finite-dimensional 

linear time-invariant channel where 
N 

(9) 

If L 2 1, the channel cannot be equalized exactly by a finite- 
dimensional transversal filter. We will explore two approaches for the 
blind equalization of channels with zeros: 1) infinite-dimensional non- 
recursive equalization (as in previous works) and 2) finite-dimensional 
recursive equalization. 

A. Nonrecursive Blind Equalization of ARMA Chartnels 
Let us assess the feasibility of extending the approach taken in 

Section I1 to a nonrecursive equalizer with an infinite number of 
taps. For that purpose, the equalizer in (5) is substituted by 

03 

Y k  = T k  - c X 1 T k - t  (10) 
I = 1  

along with the updating rule in (7) (the vectors therein are now 
semiinfinite). The expected output energy is equal to the energy of 
the impulse response of the cascade of channel and equalizer which 
can be written as 

" 

XtX,R(j - i), (11) 
z=o j = o  

where R(1) is the autocorrelation of the channel impulse response 
and, by convention, XO = -1. Notice that the cost function is 
a convex function of the equalizer coefficients (XI, Xz, . . .) and 
therefore, any local minimum has to be a global minimum. Moreover, 
since the leading coefficient in the equalizer impulse response is 
fixed to 1, the leading coefficient in the combined response is equal 
to that of the channel for every ( X I ,  Xz, . . .). The minimum-energy 
combined response is achieved, if and only if all the other coefficients 
are equal to zero, i.e., only if the equalizer is equal to the channel 
inverse (modulo gain). If the channel is minimum-phase there is 
one and only one causal stable realization of the channel inverse. 
Otherwise, the channel does not have a stable and causal inverse 
and the minimum-energy combined response is not achieved by the 
channel. inverse even if a more general doubly-infinite equalizer with 
an anchored central tap is used. The reason why we discuss this 
approach is its behavior with truncated approximations (which in 
contrast to previous approaches) lends itself to the proof of desirable 
convergence with realizable equalizers. This approach suggests a 
modification of the cost function pursued in [18] which is able to 
deal successfully with non minimum phase channels. The finite-length 
truncation of doubly-infinite nonrecursive blind equalizers has been 
the caveat emptor of previous solutions (cf. [lo]). In our setting it is 
easy to prove global convergence to an equalizer which approximates 
the channel inverse up to any prespecified degree of accuracy in those 
cases where the infinite-dimensional equalizer algorithm works (i.e., 
minimum-phase channels and maximum-phase FIR channels). If the 
nonrecursive equalizer has li < 33 taps, then the cost function still 
admits the expression in (11) except that the summations range up to 
K and, thus, the function is a quadratic form of a finite-dimensional 
positive-definite matrix. When the leading equalizer coefficient is 
fixed to 1, then the cost function is strictly convex in the remaining 
equalizer coefficients and thus it has a unique global minimum. 
That minimum value will approach the minimum achieved by the 
infinite-dimensional valid stable equalizer as' Ii7 + CO. The reason 
is that since the valid equalizer is stable, its distance from a IC- 
dimensional truncation can be made as small as desired provided 
K is large enough. Then, the continuity of the cost function in the 
neighborhood of the infinite-dimensional global minimum guarantees 
that the cost function achieved by the li-dimensional truncation 
can be made as close as desired to the global minimum. It is of 
interest to estimate the difference in the depths of the global minima 
as a function of K. Clearly, this depends on the unknown channel 
response. However, in applications, a judiciously conservative choice 
for li can be made based on prior information on the class of potential 
channel responses. The difference between the depths of the ideal 
global minimum and the one resulting from the truncated equalizer is 
equal to the difference between (11) and the corresponding expression 
where the summation indices range up to li. Given a channel impulse 
response, it is straightforward to evaluate that quantity (albeit, closed- 
form expressions do not exist) by computing the energy (in the time 
or frequency domains) of the cascade of channel response and its 
truncated inverse. It can be seen that the error can be made arbitrarily 
small with sufficiently large I(, because the ideal equalizer impulse 
response belongs to 11 and the channel autocorrelation sequence 
belongs to P. 

B. Recursive (ZIR) Blind Equalization of M A  Channels 
We consider here a different approach: the blind equalization of 

(not necessarily minimum-phase) A R M  channels with a (finitely 
parametrized) ARMA adaptive filter. The first point to observe is 
that there exists a causal stable ARMA equalizer, if and only if the 
channel transfer function H ( z )  is minimum-phase. If the channel is 
not minimum-phase then the natural solution within the domain of 
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+-+q--y+g--t/*~ 
H,&) 

Fig. 2. Switched all-pass sections for identification of minimum-phase zeros. 

exact equalization is to 1) equalize the minimum-phase equivalent 
transfer function Hmin(z), and 2) identify which zeros are outside 
the unit circle. Those zeros can then be taken care of by established 
techniques in digital communication such as maximum-likelihood 
sequence detection, decision-feedback equalization or approximate 
equalization with a finitely parametrized linear system [2]. Denote 

where the numerator has been factored into first- and second-order 
polynomials with real coefficients. The number of factors 1 1 5 
M 5 L is equal to the number of complex conjugate pairs of 
zeros of H ( z )  plus the number of its real-valued zeros. We label 
I C { 1,. . . . M} as the set of sections whose zeros belong to the 
unit circle (1.1 5 l}. Define the second-order polynomial (either 
of whose two coefficients may be zero) C, ( z )  = B , ( z )  if i E I 
and C,(z )  = B, (2- l )  otherwise, i.e., C, ( z )  is the minimum-phase 
equivalent of B,(z) .  Then, 

Suppose that we were able to somehow obtain Hm;,(z) in the 
factored form in (12) but without knowledge of the set I ,  i.e., 
without knowing which are the minimum-phase zeros of H ( z ) .  Could 
that missing information be obtained from the .factored form of 
H (  z ) ?  Define the following all-pass section with an anticausal stable 
realization 

which can be approximated (modulo delay) up to any desired degree 
of accuracy by an FIR filter whose taps are a function of two 
parameters only: the coefficients of C, ( 2 ) .  Consider the cascade in 
Fig. 2, where the inverse of H,,,(z) is followed by a series of M 
sections consisting of (an FIR approximation to) A, ( 2 )  bypassed by 
a switch. The output is binary for one and only one combination 
of the M switches.' (The output can be binary only if intersymbol 
interference is eliminated.) A search prpcedure can be implemented 
to identify the sought-after combination of switches, which can easily 
incorporate any a priori knowledge on the maximum-part of the 
channel, such as an upper bound on its order. Thus, we see that the 
central problem is the identification of H,,,(z) in the factored form 
in (12) (cf. [17] for a related approach). Once this is accomplished, 
H ( z )  can be equalized, using the aforementioned two-step approach. 
Let us now focus attention of the derivation of an adaptive law which 
can be shown to converge to the inverse of (12). 

We first consider the following adaptive recursive equalizer: 
L N 

,=1 0 = l  

Note that if BT = [$I . . ' 8 ~ 1  = [ b l  . . . b ~ ]  and AT = [XI . . . A N ]  = 
( U I  . . . U N ] ;  then y k  = Gxk for all k. Furthermore, since the leading 
coefficient in the equalizer impulse response is equal to 1, that choice 
of equalizer coefficients achieves the unique global minimum of the 
output energy. As before, the updating of 6' and X will proceed 

'In the presence of moderate noise, the correct switch combination will 
still be discemible from the output. 

according to a stochastic approximation of the output energy. In order 
to obtain the gradient of the output energy with respect to X and 8 ,  
it is convenient to write (13) as the cascade of its regressive and 
moving average components: 

N 

Y k  = w k  - X X z w k - t ,  (144 
t = l  

It readily follows from (14a) that the gradient with respect to the 
numerator coefficients is 

(15) 
1 
2 
-VXy: = - [ W k - l  " ' w k - , V ] T Y k .  

In order to find the gradient with respect to the denominator 
coefficients let us introduce 

*=1 

from (14), we get 

which implies that % is the response of the denominator of the 

equalizer to - W k P J  or, equivalently, 5 is equal to - d k - J .  Thus, 
the equalizer coefficients are updated according to 

80, 

3 (174  
X ( k + l )  = X ( k )  + , p y k w k - 3 ,  = 1 , ' . ' , N ,  

Formulae (17a) and (17b) may be interpreted as a special case of 
the recursive prediction error algorithm (RPEA) [ll, pp. 385-3871. 
Even for more general system models than those that we are con- 
sidering, the RPEA for ARMA-type parametrizations leads to an 
expression for the gradient of the form of a filtered regressor vector 
where the filtering depends on the parameters being estimated [ l l ,  
pp. 110-1141. Our pending further development, however, will lead 
us to consider a different parametrization and algorithm motivated 
by the structure of (12). The simplicity of the cost function we are 
using allows us to verify that this equalizer will converge to the 
channel parameters regardless of its initialization (as long as it is 
stable) by invoking a result from maximum-likelihood identification 
of Gaussian linear systems due to Astrom and Soderstrom [l], and 
Stoica and Soderstrom [16]: 

Theorem: Consider the cascade of two systems, 

L' N '  

* = 1  i=l 
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Assume that ( e k }  is a second-order i.i.d. sequence, and L' 2 
L,  N' 2 N .  If (18) is a minimum-phase stable system without pole- 
zero cancellations, then the only stationary points of E[yi] as a 
function of 0 and X occur at the global minima: 

1 + 0 1 z - ' + . . ~ + B ~ ~ ; - ~ ' = ( l + b ~ ; - ~  + . . . + b L z C L  ) 
' (1 + l 1 : - I  + . . . + lmz?).  

1 + X1 2 - 1  + . . . + AN,  2-'V' = (1 + a13 -1 + .  . .  + a x - \  
. (1+112-1  + " . + l m * - m ) .  

where m = min(L'-L. -V'-*Y) and (1 + l l z - '  + . . .  + lmzPm) 
has all zeros inside the unit circle, but is otherwise arbitrary. 

In the case we are considering, (18) and (19) become the minimum- 
phase equivalent of (9) and (13), respectively. The result of the 
theorem ensures that the lines of steepest descent of the recursion 
in (17) converge to the minimum-phase equivalent of the channel 
(provided that the initialization is stable and the step size is suitably 
scheduled), because the cost function is transparent to replacing 
the channel by its minimum-phase part, and the gradients do not 
depend on the channel impulse response. However, this falls short 
of our objective since the equalizer in (13) is not in the factored 
form required in (12). Besides, in any realization of the stochastic 
approximation in (17), the trajectory followed by A(') and 6'(k) 
deviates randomly from its expected trajectory (a line of steepest 
descent) and in particular may wander outside the set of stable 
systems, in which case convergence is no longer guaranteed. This is a 
well-known issue in adaptive IIR filtering [9], and can be remedied by 
discarding updates that would lead to unstable systems or reflecting 
poles lying outside the unit circle to their reciprocals. To resolve both 
shortcomings we will parametrize the recursive part of the filter as 
a cascade of second-order sections, the stability of which is easy to 
monitor: 

(20) 
1 \I 

- - 1 r I w  ) '  
nz=l 

1 + 012-1 + . . . + e L : - L  

where @"> ( 2 - l )  = 1 + 6';"~~' + 0 ; " ~ - ~ .  We will denote the output 
of the nith stage by usr (cf. Fig. 3), in particular, ulk = wi'. 
The gradient with respect to the numerator coefficients remains 
intact (cf. (15)). In order to find 0 , y k  (the gradient of the output 
with respect to the coefficients of the mth section) we will denote 
A(.-') = 1 + X 1 z - l  + . . .  + X L Z - ~ ,  and we will use the informal 
notation 

(21) 
U'& n-1 = o"(;-')u.:, 

,I( i -1 ) 
Y k  = @n+l(2-l)...@h3(2-1) 

From (21), it follows that 

or, equivalently, 

Putting (22) and (23) together, we obtain 

Fig. 3. Recursive blind equalizer with cascaded AR second-order sections. 

where d? is the response of the nth recursive stage to the equalizer 
output (cf. Fig. 3). 

With the new parametrization, there is no longer a unique global 
minimum, as all permutations of second-order sections are equivalent. 
However, this does not give rise to spurious local minima, i.e., if a 
given unfactored system is not a local minimum, none of its factored 
counterparts can be local minima. To see this, fix any unfactored 
system which is not a local minimum. Then, there is a neighboring 
system achieving lower cost. The factored versions of both of those 
systems (nonunique in general) attain the same respective costs as 
their unfactored counterparts, and are also neighbors due to the 
continuity of the roots of a polynomial as a function of its coefficients 
[13, p. 31. This implies that the corresponding factored system cannot 
be a local minimum-a conclusion that is in accordance with the 
general results on mean-square surfaces for cascaded IIR filters in 

Regarding the implementation of the algorithm, it should be noted 
that the assumption that the channel order parameters and N are 
known and are exactly matched by the equalizer can be dropped, 
as long as the equalizer overparametrizes both A4 and -V (see the 
conditions in the theorem allowing L' 2 L. N', 2 11;). In the context 
of conventional nonrecursive blind equalization, related conditions 
(on the length of the equalizer relative to the channel order) are also 
necessary. 

1141. 

IV. SUMMARY 
Globally convergent blind equalization has been shown in [6, 151 

for doubly-infinite equalizers of the Godard type. The truncation 
required to implement those equalizers destroys their global con- 
vergence as demonstrated in [4]. Blind equalization without gain 
identification leads naturally to the study of anchored equalizers 
(with fixed taps) which eliminate some of the excess degrees of 
freedom that underpin the ill-convergence mechanism reported in 
[4]. A sensible strategy to the blind equalization of nonminimum- 
phase channels is to decouple the equalization of the minimum-phase 
part (which can be done exactly) and the identification of the zeros 
located outside the unit circle (cf. [17]). We showed a simple system 
that accomplishes this task and exhibits global convergence, as long 
as the channel does not have all-pass factors. 

In contrast to Godard-type cost functions, the convexity of energy 
functions used in this correspondence allow that the convergence 
properties of infinite-dimensional equalizers be inherited by their 
truncatious, and the ideal channel inverse can be approximated up 
to any prespecified degree of accuracy provided the truncation is 
long enough. The next step motivated by this correspondence is the 
study of anchored equalizers using cost functions other than energy. 
An anchored equalizer whose cost function is not energy (but it is 
convex) has been identified in [18] where it is shown to achieve 
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essentially the same convergence properties as the doubly-infinite 
Godard equalizer, with the advantage that those properties are not 
destroyed by finite truncations. 

Comparing the anchored blind equalizers with energy cost func- 
tions and the Godard-type blind equalizers, we conclude the fol- 
lowing. 

For doubly-infinite nonrecursive equalization Godard-type cost 
functions are superior as they achieve global convergence, 
whereas the anchored equalizers may have inadmissible global 
minima. 
For semi-infinite nonrecursive equalization, both equalizers 
achieve convergence if the channel is minimum-phase, other- 
wise, both equalizers have spurious local minima. The reason 
why the Godard equalizer suffers from this problem is the 
noninvertibility of the semi-infinite channel convolution matrix 
[5] in the nonminimum-phase case. 
For finitely parametrized equalizers, the truncation of the 
Godard-type equalizers leads to ill-convergence even for the 
simplest channels [4], whereas the anchored equalizers based on 
convex cost functions inherit the convergence properties of their 
infinite-dimensional counterparts which can be approximated as 
accurately as desired. Furthermore, in contrast to the Godard- 
type equalizers, exact finite-dimensional implementable blind 
equalization is achievable by anchored blind equalizers. 
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Convergence of Best q5 - Entropy Estimates 

Marc Teboulle and Igor Vajda, Senior Member, IEEE 

Abstract- Minimization problems involving @-entropy functionals (a 
generalization of Boltzmann-Shannon entropy) are studied over a given 
set A and a sequence of sets A, and the properties of their optimal 
solutions I@, I,. Under certain conditions on the objective functional and 
the sets A and A,,  it is proven that as n increases to infinity, the optimal 
solution I, converges in Llnorm to the best @-entropy estimate x ~ .  

Index Terms-Entropy functionals, norm convergence, maximum en- 
tropy methods, convex optimization, set-convergence. 

I. INTRODUCTION 
Let us consider a convex, continuous function @ : R+ + R and 

Put 

lim,io # ( U ) ,  if U = 0 
fm, if U < O .  & ( U )  = 

Denote by @ $ ( U )  the (finite) right-hand derivative of 0 at U E R+. It 
is well known (see, Rockafellar [25]) ,  that for any 11 E R+ it holds 

+ ( U )  2 o b )  + & ( V ) ( U  - v), 7f E w. (1) 

It follows from here 

0 ( U )  E (-x,m]. U E R. 

Consider further a finite measure space (S, p ) and the corresponding 
Banach spaces Lo (S, p ) ,  1 5 a 5 m, with norms 1 1  . [ l o r .  It follows 
from (1) that the formula 

J s  

defines a mapping 16 : L l ( S > p )  + (-s?m]. This mapping is 
called the +-entropy.’ 
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