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Abstract -This paper presents general frequency domain criteria for 
the robust stability of systems with parametric uncertainties. These are 
applied to the robust stability verification of LTI systems having possi- 
bly nonrational transfer functions and LTI systems operating under 
possibly nonlinear time varying passive feedback. 

A SIGNIFICANT result in the field of robust stability of 
systems with parametric uncertainty is Kharitonov's the- 

orem, [I], which addresses the problem of Hurwitz invari- 
ance of sets of real polynomials defined by 

n 

f ( s )  = s n  + C a,snp'  E s 
i = l  

(1.1) 

a,: < a ,  < a: (1.2) 
with a;,a' known. Kharitonov's theorem states that all 
members of S are Hurwitz, iff four of its special members 
are Hurwitz. 

Since the publication of [I], a number of related papers 
have appeared in the literature. These include verification of 
i) robust Schur stability [2]-[5], ii) stability of polytopes of 
polynomials [6], iii) stability of a class of differential equa- 
tions with delays [7], and iv) Hurwitzness of polynomials with 
independent variations in the even and odd coefficients [8]. 
Extensions have not been confined to just LTI systems. In 
fact, results are also available for LTI systems operating 
under passive, possibly time-varying nonlinear feedback [9], 
[lo], [28], [29]. Such results find application in the design of 
an important class of adaptive estimators and in adaptive 
control problems in general [Il l ,  [12]. 

Despite the underlying common theme, the techniques for 
deriving these results have differed sharply. The main pur- 
pose of this paper is to identify a unifying framework within 
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which all these results can be understood. In this regard we 
mention the work of [13]-[IS], [20], and [25], which provide 
frequency domain simplifications of Kharitonov's original 
theorem. Motivated by these interpretations, we establish a 
generalized frequency domain criterion for checking families 
of polynomials for root confinement in open subsets of the 
complex plane. These same ideas help check the stability of 
LTI systems under passive feedback. 

The criterion is based on the zero exclusion ideas devel- 
oped and used in [16], [17], and [24]. Thus to check if the 
roots of a family of functions lie in a region confined by a 
closed curve dD (i.e., if the family is D-stable) the basic idea 
is to verify two facts: i) that at least one member of the 
family is D-stable and ii) that no member, evaluated on dD, 
ever equals zero. 

In Section I1 we show how this criterion reduces to check- 
ing certain curves in the complex plane for zero confinement. 
Moreover, in some special cases, it further reduces to some 
complex functions having pointwise phase differences that 
are always less than n- in magnitude. We also give conditions 
under which robust stability can be verified by checking only 
a finite number of members for D-stability. In Section 111 we 
show how the results of [4], [5] ,  [8], and [23] can be obtained 
by specializing the criteria of Section 11. In Section IV some 
new applications are considered, specifically how to check 
i) if a controller stabilizes a family of plants and ii) if a family 
has damping ratios that exceed a certain prespecified value. 
Also given is a generalized version of the edge theorem of 
[6]. Unlike in [6], our version applies to general functions and 
not just to polynomials. In Section V our ideas are extended 
to the stability of LTI systems operating under passive feed- 
back. The class of systems considered include those in which 
the transfer function coefficients of the LTI part are multi- 
linear in the parameters. 

Barmish in [17] has also derived general frequency domain 
techniques to reduce robust stability verification of convex 
sets of polynomials to checking four functions for certain 
properties. Our results are somewhat more general and 
cover a wider range of applications including stability of 
classes of nonlinear time-varying systems. 
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The ideas implicit in this theorem appear in various forms in 
[161, [171, and [241. 

In the sequel, families o f  scalar functions in s E C will be 
characterized by f (s ,  A) ,  where the n-dimensional real pa- 
rameter vector A E r .  A zero or root o f  f (s ,  A )  will refer to 
s such that f (s ,  A )  = 0. The following is a standing assump- 
tion for all f (s ,  A )  and r considered in this paper. 

Assumption 2.1: The function f (s ,  A )  with A E T is a 
smooth function of  s and A .  All roots o f  f (s ,  A )  vary 
smoothly with A .  Further, any two members o f  r can be 
joined by smooth curves lying entirely in T. 

W e  remark that for polynomial f ,  the smooth variation o f  
the roots requires that the leading coefficient never crosses 
zero. The following decomposition of  f(s,  A )  is o f  interest. 

Definition 2.1: Consider a curve dD in C. Then a pair o f  
functions (h(s ,  A ) ,  g(s,  A ) }  is a linearly independent decompo- 
sition (LID) of  f(s, A )  with respect to D if  for every s E dD, 

f ( s , A )  = h ( s , A )  + g ( s , A )  (2.1) 

f ( s ,  A )  = 0 i f f  h ( s ,  A )  = g ( s ,  A )  = 0 .  (2.2) 

In many cases LID's obey the following restriction. 
Assumption 2.2: There exists c(s),  nonzero on dD and 

independent o f  A ,  such that 

h ( s ,  A )  = c ( s ) h * ( s ,  A )  

g ( s ,  A )  = j c ( s )g*(s ,  A )  

where h* and g* take real values on dD. Such LID's will be 
denoted by (h*, g*} or ( h ,  g}. 

An obvious LID with respect to any parametrization and 
D is (Re  ( f  ( s ,  A)),  j Im ( f  ( s ,  A) ) }  with c ( s )  = 1. This LID will 
be referred to as the natural LID. As shown in Lemma A.l 
in the Appendix, for f (s ,  A )  a polynomial affine in A ,  the 
following LID with respect to the unit circle obeys Assump- 
tion 2.2: 

h ( s ,  A )  = [ f ( s ,  A )  + snf ( s p l ,  A ) ]  / 2  (2.3) 

LID w.r.t. D. Then all polynomials f (s ,  A ) ,  A E T, are 
D-stable i f f  the following two conditions are met. 

i)  At least one member o f  the family is D-stable. 
ii) There exists no s E dD and no A E T ,  such that 

h(s ,  A )  = g(s, A )  = 0. 

Notice the LID need not satisfy Assumption 2.2. For the 
theorem to lead to a graphical criterion, however, this as- 
sumption is needed. Suppose it holds. Consider the map- 
ping which for any s E dD takes A E T to the real vector 
N,(s, A )  = [h*(s, A) ,  g*(s, A)]' .  Then ii) o f  Theorem 2.1 re- 
duces to N,(s, A )  never equalling zero. Plot g * ( ~ ,  A )  versus 
h*(s, A )  for all s E dD. Call this diagram the Generalized 
Nyquist diagram of  f (s ,  A )  w.r.t. dD and the LID {h ,  g}. The 
space, o f  N,(s, A )  will be called the Generalized Nyquist 
space (GNS) o f  f(s,  A ) .  Denote D,(s) as the image o f  T in 
GNS. Then we need to check i f  D,(s) contains the origin at 
any s E dD. 

W e  thus have a graphical test. For dD symmetric about 
the real axis, the curves need be sketched only for such 
s E dD as have Im[s]  > 0. The test simplifies i f  one can find 
those members o f  l- that correspond to the boundaries of  
D,(s). Calling the set o f  these members T* the curves 
needed are N,(s, A ) ,  A E r * .  I f  N,(s, A )  is affine in A ,  i.e., 

N,(s) and N f ( s )  independent o f  A,  then r* is a subset o f  dr. 
For polytopic r an even further simplification is possible. 

Proposition 2.1: Suppose N,(s, A )  is as in (2.5), with r a 
polytope and r, the set o f  its corner points. Then at any s, 
i )  DN(s)  is a convex polygon, with each corner having at least 
one preimage that belongs to T,, ii) dDN(s) is obtained by 
drawing straight lines joining the corners o f  DN(s),  and iii) 
every exposed edge o f  D,(s) has at least one preimage that 
is an exposed edge o f  r .  

Proof: From (2 .9 ,  for any positive real scalar p and 
all s, 

Here c ( s )  = snI2. The curves dD will satisfy the following 
assumption. Thus it follows that any line segment in r maps to one in 

Assumption 2.3: The curve dD is either D,(s), with extreme points mapping to extreme points. Then 
members of  D,(s) can be expressed as a convex combina- 

i)  closed, smooth, simple and bounds the open simply tion o f  the images of  members o f  r,, whence i )  and ii) follow. 
connected region D,  or Since members o f  each exposed edge in D,(s) are convex 

ii) smooth, simple, not closed, has imaginary part taking combinations o f  adjacent corners o f  D,(s), and these cor- 
all values from -m to m and separates the complex ners have preimages in r,, iii) also follows. 
plane into two open simply connected regions. Thus only the images o f  the members o f  T, are needed. As 

W e  also need a formal definition o f  D-stability. 
Definition 2.2: A function f ( s )  is 

many o f  these may have images in the interior o f  DN(s) ,  in 
practice not all the corners o f  r have to be considered. 
Notice that i f  f(s,  A )  satisfies Assumption 2.1 and has the 

i)  D-stable i f  dD satisfies i)  o f  Assumption 2.3 and all the form 
roots o f  f ( s )  lie in the open region D, and 

ii) D - (resp. D ,  ) stable i f  dD satisfies ii) o f  Assumption f ( s , A )  = f o ( s ) +  F ' ( s ) A  (2.6) 
2.3 and-all the roots o f  f ( s )  lie in the open region to 

with f ,  and F independent o f  A ,  then both the LID's the left (resp. right) o f  dD. 
mentioned so far result in the satisfaction o f  (2.5). 

In the sequel, results stated for D stability will apply to For convex T ,  the criterion reduces to checking the phase 
D _  and D+ stability as well. W e  now state Theorem 2.1, difference between certain complex scalar functions. 
whose proof, being similar to corresponding results in [161, Lemma 2.1: Consider f (s ,  A )  as in (2.6) and dD as in 
[17], and [24], is omitted. Assumption 2.3. Then every convex combination o f  f(s,  A , )  

Theorem 2.1: Consider the family o f  functions f (s ,  A )  and and f (s ,  A 2 )  is D-stable i f f  i)  one o f  them is D-stable and ii) 
a curve dD as above. Suppose the functions ( h ,  g }  form an I.$( f ( s ,  A , ) ) -  4( f (s ,  A2))I < .rr for all s E dD. Here 4 de- 
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notes the phase and is assumed to vary continuously as s 
changes along dD. 

Proof: Since Theorem 2.1 holds we need simply show 
that ii) o f  Theorem 2.1 is equivalent to ii) o f  this lemma. Use 
the natural LID. Suppose ii) o f  Theorem 2.1 is violated. 
Then by (2.61, for some A E ( 0 , l )  and s E dD, 

Thus f (s ,  A,) /  f ( s ,  A,) is a negative real number and ii) o f  
this lemma fails. Conversely, suppose ii) o f  this lemma fails. 
Then for some s E aD and real positive p, 

Defining A = p / ( l +  p)  E (0, I ) ,  (2.7) holds. Thus ii) o f  Theo- 
rem 2.1 fails. 

The following result follows from Lemma 2.1 and Proposi- 
tion 2.1. 

Proposition 2.2: Suppose f (s ,  A )  is as in (2.6) with r a 
polytope. Define yi as the corners o f  r and f ( s ,  y,) as f,(s). 
Then the entire family is D-stable i f f  i)  one o f  the fi(s) is 
D-stable, and ii) for all i ,  j and s E dD, I4( fi(s))- r#4 f,(s))l 
< a. 

An attraction o f  Kharitonov's theorem lies in the fact that 
the stability o f  an entire set is implied by that o f  a finite 
number o f  its members. Such a finite test is possible only in a 
limited number o f  situations. One such is set out in Theorem 
2.2 below. W e  need a further definition. 

Definition 2.3: Suppose dD, f (s ,  A ) ,  and the LID 
{h(s,  A ) ,  g(s,  A ) }  satisfy Assumptions 2.3, 2.1, and 2.2, re- 
spectively, and for any A ,  f ( ~ ,  A )  is D-stable only i f  the 
following hold. 

i )  All zeros o f  h*(s,  A )  and g*(s, A )  are on aD, are 
simple, and separate each other. 

ii) In traversing aD consistently in one direction, at any 
zero o f  either h*(s,  A )  or g*(s, A ) ,  arg{h*(s, A ) +  
jg*(s, A ) }  either always increases or decreases, the pat- 
tern holding regardless o f  A .  

Then f and dD are said to be LPR compatible w.r.t. {h ,  g}. 
Examples o f  LPR compatability are given later. The term 

LPR abbreviates lossless positive real. Transfer functions 
g* /h*  with g*, h* obeying i )  and ii) are LPR. W e  now state 
and prove Theorem 2.2. 

Theorem 2.2: Consider the family o f  functions f (s ,  A) ,  
A E r, a curve aD and an LID {h(s,  A ) ,  g(s,  A) ) .  Call the set 
o f  f(s,  A) ,  S. Suppose 

i )  f and dD are LPR compatible w.r.t. {h,  g } ;  
ii) r = rh x r, such that f (s ,  A )  is expressible as 

A,, E l;, and A ,  E rg; 
iii) 3S* a subset o f  S such that for some integer m ,  

A,, E ril and A g j  6 r,}; 
iv) for every s E dD and A E r, f (s ,  A )  can be expressed 

as a convex combination o f  the members o f  S*.  Then 
all members o f  S are D-stable i f f  all members o f  S* 
are D-stable. 

Proof: W e  follow the proofs in [15] and [20]. Necessity is 
obvious. For sufficiency we will show that i f  all members o f  
S* are D-stable then at any s E dD, DN(s )  is contained in an 
open half-plane excluding the origin. Theorem 2.1 will then 
prove the result. Definition 2.3 and iv) above imply that we 
need only show this half-plane confinement for the images o f  
S* on GNS. 

Denote h*(s, A h i )  as h , (s)  and jg*(s, A g j )  as gj(s): 

Qi refers to  the open ith quadrant of  the GNS; Qij are the 
union o f  Qi and Q,. Notice that Q,,, Q,,, Q,, and Q,, are 
half-planes that exclude the origin. From Definition 2.3, as 
the curve dD is traversed in any one direction, the image on 
GNS o f  each member o f  S* either migrates from quadrant to 
quadrant, strictly in the order Q,, Q,, Q,, Q,, Q,, etc., or 
does so in the opposite order. W e  consider two cases cover- 
ing all possibilities. 

Case I: For all i in 1,. . ., m and s E dD, gi(s) f 0. In this 
case images of  all members o f  S* lie always in either Q,, or 
Q,, and the result holds. 

Case 11: There exists an s* E dD and an i for which 
gi(s*) = 0. W e  argue that the image o f  S* on GNS for this 
s*(D,$(s*)), must be entirely in one of  the two open regions 
Q,,  or Q,,. Otherwise, because o f  ii) for some integer p,q, 
h,(s*) > 0 and hq(s*) < 0. Neither can equal zero as both fPi 
and fqi are in S* and are D-stable. Now, this D-stability 
implies that as we move s* along dD, i f  h,(s*)+ g,(s*) 
moves into Q,(Q,>, h,(s*)+ gi(s*) moves into Q3(Q2). Since 
both have the same gi, this cannot happen. Thus the entire 
set D,$(s*) is either in open Q,, or Q,,. Continuing this 
argument it follows that at any s E dD, D,$(s) is contained 
entirely in one o f  the four open half-planes described above. 
The result follows. 

Under the hypotheses of  the theorem, DN(s )  is a rectangle 
with sides parallel to the axes o f  GNS and corners the 
images o f  members o f  S*. Applications o f  the results derived 
so far are given in later sections. W e  now give examples o f  
LPR compatability beginning with one useful in establishing 
robust Schurness. The proof o f  this result is in the Appendix. 

Theorem 2.3: Consider f (s ,  A )  = fo(s)+[sn,sn-';  . ., 1]A,  
A E R"+', fo a polynomial with degree no greater than n ,  
dD the unit circle and the LID o f  (2.3) and (2.4) with 
c ( s )  = snI2. Then f and aD are LPR compatible w.r.t. this 
choice o f  {h ,  g}. 

The following result is useful for Hurwitzness and follows 
from the Hermite-Biehler theorem [18]. 

Theorem 2.4: Consider f as in Theorem 2.3, aD the imagi- 
nary axis, and the natural LID with c ( s )  = 1. Then f and aD 
are LPR compatible w.r.t. this choice o f  {h ,  g}. 

Finally we show that with f (s ,  A )  as in Theorem 2.3 and 
curves dD satisfying the assumption below, the LID o f  Theo- 
rem 2.4 leads to LPR compatability. 

Assumption 2.4: The curve dD satisfies i )  o f  Assumption 
2.3, D is convex, and dD is parametrized by a single parame- 
ter 6 via the continuous mapping 

From the well-known principle o f  argument, we have the 
final theorem o f  this section. 

Theorem 2.5: Suppose f(s,  A )  and the LID are as in 
Theorem 2.4 and aD satisfies Assumption 2.5. Then the 
conclusions o f  Theorem 2.4 hold. 
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111. SPECIALIZATIONS TO KNOWN RESULTS 

In this section we demonstrate how the results of [I], [41, 
[5],  [81, and [23] can be obtained by specializing Theorem 2.2. 

3.1. Kharitonou S Theorem [I] 

Consider the set (l.lk(1.2). Express f(s) as 

f ( s )  = p(s2)  + w(s2) .  (3.1) 

Define 

Notice that with r, r,, and r, containing the coefficients of 
f ,p ,q ,  respectively, r = T, x I?,. Then the following is the 
statement and our proof of Kharitonov's theorem. 

Theorem 3.1: The set S is Hurwitz invariant iff the four 
polynomials 

are Hunvitz. 
Proof: Define dD to be the imaginary axis. We need to 

establish the D-stability of all members of S. Notice 
Re(f( jw))=p(-w2)  and Im(f(jw))=wq(-w2). Thus, 
from Theorem 2.4, f and dD are LPR compatible with the 
LID (p(s),sq(s)}. Define S* to be the set in (3.2). Then i), 
ii), and iii) of Theorem 2.2 follow from the definition of 
these polynomials. It remains to be shown that iv) holds. 
Observe, for all s = jo, and any p , q  corresponding to the 
members of S, 

and 

Thus the set DN(s) at any s = j w  is identical with a rectangle 
having the generalized Nyquist diagrams of the members of 
S* as its corners, whence iv) and hence the result follows. 

3.2. Polynomials with Uncoupled Variations in Coefficients 
of Odd and Even Powers (81 

Further define S*  as 

Then the result is as follows. 
Theorem 3.2: The set S is Hunvitz invariant iff S* is the 

same. 
Proof: Using the same aD and LID as in Theorem 3.1, 

all four conditions of Theorem 2.2 follow: i) from Theorem 
2.4, ii) from the decoupled nature of the variations in the 
coefficients of p and q, and iii) and iv) from (3.3)-(3.4) and 
the definition of S*. 0 

It is pertinent to note the results in [25] that view the 
problems such as those in Theorems 3.1 and 3.2 in terms of 
behavior of p and q in certain frequency bands. It is not 
hard to see that this requirement, derived in [25] from the 
Hermite-Biehler theorem, boils down to the zero exclusion 
condition at the heart of our results. 

3.3. Robust Schur Stability: The Weak Version (41 

The problem considered here and the next subsection is as 
follows. Consider the set S of real polynomials 

where the set r is as in (3.7)-(3.11). Define for i = 

0,l; . . , m - 1, m = [(n + 1)/2], [ .]  denoting the integer part 
of the argument, 

ai = a, + an-, (3-7) 

Pi = a i  - a n i .  (3.8) 

For even n, an12 = an12 For all i < n / 2 , 3  constants 
a;, a t ,  p i ,  P+ such that 

a; < a ,  + a,-, < a: (3.9) 

P; < a i  - a n p i  < P+. (3.10) 

For even n, 
- 

an/2G an/2 G aG2. (3.11) 

We seek conditions under which S is Schur invariant. 
Define S* to be the set of all corners of S. Then the solution 
of [4] is in Theorem 3.3. 

Theorem 3.3: All members of S above are Schur iff mem- 
bers of S* are Schur. The work in [81 deals with the Hurwitz invariance of 

Proof: Use dD as the unit circle with the LID of (2.3) polynomials such as (3.1) where the variations in the coeffi- 
and (2.4) Theorem 2.3 ensures i) of Theorem 2.2. Moreover, cients of p and are Define the sets SP, SQ, 
as + an-i  and a i  - an- i  are allowed independent varia- SP*, and SQ* in the following way. With S the set of all 

polynomials to be tested, tions, ii) is also satisfied. Consider (A.lb(A.3) in the Ap- 
pendix for h(s) and g(s) with s = eJ". Notice that by defini- 

SP = {p(s2) l f (s)  = p(s2)  + sq(s2) S }  

SQ = {q(s2)(f(s) = p(s2)  + sq(s2) ES) .  

Further, S P  2 SP* and SQ 2 SQ* such that at any s = jw ,  
3pi(s2), pj(s2) E SP* and qi(s2), qj(s2) e SQ* obeying 
vp(s2) E SP and q(s2) E SQ, 

pi(s2) G p(s2)  B pj(s2)  (3.3) 

and 

qi(s2) G 9(s2)  f q;(s2). (3.4) 

tion of S*, its members correspond to h , g  obtained by 
substituting all possible combinations of a;, a:, P;, and 
p'. Thus DN(s) is an axis parallel rectangle with corners the 
images of members of S*. Thus the structure of S, S* estab- 
lishes iii) and iv), and hence the result. 

3.4. Robz~st Schur Stability: The Strong Version (51 (231 

The number of members of S* in the previous subsection 
grows exponentially with n, the degree of f(s, A). In this 
subsection we demonstrate the existence of a subset S** of 
S*, whose Schur invariance implies the same for S (S and S* 
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here are the same as those in Section 3.3). We also show that 
the number of members of S** grows faster than linearly but 
no faster than quadratically in n. 

It is clear from the proof of Theorem 3.3 that S** should 
consist of those members of S* whose images in GNS appear 
at the corners of DN(s) at various values of s on dD. Thus 
we need to find those members of S* that correspond to the 
extremities of the h*(eJ") and g*(eJ") defined in the Ap- 
pendix. From the proof of Lemma A.l, for n = 2m, 

+ . . . + cos w + a,] (3.12) 

For n = 2m - 1, 

The maximum of h*(ejW) w.r.t. a; is then reached at a: 
when 

cos(n/2-1)w > 0 (3.16a) 
[If :: and at a; when 
.b m 

For the minimum, complementary boundaries are taken. 
For similar results for g* w.r.t. pi, sine terms replace the 
cosine terms in (3.16). Thus for ai the sign changes take 
place at the angles 

For pi they occur at 

If in an w interval, no sign change takes place, then the 
corners of DN are characterized in the entire interval by the 
same members of S*. A transferring of the angles of sign 
change for the a and p coefficients gives us the boundaries 
of these w intervals as 

A formula for determining the number of different w inter- 
vals In is derived in [5]  and [23]. It is, for integer k, 

where +(n) (the Euler function) is the number of integers in 
[I, n - 11 that are coprime with n. Of course, the number of 
members of S** equals 41,. A calculation set out in Ap- 
pendix A.3 shows that In increases faster than linearly, but 
no faster than quadratically in n. 

393 

IV. SOME NEW ~ P L I C A T I O N S  

In this section, the criteria of Section I1 are applied to 
address some new situations. In Section 4.1, we give a 
generalized version of the edge theorem of [6]. Unlike in [6], 
this result applies to classes of functions ranging beyond 
polynomials. It is applicable, for example, to delay differen- 
tial equations. In Section 4.2 we show how the graphical 
criterion of Section I1 can be used to verify if families of 
svstems have damping ratios that exceed a given value. In 
section 4.3, we consider robust controller design for certain 
families of LTI plants. 

4. I. An Edge Theorem 

Consider the set of functions (2.6) where f o  and F are 
independent of A and take real values for real s. Suppose 
is a polytope, Assumptions 2.1 and 2.3 hold, and dD crosses 
the real axis at least once. Then the following holds. 

Theorem 4.1 (Edge Theorem): Under the foregoing as- 
sumptions, the set of functions (2.6) is D-stable invariant iff 
the functions corresponding to the exposed edges of r are 
D-stable. 

Proofi Necessity is obvious. For sufficiency select the 
natural LID. From Proposition 2.1, DN(s) is a convex poly- 
gon; we need only show that it excludes the origin. Choose so 
on dD so that it is real. Then DN(so) is a connected line 
segment on the real axis. From iii) of Proposition 2.1, each of 
its members must have a preimage in the exposed edges of 
T. Hence D-stability of the exposed edges implies DN(sO) 
excludes the origin. Now if at spme s E dD, DN(s) encloses 
the origin, at some other s E dD, at least one of its edges 
must touch the origin. Then from iii) of Proqftaition 2.1, the 
stability of the exposed edges raises a contradiifion. 

The theorem in [6] does not explicitly assume that dD 
crosses the real axis. However, it does assume that D is 
simply connected and f(s, A) is a set of real polynomials. 
For such a set to be D-stable, dD must cross the real axis. 
We remark that an edge theorem for a more general region 
D can be found in [26]. 

For a differential equation with possibly noncommensu- 
rate delays, T,, fo, and F could be polynomials in exp(T,s). 
Our result applies to families of such systems as long as 
smooth parameter variations result in smooth root move- 
ments. 

4.2. Checking for Damping Ratios 

Consider the following problem. Suppose the characteris- 
tic polynomials of a family of systems lie in S of (l.lb(1.2); 
check if the damping ratios exceed a given value, or equiva- 
lently check D-stability for dD = jweJe, for some real 0 and 
all real w varying from -m to w. We demonstrate the use of 
ideas in Section I1 for n = 3 and 0 such that cos20, cos0, 
sin20, and sin 0 are all positive. Select the natural LID and 
C(S) = 1. Then for s E dD, 

g*(s)  = w3 cos30 - a1m2 sin20 + a,w cos 0. (4.2) 

From Proposition 2.1, DN(s) is a convex polygon. Thus from 
Proposition 2.2 we need to check the phase difference be- 
tween N,(s, A) of those A whose images form the corners 
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Fig. 1. (a) Ordering of points in parameter space. (b) D, for low 
frequencies. (c) D, for high frequencies. 

of DN. Notice that only o 2 0 is needed. Fig. 1 gives the gen- 
eral shape and corner locations of DN. In this figure the 
cutoff point between "high" and "low" frequencies is 
O.S{cosec %)(a: - a; )/(a: - a; ). Notice corners 0 and 7 
have images always in the interior of DN(s). To check 
D-stability, we simply need to apply Proposition 2.2 for 
i =  1;. . , t i  

We remark that sufficient but not necessary conditions for 
such a D-stability appear in [20] and [27]. The approach is to 
construct a larger set, containing S, having DN(s), which is 
the rectangle demanded by Theorem 2.2. Then the preim- 
ages of the corners imply D-stability. 

4.3. Robust Controller Design 

Consider the rational function family a(s, A)/ b(s, A), a ,  b 
polynomials in s with coefficients affine in the elements of 
A. Suppose A E T, T a polytope with corners T,. Given a 
fixed controller p(s)/q(s), we need to check if for all A E T, 

is D-stable. Define 

and check if f is D-stable for all A E T. Since fo(s) and 
F(s) obey (2.6), we need to check if for some A E T,, (4.3) is 
D-stable and if VA,, A, E T, and s E aD, JC$( f(s, Ai)) - 
C$( f(s, Aj>>I < T. 

Consider an LTI plant with rational SISO transfer func- 
tion T(s), operating under passive, negative feedback (a 
feedback path is passive if the integral of its input-output 
product is non-negative). A sufficient condition for closed- 
loop stability is that T(s) be strictly positive real (SPR), [21], 
i.e., it be stable, minimum phase, and for all real o, 
Re[T(jo)]> 0. Such closed loops find application in adap- 
tive systems problems under a variety of guises. In particular, 
one resulting design problem in adaptive output error identi- 
fication of a plant b(s)/a(s) is to select a polynomial p(s) 
with degree equalling that of a h ) ,  such that p(s)/a(s) is 
SPR [12]. Similar issues also arise under discrete time set- 
tings. In this section we address the problem of checking 
families of functions for SPR-ness. The following definition 
helps make the problem general. 

Definition 5.1: A rational function T(s) is D-SPR if i) its 
numerator is D-stable, ii) its denominator is D-stable, and 
iii) Re[T(s)] > 0 for all s E aD. 

Notice that if T(s) is D-SPR, then so is its inverse. In the 
sequel, the curve aD will satisfy Assumption 2.3. Then we 
have Lemma 5.1. 

Lemma 5.1: Suppose two rational functions T,(s) = 

pi(s)/q(s), i = 1,2, are D-SPR. Then so also are all their 
convex combinations. 

Proof: For any convex combination, ii) and iii) follow 
trivially. Suppose i) is violated. Then as both pi(s) are 
D-stable, 3 A  E (0,l)  and so E aD such that 

and for a positive real k, 

Thus Re [T,(s,)] = - k Re [T,(so)] and both T, cannot simul- 
taneously satisfy iii). 

We now state the first main result of this section. 
Theorem 5.1: Consider the families of scalar polynomials 

where T and 0 are polytopes belonging to Rn  and Rm, 
respectively, and po(s), P(s), qo(s), and Q(s> are polynomi- 
als in s but independent of A,  B. Suppose T and R have 
corners A, and B,, respectively. Then all members of the 
family p(s, A)/q(s, B), A E T and B E 0, are D-SPR iff all 
functions p(s, A,)/q(s, B,) are D-SPR. 

Proof An arbitrary p(s, A)  is expressible as a convex 
combination of the p(s, A,). Thus for all j and A E T, by 
hypothesis and Lemma 5.1, p(s, A)/q(s, B,) is D-SPR. Thus 
for all j and A E r, q(s, Bj)/p(s, A)  is D-SPR. The result 
now follows by reapplying Lemma 5.1. 

Thus if r and R have m and n corners, then D-SPR 
invariance verification requires checking mn transfer func- 
tions. Further, suppose the sets of p(s, A) and q(s, B) are 
called S, and S,, respectively, and they obey the conditions 
set out in Theorem 2.2, with S,* and S,* the respective 
analogs of the set S*  of that theorem. Then a slight variation 
of the foregoing argument shows that p(s, A)/q(s, B), p E S, 
and B E Sq, are D-SPR iff all functions p(s, A)/q(s, B) are 
D-SPR for every p E S,* and B E S,*. This last result special- 
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izes to the SPR invariance scenarios o f  [15], [28], and [29] 
where the sets o f  polynomials considered are o f  the form in 
(1.1)-(1.2). 

The next result is motivated by [12]. Consider a plant 

b ( s ,  K ) / a ( s ,  K ) ,  K E Rn (5.1) 

where b and a are polynomials in s and have coefficients 
multilinear in the elements o f  K. It has been shown in [19] 
that i f  the parameters in an LTI system correspond to 
physical component values then in many cases the plant 
transfer function has the above structure. In [12], adaptive 
estimators for such K have been formulated. These require 
for their convergence the existence o f  a polynomial p(s)  
such that p ( s ) /a ( s ,  K )  is SPR. Given the physical signifi- 
cance o f  elements k i  o f  K ,  bounds on them are often 
available. Consequently, the following is an associated design 
issue. Suppose K E T where is defined by 

Given a polynomial p(s),  verify that for all K E T 

T ( s ,  K )  = p ( s ) / a ( s ,  K )  is SPR. (5.3) 

Accordingly, the following is o f  interest. 
Theorem 5.2: Suppose a(s, K )  is defined as above. Denote 

Tc as the set o f  corners o f  T, defined by (5.2). Then T ( s ,  K )  
in (5.3) is D-SPR for all K E T i f f  it is so for all K E r,. 

Proof: Necessity is obvious. T o  prove the result it suf- 
1 fices to show that a(s, K ) / p ( s )  D-SPR for all K E T, im- 

plies the same for all K E T. The multilinear dependence o f  
a(s, K )  on the k i  ensures that i f  a(s, K,)  and a(s, K,) are 
such that K ,  and K ,  differ in only one element, then both 
a h ,  K , ) / p ( s )  and a(s, K 2 ) / p ( s )  D-SPR imply that for any 
K that is a convex combination o f  K ,  and K,, a(s, K ) / p ( s )  
is D-SPR. In the sequel, the zero- and n-dimensional bound- 
aries o f  T will refer to the corners and the entire set, 
respectively. W e  prove the result by induction. Notice that 
any point on an m-dimensional boundary can be express- 
ed as a convex combination o f  some K ,  and K,, differ- 
ing in only one element, and each lying on some ( m  - 1)- 
dimensional boundary. Thus  from the foregoing, 
a h ,  K ) / p ( s )  D-SPR for all K on all ( m  - 1)-dimensional 
boundaries implies the same for all K on each m-dimen- 
sional boundary. Since a(s,  K ) / p ( s )  is D-SPR for all K on 
the zero-dimensional boundaries, the result follows. 

Finally, the following result obtains from Theorem 5.2 and 
ideas similar to those in the proof o f  Theorem 5.1. 

Theorem 5.3: Suppose a h ,  K )  and b(s,  M )  are polynomi- 
als having coefficients multilinear in the elements o f  K and 
M,  respectively. Suppose (5.21, along with yi < k i  < 6,, is 
satisfied. Denote the set o f  M as 9 and that o f  its corners 
VC. Then all members o f  the family b(s,  M ) / a ( s ,  K )  are 
D-SPR i f f  b(s, M ) / a ( s ,  K )  is D-SPR for all K E T, and 
M E  'PC. 

W e  have presented a unifying frequency domain frame- 
work, within which most o f  the currently available results on 
the robust stability o f  linear systems with parametric uncer- 
tainties can be viewed. The framework encapsulates not just 
finite dimensional systems, but any LTI system that can be 

characterized by transfer functions o f  a single variable. It 
also covers robust stability o f  LTI systems under passive 
feedback. 

A.I. Some Results Pertaining to Schur Stability 

Lemma A.1: Consider f ( s )  as in (1.1). Then the LID o f  
(2.3)-(2.4) satisfies Assumption 2.2 with c ( s )  = snI2 and dD 
the unit circle. 

Proof: By definition, 
n 

h ( s )  = 0.5 x ( a i  + an_i)sn- ' .  
i = 0 

Thus for even n ,  

For odd n and [ . ]  denoting integer part, 

In /21 
h ( s )  = 0.5snI2 C ( a i  + U ~ _ , ) ( S ~ / ~ - ~  + s ipnI2  ) -  (A .2)  

i = 0 

Thus 

with h* obviously defined and real on the unit circle. Like- 
wise, 

with g* purely imaginary on the unit circle. 

A.2. Proof of Theorem 2.3 

The proof follows from Lemma A.l and a result in [22], 
which states that f ( s )  o f  (1.1) is Schur i f f  lanl < 1, and zeros 
o f  h ( s )  and g ( s )  are all on the unit circle, separate each 
other, and are simple. 

A.3. Bounds on I,, 

Because o f  the recursive relations for In in terms o f  +(n)  
given in Section 3.4, it suffices to bound 

n 

C ( n )  = C +(i). 
i = l  

a) Upper bound: By definition o f  the Euler function it 
follows that 4 ( n )  < n - 1. Thus 

( n )  G ( n  - l ) n / 2 .  

Hence In grows at a rate no faster than quadratic in n. 
b )  Lower bound: For large n there are approximately 

n/(log n )  prime numbers that are less than or equal to n. 
Thus a lower bound for C(n)  is o f  the order 

n n 

C i / log i  ( l / l o g n )  x i = n ( n  - 1)/(210gn) 2 O ( n ) .  
i = 1  i = l  

Thus In grows at a rate faster than linear in n. 
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T h e  above bound is t rue for large n. W e  show below that 
V n  > 4, 2n - 4  represents a lower bound on  I,,. In [23], 1, is 
directly related to certain roots associated with the  projec- 
tion of h*(ei") and g*(ei") on  the  real interval [ -  1, I]. 
Using the  ideas of [23] it can b e  shown that if n increases by 
2, 1, increases by at  least 4. Hence the result follows from 
the values of In deducible from [23] for n G 4. 
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