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Robust Strict Positive Realness: 
Characterization and 

Construction 

Abstract-Let 9 be a convex set of real polynomials. This paper 
considers the question of when there exists a real polynomial b(s), or 
more generally, a real transfer function b(s),  such that p ( s ) /  b ( s )  is 
strictly positive real for all p ( s )  E 9. Necessary and sufficient condi- 
tions are found for the transfer function b(s )  case, and when the degree 
of the polynomials in 9 is restricted, such conditions are also found for 
the polynomial b(s)  case. Closely related results are also obtained for a 
z-transform version of the problem. The results have application in 
adaptive systems. 

I. INTRODUCTION AND PROBLEM FORMULATION 
OTIVATED by problems of adaptive system the- M ory, and in particular, output error identification 

and certain adaptive control algorithms [1]-[3], the follow- 
ing problem is addressed in [4]. Consider a set 9 of nth 
degree Hurwitz polynomials. State conditions for the exis- 
tence of an nth degree Hurwitz polynomial b(s)  such that 
p ( s ) / b ( s )  is strictly positive real (Rep(  j w ) / b (  j w )  > 0 for 
all real w ,  given the Hurwitz property for b(s))  for all 
p(s) E 9. More generally, one can replace a search for 
polynomial b(s)  by one for rational b(s), with relative 
degree - n. To understand the importance of this prob- 
lem, consider the adaptive output error identification of a 
plant whose transfer function has denominator polyno- 
mial p ( s ) .  Assume degree of p ( s )  = n. Then, to ensure 
the exponential convergence of the identification algo- 
rithm, one must filter certain signals by a filter having 
transfer function l/b(s), where l /b (s )  is rational, has 
degree > n ,  has relative degree n,  and b ( s ) / p ( s )  is 
strictly positive real (SPR). The degree restrictions apply 
because of the need to avoid explicitly differentiating 
certain signals. Notice that the simplest b(s)  is a polyno- 
mial of degree n. Further, from the definition of SPR 
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transfer functions, b ( s ) / p ( s )  SPR is equivalent to 
p ( s ) / b ( s )  SPR. Notice also that p ( s )  is unknown. To 
construct an appropriate b(s), one can make the addi- 
tional assumption that the coefficients of p ( s )  lie in some 
known convex set. The problem then becomes one of 
finding a single b(s), satisfying the appropriate degree 
restrictions, such that for all p ( s )  in this set, p ( s ) / b ( s )  is 
SPR. For a discrete-time plant with stable denominator 
p(z - ' ) ,  the corresponding design problem is to find 
b(z- ' ) ,  such that p ( z - ' ) / b ( z - ' )  is SPR (i.e., it is stable 
and obeys Re[b(e-j")/p(e-J")]> 0 for all real w).  Un- 
like the continuous-time case there are no degree restric- 
tions on b(z-') .  

Two of the significant contributions of [41 in treating 
the continuous time problem are the following. First, sets 
9 are identified with the property that there exists a 
finite subset 9* such that p / b  is SPR for all p ~ 9 *  
implies p / b  is SPR for all p E 9. A most important 
example of such a set is a "Kharitonov set," so called 
because of its importance in robust stability [51. More 
precisely, with 

p ( s ) = s " + p , s " - ' +  . . .  + p n ,  P i E [ f f i , P i ]  (1)  

defining the set 9, the set 9* is given by the four 
polynomials 

PI(  s) = sn  + C q s n - 1  + f f 2 s n - 2  + p3sn-3 

p 2 (  s) = sn + f f ' s n - '  + p2sn-2 + p3sn-3  

p3( s) = sn + p ' s n - 1  + f f 2 s n - 2  + f f 3 s n - 3  

p4( s) = s" + pls"-I + p2sn-2 + f f 3 s n - 3  

+ p4sn-4 + f f 5 s n - 5  + . . . 

+ f f 4 s n - 4  + f f 4 - 5  + * * * 

+ p4sn-4 + p 5 s n - 5  + . . . 

+ f f 4 s n - 4  + p 5 s n - 5  + * . . . 

( 2) 

(3) 

(4) 

( 5 )  

(The coefficient pattern involves alternation of two mini- 
mum values and two maximum values.) 
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The fact that the infinite set 9 can be replaced by the 
finite subset 9* of course makes the search for b(s)  a 
much easier task. 

The second contribution of [4] to be noted here is that 
a sufficient condition is derived for the existence of a 
Hunvitz nth degree b(s) such that p,(s) /  b(s), i = 1, * . . , 4, 
is SPR, the p , ( s )  being the four corner polynomials of a 
Kharitonov set, i.e., they are given by (2)-(5). Such a b(s)  
yields p ( s ) / b ( s )  SPR for all p ( s )  defined by (1). 

Our main contribution in this paper is to find condi- 
tions for the existence of b(s)  that are necessary and 
sufficient, and to present a constructive procedure. We 
present results for the case when b-'(s)  is a relative 
degree n transfer function, but b(s)  is not polynomial, 
and results applying with polynomial b(s), when n G 4. 

The first problem considered in this paper is posed in 
discrete time. 

We work with the nth degree polynomial p ( z - ' )  lying 
in a known convex polytope 9. It has been shown in [61 
that with 9* denoting the set of corners of 9, 
p ( z - * ) / b ( z - ' )  is SPR for all p ( z - ' ) ~  9 and some fixed 
b ( z - ' )  if and only if p ( z - ' ) / b ( z - ' )  is SPR for all p ( z - ' )  
E 9*. Given a finite set 9* of polynomials p, (z - ' )  in 

z - ' ,  we seek a polynomial b(z - ' )  in z-' such that pI  / b  
is SPR for all i .  It is shown that such a b(z - ' )  exists iff 
for all p in 9, p ( z , ' )  = 0 implies Izol < 1. We also give a 
constructive procedure to find such ab if one exists; this 
constructive procedure uses the polynomials in 9 *. 

Two equivalent conditions are established: the first 
involves the phases of p,(e'") for different i, and the 
second is that for all ~ ( Z - ' ) E  9, p ( z [ ' ) = O  implies 

What makes the discrete-time problem somewhat eas- 
ier than the continuous-time problem is the fact that the 
degree of b (as a polynomial in z - ' )  is not constrained by 
the degrees of the p I ,  so that there are in fact arbitrarily 
many coefficients that can be adjusted in b to secure the 
SPR property. In contrast, if the continuous-time transfer 
function p ( s ) / b ( s )  is SPR, the degrees of b and p 
necessarily differ by at most 1, and thus the freedom in 
choosing b is more limited. 

The second issue tackled in the paper is the continu- 
ous-time problem. We now work with a convex polytope 
9 of nth degree monic polynomials p ( s )  and seek an 
operator b(s) ,  satisfying the continuous-time SPR re- 
quirement that the relative degree of an SPR function is 
necessarily k l ,  or 0. We shall work with functions of 
relative degree 0. Again [6], with 9* the set of corners of 
9, one needs only to find a b(s )  such that p ( s ) / b ( s )  is 
SPR for all p ( s )  E 9*. (Of course for the Kharitonov set, 
the required 9* can be even smaller being the four 
polynomials in (2)-(5).) Thus our initial data are a collec- 
tion of Hunvitz polynomials n J s )  E 9* of the same de- 
gree l .  We show that an integer M and a polynomial d ( s )  
of degree I + M exists such that n,(s)(l+ s I M / d ( s )  is 
SPR for all i, iff P is Hunvitz invariant. This condition is 
satisfied in the case of 9* derived from a Kharitonov set 
(1). Note that the original objective of [4] (which corre- 

lzol < 1. 

sponds to the special case M = 0 )  has been relaxed, so 
that greater freedom arises in the choice of ds). 

A third contribution of the paper is to consider the 
continuous time problem with n = 2,3,4, and with 9 a 
Kharitonov set. We show that the sufficiency conditions 
of [4] for the existence of a polynomial b(s)  are always 
fulfilled. 

11. DISCRETE-TIME SPR CONSTRUCTION 
In this section, we shall prove the following main result: 

Theorem 2.1: Let p i ( z - ' ) ,  i=1 ,2 ;* . , r  be a finite set 
of polynomials in z-' with the stability property pi(z,') 
= 0 implies Izo( < 1. Then there exists b(z- ') ,  polynomial 
in z-' and such that b(z,')= 0 implies lzol < 1, with 

Re [ ~ ::1;1;] > 0, Vw E [ 0 , 2 ~ ] ,  V i  (6) 

if and only if for all w in [ 0 , 2 ~ 1  

max [argp,(e'")] - min [argp,(ej")] < 7r (7) 

where it should be noted that the unwrapped phase 
rather than the phase mod27r is computed. 

Proofi (Only if): Equation (6), implies that for all i ,  

Vw E [0,27r]. 

I I 

larg p ,  ( e'") - arg b ( e'") I < 7r /2, 

Hence for any i f k ,  

larg p ,  ( e'") - arg p k (  e'") 1 < T, 

(If): The proof will be by construction. Define 

V w  E [0,2 T] . 
Then (7) is immediate. 

4 L - l )  = P ) , ( P Z - ' )  (8) 

(a) q , ( z ; ' )  = 0 implies lzol < I .  (9) 

where p > 1 is selected to satisfy the two conditions shown 
in (9) and (10): 

Let v be the maximum modulus of any z1 such that 
p, (z ; ' )  = 0 for some i. Notice that v < 1. Now q,(z;') = 0 
is equivalent to p, (pz ; ' )  = 0, and evidently, Izo/pI  < v. 
So if p is chosen so that pv < 1, we ensure that (a) holds. 

(b) max[argq,(e'")] - min [argq,(e'")] < 7r7 
I 1 

V w  E [0,27r]. (10) 

Notice that arg q,(e'") depends continuously on p for p 
near 1. So, therefore, does 

max [argq,(e'")] - min [argql(e'")]. (11) 

Since w belongs to a finite interval, it is then clear that 
for some p* and any p ~ ( l , p * ) ,  the condition shown in 
(10) holds because (7) holds. 

Obviously, we take p E (l,min(v-',p*)) to secure both 
conditions shown in (9) and (10). 

Define now a function 4 ( w ) ,  w E [ O , ~ T ] ,  by 

1 1 

(12) 
m a ,  [argq,(e'")] +min, [argql(e'")] 

2 4 ( w )  = 
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and observe that for all w ,  in the light of the condition 
shown in (lo), there holds 

Ti- 
larg q,( e'") - $( w ) l  < z, Vi = 1,2; . . , r .  (13) 

Divide up the interval [0,27r] into subintervals [O,wll, 
[ w , ,  w21,[w2, w31; . ., such that on each subinterval, 
argq,(e'") is minimized by the same i through the inter- 
val, and maximized by the same i through the interval 
(the choice normally being different to that made for 
minimization). In ( w , ,  w ,  + 1), $ ( w )  is infinitely differen- 
tiable. Clearly on [0,2r],  $ ( U )  has a derivative that is 
piecewise continuous. 

Consequently, we can determine a Hilbert transform 
for + ( w )  and indeed a function ~ ( z - l ) ,  analytic together 
with its inverse in IzI > 1, but not necessarily on IzI = 1, 
such that 

arg U (  z - ' )  = $( U ) .  (14) 
Notice that the piecewise differentiability of $ ( w )  allows 
the possibility of approximating the Hilbert transform 
integral by a sum without necessarily incurring numerical 
problems, see e.g., some discussion in [71. 

Now consider the transfer functions qI(zY1) /  U(Z-'). 
Because of (13) and (141, it follows that each of these 
transfer functions has positive real part for z = e'". Fur- 
ther, the analyticity properties of U ensure that q I ( z - ' ) /  
u ( z - ' )  is analytic in IzI > 1. It follows that q 1 ( z - ' ) / u ( z - ' )  
is positive real. Now define w(2-l) by 

U ( . - 1 )  = w(pz-1) (15) 

w(2-1) = u(p-'z-1). (16) 

or 

Observe that 

It is a standard property that if Z ( z - ' )  is PR, then 
Z ( p - ' z - ' )  is SPR V p >  1. Clearly now, p i ( z - ' ) / w ( z - ' )  
will be SPR, and free of singularities for 121 > p - ' .  Also, 
w(z-') and w-'(z-') will be free of singularities in IzI > 
p - l ,  and so also on IzI = 1. This means that we can write 
down the Laurent series expansion for w(z-l), viz.: 

w( 2-1) = W O  + wlz- l  + w2z-* + . . . + w,z-N+ . . . 
(18) 

with the property that given E > 0, we can choose N so 
that the truncation 

wN( Z - ' )  = w0 + w 1 z - ' +  . . . + wNzPN (19) 
satisfies 

maxlw( e'") - wN( e'")l < E .  (20) 
w 

By choosing E sufficiently small, we can further ensure 
that wN(zgl) = 0 implies lzol < 1. To see this, recall that 
w - ' ( z - ' )  is free of singularities in IzI 1, and so takes 

the maximum value of its modulus on IzI = 1. Hence 
Iw(z)l takes its minimum value over the region IzI > 1 on 
the boundary IzI = 1. Call this value el.  Now w(2-l)- 
wN(z-l) is free of singularities in IzI > 1 and so \ w ( z - ' ) -  
wN(z-')( takes its maximum values on IzI = 1; i.e., 
throughout Iz( > 1, one has IW(Z-')- wN(z-')l < E .  SUP- 
pose E satisfies E < cl  /2. Then throughout IzI > 1, 

1wN( Z- ' ) l  = 1wN( 2 - l )  - w( 2-l)  + w( Z-') l  

> ~ ~ ( ~ - ' ) ~ - ~ ~ N ( ~ - ' ) - w ( ~ - ' ) ~  
> E 1 - €  

> € 1  /2. (21) 

We can also choose E sufficiently small to ensure that 

Re ~ > 0, for all o E [0,27r] and all i. (22) 
W N  ( e'" 1 

To see this, observe that 

Pi Re - 
W N  

Piw; + PTWN 

IwdNI2 
= 1/2 

1 
- - 

2IWNl2 
. [ plw* + pTw + pi( w; - w*) 

+ P T ( W N  - 4 1 .  (23) 

Now p,w* + p,?w > 0 for all w on [ 0 , 2 ~ ]  and all i by the 
SPR property for pi /w.  Let S be the minimum value 
assumed over all w and all i. Choose 

This ensures that (22) holds. Together, (211, which is valid 
in IzI > 1, and (22) yield the SPR property for 
p i ( f l ) /  wN(z-'). Taking b(2-l)  = w,(z-') completes 
the theorem proof. 

Remark: The degree in 2 - l  of b(z- ' )  may be much 
higher than the degree of any of the p, (z - ' ) .  The above 
arguments contain no information suggesting how this 
degree might be minimized. 

We round off the main result above by noting the 
significance of the phase restriction (7) on the pi (z - ' ) .  
From [6], we note that if the set 9, a convex polytope of 
polynomials, is such that for all p ( z - ' )  E 9, p ( z ; ' )  = 0 
implies lzol < 1, then the members of the corner set obey 
(7). Of course, stability of all p E 9 is also necessary for 
there to be a b(z - ' )  such that p ( z - l ) / b ( z - ' )  is SPR for 
all p E 9. Accordingly, we have established the following 
corollary. 

Corollary 2.1: Consider a convex polytope 9 of poly- 
nomials in z- ' .  Then there exists b(2-l)  such that 
p ( z - ' ) / b ( z - ' )  (and b ( z - ' ) / p ( z - ' ) )  is SPR for all 
P(Z-')E 9 if and only if for all p ( 2 - l ) ~  9, p(z; ' )= 0 
implies lzol < 1. 
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The results here demonstrate that a phase restriction 
among the members of a polynomial set 9 is necessary 
and sufficient for the existence of a single b(z- ' ) ,  whose 
ratio with every member of 9 is SPR. Recall that 
l /b(z- ')  represents a filter used on certain signals in the 
output error identification setting. Had this filter been 
linear but possibly time varying, e.g., [ b(z-' ,  k)]-' (with 
obvious abuse of notation), then convergence would re- 
quire that 

be strictly passive [l], [2] (a definition of strictly passive 
systems appears below). Thus an additional question to 
address is if the members of 9 have a pointwise phase 
difference that somewhere exceeds 180" and somewhere 
is less than 180", can one find a single linear operator 
b(z- ' ,  k ) ,  for which (25) is strictly passive for all members 
of 9? The answer unfortunately is no. This lack of 
advantage in the use of linear time varying systems over 
LTI systems is not confined to this context alone. Several 
results of this nature, with respect to robust stabilization 
of LTI, systems are known in the literature [81, [91. 

A linear, possibly time varying system is strictly passive 
[2] if for some positive a1 and all k and ui 

k k 

uiyi 2 a1 U' + K (26) 
i = O  i = O  

where K is a constant and ui ,y i  are the input/output 
sequences of the system. An LTI system is strictly passive 
iff its transfer function is SPR [2]. We remark that by 
selecting the initial conditions appropriately, K can be 
taken to be zero. We have the following theorem. 

Theorem 2.2: Suppose two stable, real polynomials 
pl(z-') and ~ ~ ( 2 - l )  are such that 

larg pl( e'") - arg p2(  e'") 1 < T ( 27) 

holds for some but not all w E [ 0 , 2 ~ ] .  Then there exists 
no linear operator b ( t - ' , k ) ,  time varying or otherwise 
such that b- ' ( z - ' , k )p i ( z - ' )  is strictly passive for i = 1,2. 

Proofi Suppose that (27) holds at w1 and fails at w 2 .  
Then, by continuity of phase with w ,  (27) implies at some 
w' E (wl, w21 and a2 > 0 

Pl(e-i"') = - a2p2(  e-'"'). (28) 

Then with 

uk = sin w'k ( 29) 

any linear b- ' ( z - ' ,  k )  and appropriate initial conditions, 
the output in system b- ' ( z - ' ,  k ) p , ( z - ' )  is equal within a 
scaling factor to that in b- ' ( z - ' ,  k ) p , ( z - ' )  and has oppo- 
site sign. Thus these two systems cannot be simultane- 
ously strictly passive. 

We have in effect shown that if one cannot find an LTI 
b(2- l )  whose ratio with all members of 9 is strictly 

passive, then it is impossible to find a linear time varying 
b ( z - ' , k )  for which the operator in (25) is strictly passive 
for all p E 9. 

111. CONTINUOUS-TIME SPR CONSTRUCTION 
In this section, we shall prove the following main result. 

Theorem 3.1: Let n,(s) ,  i = 1,. . e ,  r be a finite set of 
Hurwitz polynomials with equal degree 1. Then there 
exists an integer M and a Hurwitz polynomial B ( s )  of 
degree M + 1 such that for all real w 

if and only if, for all real w 

max[argni(jw)] - min[argni(jw)] < T .  (31) 

R-oofi (Only if): The argument is virtually the same as 
for the discrete-time problem, Theorem 2.1. 

(if): Define polynomials p , ( z - ' )  in z-' by 

1 i 

1-2- '  
p i ( z - ' )  = n l (  --)(l+2-')'. 1 + 2 - '  (32) 

Then pi (z , ' )  = 0 implies lzol < 1 because n, ( s )  is Hur- 
witz, and (31) implies a similar condition, viz. (7) on 
pi(e'" 1. 

Hence Theorem 2.1 implies that there exists a b(2-l)  
polynomial in z-' and such that b(z,') = 0 implies lzol < 
1, with 

Suppose the degree of b(2- l )  in z-' is N .  Define a 
polynomial B(s) of degree N via z-' = (1 - s x 1 +  s)-' by 

Notice that 

(35) 

Hence 

By identifying M = N - I ,  we obtain the result of the 
theorem. 

Remark: The integer M above does not have to be 
non-negative. If non-negativity is desired and the proce- 
dure has led to N < 1, one can proceed as follows. Modify 
b ( 2 - ' )  to b ( z - ' ) +  E Z - '  where E is a very small quantity. 
Then the stability property for b( . )  and the PRness 
property (33) remain in force, while the degree of the new 
b(z - ' )  in z - '  becomes 1. Then M = 0. 

Again, arguing as in Section 11, the following corollary 
applies. 
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- 
p,/b SPR p/b SPR 

v PIE P' V p c P  ' 

I I ForKharitonovP 

Fig. 1. Conditions for the existence of b producing SPR property; 9 
is a convex polytope with corners 9*. 

Corollary 3.1: Consider a convex polytope 9 of 1-th 
degree polynomials in s. There exists a non-negative 
integer M and a polynomial B(s )  of degree 1 + M such 
that p ( s X l +  s I M / B ( s )  is SPR for all p ( s )  E 9 if and 
only if 9 is Hurwitz invariant, i.e., for all p ( s )  E 9, 
p(s,) = 0 implies Re so < 0. 

The results obtained here and elsewhere are summed 
up in Fig. 1. 

IV. SPECIAL CASES 
In this section, we first consider polynomials in s of 

order 2, 3, and 4 with the prescribed set n,(s) being 
defined from a Kharitonov set. We show directly that 
denominator polynomials of order 2, 3, or 4 as appropri- 
ate can be found to secure SPR behavior. 

Second-Order Polynomials: Consider the transfer func- 
tion set 

s2  + cs + d 
s2  + as + b 

z (  s) = (37) 

where c and d are variable, c E [c , , c2] ,  d E [ d , ,  d,],  c ,  > 0, 
d ,  > 0, and a and b are to be found so that the ratio is 
SPR. Obviously, a > 0, b > 0 is required. Also, 

Third-Order Polynomials: Consider now 

s 3 + d s 2 + e s +  f 
2( s) = s3 + as2 + bs + c (40) 

with d E [ d , ,  d21, e E [e,,e,l, and f E [ f l , f 2 1 ,  with d ,  > 0, 
e ,  > 0, f >  0. A sufficient condition of all the numerator 
polynomials to be Hurwitz is, see [lo],  that 

d,e,  - f 2  > 0. (41) 

A straightforward calculation yields 

Re z (  j w )  

wh + w4(ad - b + e )  + w2( be - af- c d )  + cf 
l ( j ~ ) ~ + a ( j w ) ~ +  b( jw)+Cl2  

. (42) - - 

So to secure positive realness it is sufficient to choose 
a ,  b ,  c all positive with 

ad - b - e > 0 (43) 

( 44) be - af - cd > 0 

for all allowed d ,  e ,  f .  (Hurwitzness of the denominator is 
automatic if the numerator is Hurwitz and Re[z(jw)l> 0; 
see, e.g., [4].) Now (43) will hold for all allowed d ,e ,  f if 

ad,  - b - e ,  > 0. (45) 
The allowed region of a , b  space is shown in Fig. 2(a). 
Also, (44) will hold for all d,e ,  f if 

be, - a f ,  - cd, > 0. (46) 

Now (41) implies d ,  > f, / e ,  so that for arbitrary c > 0, 
the two regions depicted in Figs. 2(a) and (b) must have a 
common intersection. Any part in the common intersec- 
tion yields a , b  values such that z(s) is SPR for all 
allowed d ,  e ,  f values. 

Fourth-Order Polynomials: Consider the transfer func- 
tions 

z4  + es3 + f s 2  + gs + h 

z4 + as3 + bs2 + cs + d z (  s) = (47) 

with e E [e , ,  e,]; . -, h E [ h , ,  h,],  all numerators stable. 
Therefore, e ,  > 0, f l  > 0, g ,  > 0, h ,  > 0, and the Hurwitz 
determinant inequalities 

e f - g > O  (48) 

(49) efg - e2h - g 2  > 0 

1 ( -  w 2  + cjw + d ) (  - w 2  - ajw + b ) + (  - w 2  - cjw + d ) (  - w 2  + ajw + b )  
Re z (  J w )  = - 

2 

w4 + ( U C  - b - d)W2 + bd 

( -  w2 + a j ~  + b ) (  - w 2  - ajw + b )  

(38) - - 
( -  w 2  + b),+ a2 

It is trivial to see that if 
ac, > b + d ,  

and otherwise a > 0, b > 0, we obtain Re z( j w )  > 0 for all 
w ,  and all allowed c,d.  

(39) hold for all e,  f , g , h  in the region of interest. It is estab- 
lished in [ lo]  that the following conditions are necessary 
and sufficient for this: 
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the elements of the family have a restricted spread of 
phase at every frequency. 

We have left open the question in the continuous time 
case as to whether there are families of polynomials or a 
Kharitonov set of polynomials (all of the same degree 1)  
from which the SPR function can always be obtained 
through division of each element of the set by a single 
polynomial of degree 1. In case I G 4, we have established 
an affirmative answer; the search then for a counterexam- 
ple will be complicated by the number of parameters 
involved. 

APPENDIX 
SOLUTION OF LINEAR INEQUALITIES 

Consider the inequalities (58)-(60), subject to (48) and 
(49) with e ,  f ,  g ,  h in (48) and (49) being either e, or e2 ,  f ,  
or f 2 ,  etc. Consider more particularly the linear program- 

(b) ming (LP) problem minimize 
Fig. 2. Restrictions on choice of a ,  b imposed by two inequalities. 

(61) 
and sufficient for this: 

(50) 

(51) (52) [ :2 f i  -e2 1 I[!]>[ subject to, for some small positive E ,  e l f ,  - g2 > 0 

e l f i g ,  - e:h, - g; > 0 

e2f,g1 - e 3 2  - 8 ;  > 0. 

- 1  0 0 

- h ,  gi - f 2  d e2f1- g1> 0 (62) 

(53) 

(63) Now a straightforward calculation yields 

w8 + ( a e  - b - f ) w 6  + ( d -  ec + f b  - ga + h ) w 4  +( - fd  + gc - h ) w 2  + hd 

I ( ~ w ) ~ +  ~ ( j w ) ~ +  b( j w ) 2 +  c ( j w )  + dI2 
Re z(  j w )  = (54) 

To secure z(s)  positive real, it is sufficient to choose 
a,b,c ,d  all positive and so that the numerator has all 
positive coefficients for all allowed e, f ,  g ,  h.  

( 5 5 )  

If this problem has a solution with a,b,c ,d ,  it is a 
solution of (58)-(60). If, say, a = 0 ,  replace a by a + 6  
where 6 is very small (O(E))  to secure a solution to 
(58)-(60). The above problem has a solution if and only if 

a e -  b -  f > O  

d - e c + f b - g a + h > O  ( 5 6 )  the dual problem has a solution [ l l l :  
- f d + g c - b h > O .  (57) 

Arguing just as in [41, (551-67) hold for all allowed e, f ,  
g ,  and h if and only if a ,  b, c, d are such that 

ae, - b - f 2  > 0 

d - e2c + f , b  - g,a + h,  > 0 

- f 2 d  + g lc  - h2b > 0. 

(58 )  

( 5 9 )  

(60) 
We establish that a solution exists by setting up a dual 
linear programming problem (see the Appendix). 

V. CONCLUSION 
We have solved a long standing problem of adaptive 

system theory that almost certainly has a number of other 
applications. The key to generating a collection of SPR 
functions from a family of polynomials is either that the 
family be a convex set, with all elements stable (a fact 
which Kharitonov results may assist in checking), or that 

MaximizeCA, A ,  A 3 ]  [ ] (64) 

subject to 

Ai 0. (66) 

In turn, this problem has a solution if and only if we can 
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I 1 I* 
Fig. 3. One restriction on h,,A, values. 
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I - ‘+e;’ 1 2  

f, 
Fig. 4. Second restriction on A,,A, values. 

find any A i  satisfying (66) and 

-1 0 
[ A ,  A 2  A 3 1  - g 2  f l  - e2  [ :: - h 2  g ,  - f 2  

~ [ l  1 1 13. (67) 

We examine these constraints in the A 2 , A 3  plane. The 
last two inequalities in (67) are 

- e,A2 + g , A 3  G 1 

A 2  - f 2 A 3  G 1. 

(68) 

(69) 
Together with the constraints A, 0, A, > 0, the region 
so defined is depicted in Fig. 3.  Notice that the stability 
conditions (48) force f Y 1  < e 2 g ; ’  so that the region in 
Fig. 3 is not bounded. 

Consider now the first two inequalities in (67) with A ,  a 
parameter. These are 

Ale, - 1 

g2 
(70) 
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A 2 f l  1 + A l  

h2 h2 
A >---. 3’ 

rn 

Choose A ,  = e,’ > 0. Then the region defined by these 
inequalities and Ai > 0 is depicted in Fig. 4. 

It is obvious that the region depicted in Figs. 3 and 4 
have a common intersection, i.e., there exists A i  satisfying 
(66) and (67). 
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