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It is easy to check that ¢, is a length function of order n [13, Appen-

dix, Lemma A.3]. Define a partial function f: A* x {0,1,2, -} —
{0,1,2,--} by
fly,n) = 0.(y), fory € A” and n > 2N. (55)

Clearly, f is a partial recursive function. By Theorem 3.2 of (4],
there exists a partial recursive function g: B* x {0,1,2,.--} — A*
that satisfies for n > 2N the following:

a) the domain D(n) of g(-,n) is a prefix code, and g(-.n):

D(n) — A™ is one to one and onto,

b) if g(z,n) =y, then y € A" and I(z) = 0. (y),
where B = {0,1} and B™ is the set of all finite words from B. By
the definition of conditional Chaitin complexity (in old fashion), for
y € A* with I(y) > 2N,

Clyli(y)) < min{l(z)|z € B”, g(,1(y)) = y} + O(1)
=iy (y) + 0(1)

. i N—1
= min E oly: ) 1).(56
1<5<N (y, )(56)
-~ i=j (mod N)
1<i<i(y)—N+1
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Blind Equalization Without Gain Identification

Sergio Verdd, Fellow, IEEE, Brian D.O. Anderson,
Fellow, IEEE, and Rodney A. Kennedy, Member, IEEE

Abstract— Blind equalization up to a constant gain of linear time-
invariant channels is studied. Dropping the requirement of gain iden-
tification allows equalizer anchoring. This results in the elimination of
a degree of freedom that causes ill-convergence of conventional blind
equalizers, and affords the possibility of using simple update rules based
on the stochastic approximation of output energy. Unlike conventional
blind equalizers, truncations of the nonrecursive infinite-dimensional
realizations of those equalizers inherit the convergence properties of
their infinitely parametrized counterparts. A globally convergent blind
recursive equalizer for. channels without all-pass sections is obtained
based on the exact equalization of the minimum-phase part of the channel
and the identification of its nonminimum-phase zeros.

Index Terms—Blind equalization, deconvolution, ARMA models, adap-
tive filtering.

I. INTRODUCTION

Finite-dimensional discrete-time linear time-invariant systems are
popular models for digital communication channels that introduce
intersymbol interference. In many (but not all) situations intersymbol
interference is removed prior to data demodulation by means of an
equalizer—a linear time-invariant system whose transfer function is
equal to the inverse of the channel transfer function. If the receiver
does not know the actual transfer function of the channel, the need
arises for an adaptive equalizer which is updated using the channel
outputs. In addition, classical adaptive equalization methods {12] rely
on the input being a training sequence of data which is known by
the receiver.

The objective of blind equalization is to drop the requirement of
a training sequence which in many applications (such as multiuser
channels) is too cumbersome to be realistic. Thus, a blind equalizer
has access to the output, but riot the input, of the channel.

That information is enough to identify the channel (asymptotically)
because the input data is a non-Gaussian i.i.d. sequence. (Although
the results hold for other modulations, we assume throughout, for
the sake of clarity, that the input data is ii.d. equally likely to
be +1 or —1.) Then, the channel coefficients can be obtained by
solving systems of equations dependent on higher-order statistics of
the channel output sequence (e.g., [7]). Intense research efforts are
currently under way in order to make such an indirect solution a
viable alternative for on-line equalization. Instead, blind equalization
imposes a specific structure on the adaptive scheme so that it can be
easily implemented: the equalizer coefficients are updated according
to a stochastic approximation scheme governed by a cost function
that satisfies the following admissibility conditions:

Cl) it depends on the input data and the unknown channel only
through the channel output;
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C2) the local minima of its expected value (as a function of the
equalizer coefficients) occur at systems which differ from the
channel inverse transfer function by at most an arbitrary delay
and a change of sign.

Because of the practical importance and conceptual interest of
blind equalization, the search for an admissable cost function has
attracted the attention of a number of researchers during the last
fifteen years. Admissible cost functions have been found for doubly-
infinite transversal equalizers [3], [6], [8], [15]- A shortcoming of
these solutions is that their causal implementations are known to
converge globally only for minimum-phase channels. (A restriction
that arises from the invertibility of the semi-infinite channel convolu-
tion operator discussed in [5].) More importantly, finite-dimensional
(realizable) approximations of those blind equalizers exhibiting global
convergence have not been reported. Even within the domain of
relatively simple classes of minimum-phase channels (e.g., first-order
autoregressive), implementable blind equalization remains an open
problem (see [10] for an up-to-date account of the main efforts and
the fundamental issues in this open problem.) As in [4], [5], we
study (in addition to infinite-dimensional nonrecursive equalizers)
finite-dimensional implementable blind equalizers which achieve the
inverse of the channel transfer function exactly. Our starting point is
the observation (made previously in [19]) that condition C2) for the
admissibility of the cost function is unnecessarily restrictive. Indeed,
because of the symmetry of the alphabet {+1, —1}, it is irrelevant
whether the data is recovered exactly or the equalizer introduces
an arbitrary constant gain, even if that gain is a priori unknown.
Note that this remains true even in the presence of noise at the
receiver input (as the signal-to-noise ratio is unchanged). Even if
the input alphabet is not polarity-symmetric, it is perfectly tolerable
to remove the intersymbol interference leaving a residual gain, which
can be easily estimated if necessary for demodulation purposes by an
automatic gain control subsystem. Therefore, Condition 2 is replaced
by the following:

C2') The local minima of the expected value of the cost function
occur at systems which differ from the channel inverse
transfer function by at .most an arbitrary delay and an
arbitrary gain factor. Those systems will be referred to in
the sequel as valid equalizers.

In Section II, we solve the open problem motivated by the
counterexample in [5] of whether there exist finitely-parametrized
blind equalizers for which it is possible to prove global convergence
as long as the channel can be equalized by an FIR. Using the cost
function and the equalizer anchoring proposed in Section II, we
take two different approaches in Section III in order to deal with
arbitrary stable channels. The first one is the traditional approach of
double-infinite nonrecursive equalization, for which, unlike the cost
functions considered in the past, the convex cost function considered
here allows the proof of convergence of truncated versions of the
equalizer to approximations of the desired channel inverse. The
second approach is based on a recursive blind equalizer that exhibits
global convergence to the desired system for any stable channel
without all-pass factors.

II. BLIND EQUALIZATION OF AUTOREGRESSIVE CHANNELS

Assume that the channel is described by the difference equation:
N
rE = Zaﬂ‘k—i + Gy, @)
i=1
where {xz} is the data sequence, {ry } is the channel output sequence
(Fig. 1), and the receiver knows that the channel is autoregressive
and the value of N. If the receiver knew the channel coefficients,

‘———| CHANNEL H EQUALIZER I——‘

*k "k %

Fig. 1. Channel equalization;

(a1,-++,an) (a scaled version of) the input data could be simply
recovered with an FIR equalizer:
N
Yk =Tk — Zalrk-z. )

=1

In the absence of such knowledge, the output of an infinitely long
nonrecursive equalizer,

vk = Ntk (©)]
i=0

will asymptotically coincide with £{z} if the equalizer is updated
according to the Godard algorithm [8] or the Shalvi—Weinstein
algorithm [15]. Even though those algorithms assume a doubly-
infinite equalizer, in this case a causal equalizer is sufficient because
the invertibility condition of [4] is satisfied for an autoregressive
channel. No such convergence property has been shown for any
realizable (i.e., finitely parametrized) blind equalizer. In particular,
it has been shown in [4] that the FIR equalizer

N
Y=Y AiTh—i @
=0

may end up converging to local minima instead of the desired solution
+ —é—[l,—al,-w,—aN]. For example, if N = 1, a; = —a, and
G = 1, see [5] the Godard equalizer has four local minima located
at (1 — o] and £[v1=a*/vT+5a?]. The location of those
points of convergence is continuous in « at & = 0, because if
a = 0, both £[1 0] and %[0 1] are valid equalizers. This behavior
is a consequence of the overparametrization of the equalizer brought
about by the requirement of Condition C2). However, as we argued
in Section I, Condition C2') is all we really need and the natural
choice suggested by (2) is to fix the first equalizer coefficient to 1
and set the equalizer structure

N
Ye =Tk — Z/\irk—i- 6)
=1

Next, we will propose a simple algorithm for updating (A; - An)
based on the observation of {rx} which converges to (a; -+ an) as
long as the channel is stable. For now, notice that in contrast to (2),
for every (a1 - - - an) there is only one valid equalizer (5). In order to
introduce our proposed cost function note that the combined transfer
function of the cascade of channel and equalizer is equal to

1 - Alz—l —res = ANZ_]V
_N

= G(l + Azt +/\1z‘2+---)

l-aiz7!—---—anz

and therefore the energy of the output is (since the input is i.id.)
equal to

G +G*Y N 26
=1
with equality if and only if (A1, -+, An) = (a1, -+, an). Therefore,
the output energy has a global minimum when the equalizer is equal
to the inverse of the channel. .

This motivates the choice of the cost function as proportional
to the instantaneous value of the output energy: y2/2. (The same
conclusion would be achieved with any other absolute moment of
the output.) Notice that this cost function cannot be used with the



294 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 1, JANUARY 1993

classical approach to blind equalization (CMA, Godard, etc.) where
all FIR coefficients are degrees of freedom, as the global minimum
would correspond to an equalizer with zero transfer function. The
gradient of the cost function with respect to the equalizer coefficients:
A=y, an]T s

Vyi/2 = —yrriot, (6)

where 11 = [rk,lrk_z---rk_N]T, and the updating of the
equalizer coefficients proceeds according to

ARFD AR 4 ere s, @)

where p is the algorithm step size. It remains to check whether
the proposed cost function satisfies Condition C2'). To that end
we show that its expected gradient does not vanish except at
the global minimum. Denote the parameter-error vector § =
[/\1 - al,"-,/\N —_ aN]T, then

Elykri—1] = E[(ka +r f_ﬁ)rk_l] = E[rk_lrf_l]& ®)

where the first equation follows from (1) and (5) and the second
equation follows from the causality of the channel and the fact that
the input is an independent sequence. Finally, it is sufficient to check
that the V X N correlation matrix R = F [rk_lr fq] is positive-
definite: a straightforward computation shows that the (7, j) entry of
R is 3372, hihiyyi—j|, where {ho,hy---} is the channel impulse
response; therefore, for any N-vector z, the quadratic form 'Rz
is equal to the energy of the output of the channel when driven by
a finite duration sequence - --0,z1,-+-zx,0---. If the finite length
input is not identically zero, i.e., £ # (0,---,0) then the output
sequence cannot be identically zero because the channel is causal.

The conclusion is that the equalizer in (5) updated according to (7)
will converge to the inverse of the autoregressive channel regardless
of the initial setting of coefficients (with suitable scheduling of the
step size p). This solves the open problem suggested in [5]. The
close connection of the form of the update equation (7) to the more
general recursive prediction error method [11] will be examined in
Section III-B.

III. BLIND EQUALIZATION OF ARMA CHANNELS

We consider in this section the general case of a finite-dimensional
linear time-invariant channel where
N
Tk = E a;tk—i + G

=1

L
Tk +Zbi.’5k_,':|. (9)
=1

If L > 1, the channel cannot be equalized exactly by a finite-
dimensional transversal filter. We will explore two approaches for the
blind equalization of channels with zeros: 1) infinite-dimensional non-
recursive equalization (as in previous works) and 2) finite-dimensional
recursive equalization.

A. Nonrecursive Blind Equalization of ARMA Channels

Let us assess the feasibility of extending the approach taken in
Section II to a nonrecursive equalizer with an infinite number of
taps. For that purpose, the equalizer in (5) is substituted by

o
Yk =Tk — E AiTg—i
i=1

along with the updating rule in (7) (the vectors therein are now
semiinfinite). The expected output energy is equal to the energy of
the impulse response of the cascade of channel and equalizer which

can be written as
S Y NARG - i),

=0 5=0

(10)

(1

where R(!) is the autocorrelation of the channel impulse response
and, by convention, Ao = —1. Notice that the cost function is
a convex function of the equalizer coefficients (A, Az,---) and
therefore, any local minimum has to be a global minimum. Moreover,
since the leading coefficient in the equalizer impulse response is
fixed to 1, the leading coefficient in the combined response is equal
to that of the channel for every (A1, Az, - - ). The minimum-energy
combined response is achieved, if and only if all the other coefficients
are equal to zero, i.e., only if the equalizer is equal to the channel
inverse (modulo gain). If the channel is minimum-phase there is
one and only one causal stable realization of the channel inverse.
Otherwise, the channel does not have a stable and causal inverse
and the minimum-energy combined response is not achieved by the
channel inverse even if a more general doubly-infinite equalizer with
an anchored central tap is used. The reason why we discuss this
approach is its behavior with truncated approximations (which in
contrast to previous approaches) lends itself to the proof of desirable
convergence with realizable equalizers. This approach suggests a
modification of the cost function pursued in [18] which is able to
deal successfully with non minimum phase channels. The finite-length
truncation of doubly-infinite nonrecursive blind equalizers has been
the caveat emptor of previous solutions (cf. [10]). In our setting it is
easy to prove global convergence to an equalizer which approximates
the channel inverse up to any prespecified degree of accuracy in those
cases where the infinite-dimensional equalizer algorithm works (i.c.,
minimum-phase channels and maximum-phase FIR channels). If the
nonrecursive equalizer has K < oo taps, then the cost function still
admits the expression in (11) except that the summations range up to
K and, thus, the function is a quadratic form of a finite-dimensional
positive-definite matrix. When the leading equalizer coefficient is
fixed to 1, then the cost function is strictly convex in the remaining
equalizer coefficients and thus it has a unique global minimum.
That minimum value will approach the minimum achieved by the
infinite-dimensional valid stable equalizer as' K — oo. The reason
is that since the valid equalizer is stable, its distance from a K-
dimensional truncation can be made as small as desired provided
K is large enough. Then, the continuity of the cost function in the
neighborhood of the infinite-dimensional global minimum guarantees
that the cost function achieved by the K -dimensional truncation
can be made as close as desired to the global minimum. It is of
interest to estimate the difference in the depths of the global minima
as a function of K. Clearly, this depends on the unknown channel
response. However, in applications, a judiciously conservative choice
for K can be made based on prior information on the class of potential
channel responses. The difference between the depths of the ideal
global minimum and the one resulting from the truncated equalizer is
equal to the difference between (11) and the corresponding expression
where the summation indices range up to K. Given a channel impulse
response, it is straightforward to evaluate that quantity (albeit, closed-
form expressions do not exist) by computing the energy (in the time
or frequency domains) of the cascade of channel response and its
truncated inverse. It can be seen that the error can be made arbitrarily
small with sufficiently large K, because the ideal equalizer impulse
response belongs to !; and the channel autocorrelation sequence
belongs to I°°.

B. Recursive (IIR) Blind Equalization of ARMA Channels

We consider here a different approach: the blind equalization of
(not necessarily minimum-phase) ARMA channels with a (finitely
parametrized) ARMA adaptive filter. The first point to observe is
that there exists a causal stable ARMA equalizer, if and only if the
channel transfer function H () is minimum-phase. If the channel is
not minimum-phase then the natural solution within the domain of
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._ /

Fig. 2. Switched all-pass sections for identification of minimum-phase zeros.

-exact equalization is to 1) equalize the minimum-phase equivalent
transfer function Hmin(z), and 2) identify which zeros are outside
the unit circle. Those zeros can then be taken care of by established
techniques in digital communication such as maximum-likelihood
sequence detection, decision-feedback equalization or approximate
equalization with a finitely parametrized linear system [2]. Denote

Bi(z)-+- Bu(2)
A(z) ’

where the numerator has been factored into first- and second-order
polynomials with real coefficients. The number of factors [%] <
M < L is equal to the number of complex conjugate pairs of
zeros of H(z) plus the number of its real-valued zeros. We label
I C {1,---,M} as the set of sections whose zeros belong to the
uvnit circle {|z| < 1}. Define the second-order polynomial (either
of whose two coefficients may be zero) Ci(z) = Bi(z) ifi € I
and Ci(z) = B;(z™") otherwise, i.e., Ci(z) is the minimum-phase
equivalent of B;(z). Then,

H(z)=G

Cl(z) e CM(Z)
A(z) '

Suppose that we were able to somehow obtain Hyin(z) in the
factored form in (12) but without knowledge of the set I, ie.,
without knowing which are the minimum-phase zeros of H(z). Could
that missing information be obtained from the factored form of
H (2)? Define the following all-pass section with an anticausal stable
realization

Humin(2) =G (12)

Ci(z)
, Cy(z=1)’
which can be approximated (modulo delay) up to any desired degree
of accuracy by an FIR filter whose taps are a function of two
parameters only: the coefficients of C;(z). Consider the cascade in
Fig. 2, where the inverse of Hmin(2) is followed by a series of M
sections consisting of (an FIR approximation to) A;(z) bypassed by
a switch. The output is binary for one and only one combination
of the M switches.! (The output can be binary only if intersymbol
interference is eliminated.) A search procedure can be implemented
to identify the sought-after combination of switches, which can easily
incorporate any a priori knowledge on the maximum-part of the
channel, such as an upper bound on its order. Thus, we see that the
central problem is the identification of Hmin(2) in the factored form
in (12) (cf. [17] for a related approach). Once this is accomplished,
H (z) can be equalized, using the aforementioned two-step approach.
Let us now focus attention of the derivation of an adaptive law which
can be shown to converge to the inverse of (12).

We first consider the following adaptive recursive equalizer:

L N
Yk = —Zoiyk——i + 7= ZAirk~1'
i=1 =1

Note that if 87 = [§,---82] = [by---bz) and AT = [A; -+ An] =
[a1 -+ -an]; then yx = Gy for all k. Furthermore, since the leading
coefficient in the equalizer impulse response is equal to 1, that choice
of equalizer coefficients achieves the unique global minimum of the
output energy. As before, the updating of § and A will proceed

A4(z) =

(13)

'In the presence of moderate noise, the correct switch combination will
still be discernible from the output.

according to a stochastic approximation of the output energy. In order
to obtain the gradient of the output energy with respect to A and 6,
it is convenient to write (13) as the cascade of its regressive and
moving average components:

N
Yb = Wi — Z/\iwk-i, (14a)
=1
. .
we ==Y Biwk i + 7k (14b)

i=1

It readily follows from (14a) that the gradient with respect to the
numerator coefficients is

1
3 Vayi = =[we—y - wi—n]" yx-

(15)

In order to find the gradient with respect to the denominator
coefficients let us introduce

L
di = — Z&dk—i + Yks
=1

from (14), we get

Oyr 0wk o=, Owi_;
e _ Gk _ gy, Sk 6
26, ~ 96, ;A 36, (162)
L

Swy, Owr—i

= — : — Wk—j, 16b
36, ;9 a6, Wk (165)

Bwy,

which implies that is the response of the denominator of the

50,

. . dyk

equalizer to —wy_; or, equivalently, = is equal to —d_;. Thus,
. . i

the equalizer coefficients are updated according to

M =2 bpgawiy, j=10N, (1T

95-”1) = G;k) + uyrdi—;, j=1---,L (17b)

Formulae (17a) and (17b) may be interpreted as a special case of
the recursive prediction error algorithm (RPEA) [11, pp. 385-387].
Even for more general system models than those that we are con-
sidering, the RPEA for ARMA-type parametrizations leads to an
expression for the gradient of the form of a filtered regressor vector
where the filtering depends on the parameters being estimated [11,
pp. 110-114]. Our pending further development, however, will lead
us to consider a different parametrization and algorithm motivated
by the structure of (12). The simplicity of the cost function we are
using allows us to verify that this equalizer will converge to the
channel parameters regardless of its initialization (as long as it is
stable) by invoking a result from maximum-likelihood identification
of Gaussian linear systems due to Astrom and Soderstrom [1], and
Stoica and Soderstrom [16]:

Theorem: Consider the cascade of two systems,

N L
Tk = Eamc_i +er+ Zbiek—i7 (18)
=1 i=1
LV ]\/V
Yk = — Z Oiyk—i + 1k — Z AiTk—i. (19)
=1 i=1
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Assume that {e;} is a second-order i.i.d. sequence, and L' >
L,N’ > N.If (18) is a minimum-phase stable system without pole-
zero cancellations, then the only stationary points of E[yf] as a
function of § and A occur at the global minima:

146,271 + --+9er_L'=(1+blz_1+--~+bLz_L>
(AL e gy 2™,
T+dz 4 dne ™V = (1 ‘a4 aN;*“')

Qb i ™),

where m = min(L'—L, N'= N) and (1 +lhz v+t lmz_m)
has all zeros inside the unit circle, but is otherwise arbitrary.

In the case we are considering, (18) and (19) become the minimum-
phase equivalent of (9) and (13), respectively. The result of the
theorem ensures that the lines of steepest descent of the recursion
in (17) converge to the minimum-phase equivalent of the channel
(provided that the initialization is stable and the step size is suitably
scheduled), because the cost function is transparent to replacing
the channel by its minimum-phase part, and the gradients do not
depend on the channel impulse response. However, this falls short
of our objective since the equalizer in (13) is not in the factored
form required in (12). Besides, in any realization of the stochastic
approximation in (17), the trajectory followed by A*) and ()
deviates randomly from its expected trajectory (a line of steepest
descent) and in particular may wander outside the set of stable
systems, in which case convergence is no longer guaranteed. This is a
well-known issue in adaptive IIR filtering [9], and can be remedied by
discarding updates that would lead to unstable systems or reflecting
poles lying outside the unit circle to their reciprocals. To resolve both
shortcomings we will parametrize the recursive part of the filter as
a cascade of second-order sections, the stability of which is easy to
monitor:

1 .
146271+ + 827 F

(20)

o
- m(.—1y"
m=1 om(z"1)
where ©™ (z7') = 1+ 67" 7" +65* 272, We will denote the output
of the mth stage by wy® (cf. Fig. 3), in particular, wx = wj’.
The gradient with respect to the numerator coefficients remains
intact (cf. (15)). In-order to find V,,y;, (the gradient of the output
with respect to the coefficients of the mth section) we will denote
A(z‘l) =14Xz" 4+ Az"%, and we will use the informal
notation

Wi = 0"k, @
- AT .
Yo = Gnri-1). oM (a1 Uk (22
From (21), it follows that
-1
0=V = |, |k 407 () Vi
or, equivalently,
1 —wﬁ_l}
Vawg = 23
SNCHED) [ WE_o @)

Puiting (22) and (23) together, we obtain
AzY)
(z=1)---OM (1)

Vayr = o Vawg

-1 L
a2t ek 2

1 1
-{ CHANNEL\H m’} —-‘ M)
’

K 'k "k "k

Fig. 3. Recursive blind equalizer with cascaded AR second-order sectiéns.

- AT [—w}:q}

@n(zfl)..‘GAI(ZAI)

_ 1 |:?JkA1:|__[ ;cLl:l

Tz Lyk—2]|  Ld7,]’
where d}, is the response of the nth recursive stage to the equalizer
output (cf. Fig. 3).

With the new parametrization, there is no longer a unique global
minimum, as all permutations of second-order sections are equivalent.
However, this does not give rise to spurious local minima, i.e., if a
given unfactored system is not a local minimum, none of its factored
counterparts can be local minima. To see this, fix any unfactored
system which is not a local minimum. Then, there is a neighboring
system achieving lower cost. The factored versions of both of those
systems (nonunique in general) attain the same respective costs as
their unfactored counterparts, and are also neighbors due to the
continuity of the roots of a polynemial as a function of its coefficients
[13, p. 3]. This implies that the corresponding factored system cannot
be a local minimum—a conclusion that is in accordance with the
general results on mean-square surfaces for cascaded IIR filters in
[14]).

Regarding the implementation of the algorithm, it should be noted
that the assumption that the channel order parameters M and N are
known and are exactly matched by the equalizer can be dropped,
as long as the equalizer overparametrizes both M and N (see the
conditions in the theorem allowing L' > L, N', > N). In the context
of conventional nonrecursive blind equalization, related conditions
(on the length of the equalizer relative to the channel order) are also
necessary.

n
—Wi_o

(4

IV. SUMMARY

Globally convergent blind equalization has been shown in [6; 15]
for doubly-infinite equalizers of the Godard type. The truncation
required to implement those equalizers destroys their global con-
vergence as demonstrated in [4]. Blind equalization without gain
identification leads naturally to the study of anchored equalizers
(with fixed taps) which eliminate some of the excess degrees of
freedom that underpin the ill-convergence mechanism reported in
[4]. A sensible strategy to the blind equalization of nonminimum-
phase channels is to decouple the equalization of the minimum-phase
part (which can be done exactly) and the identification of the zeros
located outside the unit circle (cf. [17]). We showed a simple system
that accomplishes this task and exhibits global convergence, as long
as the channel does not have all-pass factors.

In contrast to Godard-type cost functions, the convexity of energy
functions used in this correspondence allow that the convergence
properties of infinite-dimensional equalizers be inherited by their
truncations, and the ideal channel inverse can be approximated up
to any prespecified degree of accuracy provided the truncation is
long enough. The next step motivated by this correspondence is the
study of anchored equalizers using cost functions other than energy.
An anchored equalizer whose cost function is not energy (but it is
convex) has been identified in [18] where it is shown to achieve
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essentially the same convergence properties as the doubly-infinite
Godard equalizer, with the advantage that those properties are not
destroyed by finite truncations.

Comparing the anchored blind equalizers with energy cost func-
tions and the Godard-type blind equalizers, we conclude the fol-
lowing.

a) For doubly-infinite nonrecursive equalization Godard-type cost
functions are superior as they achieve global convergence,
whereas the anchored equalizers may have inadmissible global
minima.

b) For semi-infinite nonrecursive equalization, both equalizers
achieve convergence if the channel is minimum-phase, other-
wise, both equalizers have spurious local minima. The reason
why the Godard equalizer suffers from this problem is the
noninvertibility of the semi-infinite channel convolution matrix
[5] in the nonminimum-phase case.

c) For finitely parametrized equalizers, the truncation of the
Godard-type equalizers leads to ill-convergence even for the
simplest channels [4], whereas the anchored equalizers based on
convex cost functions inherit the convergence properties of their
infinite-dimensional counterparts which can be approximated as
accurately as desired. Furthermore, in contrast to the Godard-
type equalizers, exact finite-dimensional implementable blind
equalization is achievable by anchored blind equalizers.
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Convergence of Best ¢-Entropy Estimates

Marc Teboulle and Igor Vajda, Senior Member, IEEE

Abstract— Minimization problems involving ¢-entropy functionals (a
generalization of Boltzmann-Shannon entropy) are studied over a given
set A and a sequence of sets A, and the properties of their optimal
solutions x,, x,. Under certain conditions on the objective functional and
the sets A and A, it is proven that as n increases to infinity, the optimal
solution ., converges in Lnorm to the best ¢-entropy estimate r ;.

Index Terms— Entropy functionals, norm convergence, maximum en-
tropy methods, convex optimization, set-convergence.

1. INTRODUCTION

Let us consider a convex, continuous function ¢ : R+ — R and
put )

fu=0

_ limy o ¢(v),
otu) = { if u < 0.

+00,

Denote by ¢/, (u) the (finite) right-hand derivative of ¢ at u € Ry It
is well known (see, Rockafellar [25]), that for any v € Ry it holds

o(u) > o(v) + ¢4 (v)(u—v), uweER D
1t follows from here
d(u) € (—o0, 0], u € R.

Consider further a finite measure space (.S, ¢t) and the corresponding
Banach spaces L, (S, ¢t),1 < o < o0, with norms || - ||«. It follows
from (1) that the formula

Lo(e) = L oa(s))du(s) @

defines a mapping Iy : Li(S,p) — (—o0,00]. This mapping is

called the ¢-entropy.!
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!Throughout this correspondence, we use the extended real line arithmetic
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e.g., Rudin [27, p. 19].
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