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Abstract-When a decision feedback equaliir is used on a channel 
satisfying a simple passivity constraint (equivalently expressible in terms 
of gain-phase constraints) the error recovery time is finite, and thus 
recovery is rapid, regardless of the initial error state and the particular 
data sequence. This class of nontrivial channels indudes cases of practical 
interest and identifies some channels for which a decision feedback 
equalher is a practical option. 

A DECISION feedback equalizer (DFE) is a simple 
hardware device to cancel intersymbol interference (ISI) 

generated by a distorting channel. However, one major 
problem with its operation is an effect known as error 
propagation [I] which we now describe (see Fig. 1). The DFE 
operates by feeding back past data estimates called decisions, 
which generally will not correspond to the actual input data 
sequence if recent past decision errors have been made. 
Because past decisions are used to cancel the IS1 of the real 
data, any decision errors may lead to a deterioration of the 
effectiveness of the cancelling operation of the DFE at future 
times. Hence, errors in the present data estimate will increase 
the likelihood of future estimation errors, and so on. 

The presence of error propagation means that DFE opera- 
tion in practice may be unsatisfactory, in the sense that the 
time for the DFE to recover from any error condition may be 
unacceptably long [Z], [3]. In fact, it has been shown that over 
the class of all finite inpulse response (FIR) channels of length 
N the mean error recovery time may be of order 2N data 
periods (even for some which are minimum phase or near 
minimum phase), which is evidently totally impractical. It 
then becomes a problem to identify stronger hypotheses on the 
channel model for which the error recovery time is sufficiently 
short, as judged by practical standards. For these channels we 
can say then that a DFE is a practical option. Determining 
such a class of (nontrivial) channels is the objective of this 
paper- 

In general, we can classify two classes of channel which are 
acceptable from a practical point of view-the distinction is 
not great. The first class needs some statistical model of the 
input sequence for its definition. To define the class, one then 
simply requests that the expected or mean time for error 
recovery for all initial error states is sufficiently short. 
However, this leaves open the possibility that there exist 
pathological input sequences [2], 141 for which errors are 
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Fig. 1. Channel and DFE models. 

made after any arbitrary length of time even in the absence of 
noise. In a well-defined sense, however, these sequences are 
probability zero events [2], [4]. The second class of channels 
are those for which the error recovery time is finite for all 
possible input sequences and initial conditions. In this case the 
statistical model of the input is largely irrelevant. Further, this 
means that pathological input sequences are nonexistent, i.e., 
one can never be so unlucky as to have an input sequence for 
which the DFE never performs satisfactorily-a most attrac- 
tive property. In our work we find a broad and robust class of 
channels for which the error recovery time is finite. As such 
we are defining a class of channels suffering from significant 
IS1 for which a DFE may be effectively used. This class 
captures a range of practical channels as we will see from an 
example. 

In the literature there has been very little written about the 
error recovery properties of DFE's. In fact only in [5], [6] has 
it been indicated theoretically that there are some nontrivial 
channels for which the DFE operates satisfactorily. The two 
prominent early references analyzing DFE's [I], [4] both give 
little comfort to the practicing engineer who finds their 
structural simplicity appealing. In [I], 141 the given bounds on 
recovery time and error probability actually correspond to the 
worst realizable channel models as was demonstrated in [Z], 
133. Because the DFE has such deplorable performance when 
operating on channels with these bounds, the results are not 
very useful in practice (but of theoretical importance and 
interest). We note here also the work in 171, [8] which strives 
to reduce these bounds given explicit, i.e., specific, knowl- 
edge of the channels. In contrast here we give a broad general 
nontrivial condition on the channel parameters-specifically 
the coefficients satisfy a passivity constraint or equivalently a 
simple frequency response condition-to ensure good DFE 
error recovery performance. 

The following sections are organized as follows. In Section 
11 we define the DFE system of interest and we define our 
finite error recovery time problem. In Section III we give the 
necessary background on passivity theory. In Section IV 
we give our basic main result which estabLishes that whenever 
the channel satisfies a simple frequency domain constraint, the 
error recovery time of an ideal DFE is always finite. We also 
include four applications of this theorem including analysis of 
a real channel. Convergence rates and explicit bounds given an 
exponential overbound on the channel impulse response are 
the subject of Section V. Results of greater practical interest 
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where we relax most of the major idealized assumptions of the 
previous sections are given in Section VI. We also give the 
result for M-ary data and relate the error recovery time bound 
back to the binary case. A formula for the error probability 
given a high signal to noise ratio channel is presented. The 
conclusions and summary are given in Section VII. 

11. PROBLEM FORMULATION AND DEFINITIONS 

A communication channel and general nonadaptive decision 
feedback equalizer (DFE) are shown in Fig. 1. The communi- 
cation channel is modeled as a linear, time-invariant filter with 
impulse response, 

of possibly infinite dimension. This channel is driven by an 
input binary sequence {ak) where k is the discrete time index. 
No statistical model of {ak) is assumed nor needed. The M -  
ary {ak)  case will also be treated in a later section. We note 
that in a more general context h could be thought of as the 
cascade (convolution) of the linear channel and a linear 
equalizer preceding the DFE. 

The distorted output of the linear channel is bk and is 
assumed noiseless. By studying the noiseless case we are 
creating a pointer to the important practical situation of a high 
SNR channel. (In a later section, we will introduce an additive 
noise signal into the analysis but only treat the asymptotic case 
as the noise variance tends to zero). At the receiving end we 
have a DFE consisting of a tapped delay line with impulse 
response 

d (0, dl, d2, ...} 

fed by a binary output decision sequence {Lik) as described by 
Fig. 1. 

The algebraic formulation of the system depicted in Fig. 1 is 
given by 

where ideally we would liked, = h, , v i  > 0. Note also that we 
assume without loss of generality that ho r 0 (if ho = 0, see 
Section V). Hence, the study of error propagation under these 
ideal conditions leads to the equation 

where 

and 

Most of the ideal assumptions represented in (2.4) will be 
relaxed in Section VI. Here it is convenient to treat the ideal 
case first so that we may focus on the technique employed and 
not get lost in a labyrinth of unimportant detail. 

We now define what we mean by error recovery. 
Definition: The DFE has recovered from error at time k if 

hk = ak, or equivalently, e k  = 0 Vk 1 K, v{ak). 

Now if we rewrite (2.4) as Lik = sgn ((ho + rkak)ak) then it is 
clear that ho > 1 rkl ensures ho + rkak > 0 and thus a 
sufficient condition for DFE recovery at time K is 

However, this condition (2.5) is also necessary because the 

- :  ........................................................ 
Fig. 2. Error propagation block diagram. 

definition for error recovery stipulates no errors can be made 
when we consider all possible input sequences. So that 
a particular input sequence which is generated by ak = 
-sgn(rk) v k  r K must give no errors, and the desired 
conclusion follows. 

From (2.5) it is clear that the residual IS1 term rk is crucial 
in understanding the error propagation and error recovery 
mechanisms. We complete this section with a simple but 
fundamental lemma which is a mild generalization of the 
above analysis and so we omit a proof. In it we see that the 
only way an error can be made in the noiseless DFE is for the 
residual IS1 rk to have magnitude greater than ho and to be of 
opposite polarity to the binary data ak. 

Lemma I: Let rk in (2.4b) denote the IS1 and ho the cursor. 
Then 

(i) ( r k l < h o  or ak=sgn(rk) * 6 k = a k  -s ek=O. 

(ii) 1 rk ( > ho and ak = - sgn(rk) * hk = - ak 

Lemma 1 is significant because it characterizes the error 
propagation mechanism. The feedback system represented in 
Fig. 2 is a pictorial representation of Lemma 1. The upper 
block in Fig. 2 is just a block representation of equation 
(2.4b). It is modeled by a strictly causal convolutional 
operator X which maps the error sequence e 4 {ek, k r 0)  to 
the residual IS1 sequence r B {rk, k 1 0)  in accordance with 
(2.4b), i.e., r = Xe 2 h @ e w h e r e h  B (0, h,, h2;.-). 
The lower block C in Fig. 2 consists of two parts. The first is a 
stochastic multiplier defined by 

whose function is clear from Lemma l(i), i.e., if mk = 0 * 
ak = sgn(rk) * ek = 0. Otherwise, mk does nothing, i.e., takes 
the value unity (2.6). The second part of the lower block is a 
time-invariant nonlinearity which maps {mkrk)  into the 
sequence z = -e. Note whenever the input mkrk is less in 
magnitude than ho the output zk = - ek is zero [as in Lemma 
l(i)]. Otherwise, the output conforms to Lemma l(ii). Note 
that in this block the stochastic multiplier and the nonlinearity 
may be commuted. The point of introducing the summation 
block to perform the inversion of z to e is that the blocks form 
a feedback system suggesting the use of stability arguments. 

A significant observation we make concerning the lower 
block 6: in Fig. 2 is that it is a memoryless nonlinearity whose 
graph is confined to the first and third quadrants. As such 
whenever the output is nonzero we see the output preserves the 
sign of the input and therefore is a passive operator in the 
circuit theoretic sense [9]. In this paper, we transform the 
system in Fig. 2 such that the transformation of the upper 
block X becomes a strictly passive operator whilst the 
transformation of the lower block 6: remains passive. Then we 
utilize some standard results from input-output stability to 
show the DFE has a (quantifiable) finite recovery time. In the 
next section, we present the minimal set of definitions and 
notation needed to develop the general input-output stability 
result. 
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The idea of reformulating the error recovery problem as a 
stability problem originated with Cantoni and Butler 141. We 
take up this concept and it is natural to investigate the use of 
stability ideas in proving that under certain conditions a DFE 
has a finite recovery time (for all initial conditions and for all 
input sequences). The ideas we need have their origins within 
circuit theory. Our main result uses the Passivity Theory [9] to 
give an easily checked frequency domain condition that 
guarantees a finite recovery time. 

We begin with some definitions which are standard in input- 
output stability theory 191. We focus on a Hilbert space 
structure composed of real valued sequences indexed by k E 
f+ (nonnegative integers). Then if we have two sequences 
given by x 4 (%, xl;.-) and y 4 {yo, yl ; --)  then their 
inner product will be defined as 

where it is clear that (x, y)  = (y, x). This inner product (3.1) 
induces a natural Euclidean norm defined by 

We define the discrete function space l2 which consists of all 
sequences satisfying 

Similarly, we have the space Il which consists of all sequences 
satisfying x E Il e llxlll P ELo lxi ( < w . The space Iz is 
generally too restrictive an arena for deriving results, so we 
introduce the standard concept of an extended space I; [9], 
defined by 

where PT is a truncation operator parametrized by T E 8, 
defined by 

Note (3.4) just says that x E I; if and only if Ixk l  < 00 Vk. 
So, for example, if x P {xk = 2', Vk E f +) thenx E I; but 
x B h. 

From definitions (3.3) and (3.4) it is apparent that I2 c I;. 
In our work, all signals considered will lie in the extended 
space I; (because we stipulate only that h E 11). However, it is 
of great interest to show that particular signals also lie in the 
subset 12. For example, with the error signal, it is our aim to 
show e E 12. Then because e k  E { - 2, 0 + 2) we have the 
following fundamental observation: 

i.e., the DFE has recovered from error at finite time K. 
Now define 11 x 11 T P 11 PTx 11, and XT 4 PTX. In relating 12 

and 1; we note the following important properties of the inner 
product and its induced norms which we will use later without 
explicit reference: 

1) V x  E I; the mapping T - ((x(( T is monotonically 
increasing. 

2) vx E 12 lhT-, llxll T = I I x I I  - 
3) vx, y E Ie, v T  E Z+ we have (xT, YT) = ( n ~ ,  y )  = 

(x. YT) B (x, YST. 
This leads to the crucial definitions of passivity. 
Definition: An operator X: 1; - 1; is passive if 3 constant 

" k 

Fig. 3. Passivity theorem block diagram. 

0 such that 

(Xx,  x),r 8, vx E 1; v T  E Z+. (3.6) 

If X were linear then 0 could be taken as zero (this is a derived 
result, see [9]). 

Definition: An operator X: 1; - 1; is strictly passive if 36 
> 0 and 3P such that 

Again if X were linear then /3 could be taken as zero. We label 
6 as the degree of passivity. 

As an example of passivity (but not strict passivity), which 
will be important later, let us check the claim at the end of 
Section 11 concerning the lower block 6: of Fig. 2. Suppose x 
E 1; is the input to an operator & with output y P e x ,  which 
satisfies ykxk 2 0, Vk E Z+ (a sign preserving operator). 
Then trivially 

showing & is passive according to definition (3.6) with (3 = 
0. That is, if X is a nonlinearity constrained to the first and 
third quadrants then it is passive (even if it is time-varying or 
has memory). 

Our second example which we state as a lemma will be 
important later and relates to the definition of strict passivity 
(3.7) applied to linear operators. The proof is a simple 
adaptation from the continuous time proof given in [9], and is 
therefore omitted. 

Lemma 2: Suppose 6: 1; - 1; is defined by Su = g @ u 
where g A {go, gl,. . .) E 11. Let 6 > 0. Then 

ve E [0, 2 4  (3.9) 

where g(z)  4 CEO giz-' is the 2-transform of the impulse 
response g. 

Lemma 2 says that a linear convolutional operator is strictly 
passive if and only if its Nyquist plot belongs to {z E e: Re 
(z) r 6) where (9 is the complex plane. 

We now come to the main passivity theorem. Fig. 3 defines 
the signals and operators of interest. In it e and v are the input 
sequences to the operators X1 and X2 and y = X l e  and z = 
X z v  are the respective output sequences. There is a single 
external signal u. (Note in comparing Fig. 3 to Fig. 2 the idea 
of introducing an external signal u is to model an initial error 
state in the DFE at time k = 0 which triggers the error 
propagation. When we come to apply the passivity theorem in 
Section IV this will become clearer). All signals shown are 
assumed to lie in I;. The following theorem and proof are an 
adaptation of a more general result in [9, p. 1821. 

(Passivity) Theorem 3: Suppose 1) Operator Xl is linear 
and strictly passive, i.e., 

where 6, > 0, and 2) operator X2 is a nonlinearity confined to 
the first and third quadrant, implying 

by (3.8), and is thus passive. Then u E l2 * e E 12. 



KENNEDY et at.: ERROR RECOVERY FOR DECISION FEEDBACK EQUALIZERS 

Fig. 4. Loop transformation. 

Proof: We show e E l2 by determining upper and lower 
bounds on the quantity ( X l e ,  e)T + (X2u, u ) ~ .  First we 
determine a lower bound. Using (3.10) and (3.1 1) we clearly 
have 

where, recall, 6, > 0 is the constant associated with the degree 
of passivity of the XI operator. An upper bound on (3.12) 
follows from the next simple calculation, using Fig. 3, 

where the last line is an application of the Cauchy-Schwartz 
inequality. Then combining (3.13) with (3.14) we obtain llell T 

I 6;'11ull T VT E Z+ whenever Ilell > 0. Letting T + a 

we find 

i.e., u E I2 - e E I2 as desired. 

IV. SUFFICIENT CONDITIONS FOR A FINITE RECOVERY TIME 

In this section, we transform the system in Fig. 2 so that we 
may apply the general passivity theorem of the last section. 
This involves two steps. The first step is to apply a loop 
transformation because X (Fig. 2) is not passive. The second 
step is to model the effects of initial conditions at time k = 0, 
i.e., an initial (arbitrary) error state, by an external signal u as 
in the passivity theorem. 

We apply a loop transformation [9] to the system in Fig. 2 to 
obtain the new system shown in Fig. 4. Note that the effect of 
the newly introduced feedforward and feedback paths with 
gains h,* is to cancel exactly. The upper block labeled XI has 
impulse response given by 

where h,* is a finite gain associated with the feedforward path. 
For thevpassivity theorem to apply we need (4.1) strictly 
passive, i.e., h,* sufficiently positive, and we have available 
Lemma 2 as a test in the frequency domain. 

In the lower block labeled X2 ,  which includes the positive 
feedback of gain h,* , we need to be concerned that we have not 
destroyed the passivity of the original lower block (Fig. 2). 
The following lemma with proof now applies. The symbol 
definitions are given in Fig. 4.  

Lemma 4: If 0 5 h,* 5 ho/2 then X2 (Fig. 4) is passive. 
Proof: The X2 block has input uk and output z k  E { - 2, 

0, + 2). We attempt to show ukzk 2 0, Vk which ensures 
passivity. From Fig. 4 the input wk to the sector nonlinearity 
within the X2 block is given by wk = mk(uk + h$zk) from 
which we have after multiplying through by zk, 

We have three cases according to the three possible values of 
z k E  { -2 ,O +2)(seeFig.4):  l ) z k  = + 2 *  mk = l andwk 

r ha, which implies from (4.2) that ukzk = 2(wk - 2h,*) 2 
2(ho - 2h$) 2 0, given 0 5 h,* 5 ho/2, i.e., ukzk Z 0; 2) Zk 
= - 2  * mk = 1 and wk I -ha leading to v k z k  L 0 by 
symmetry; and 3) zk = 0 which gives vkzk = 0 because u E 
I;, i.e., ( u k l  < a Vk. Thus, ukzk L 0 Vk in every case, 
implying 322 is passive by (3.8). 

Another condition which needs to be fulfilled in Theorem 3 
is u E 12. This condition will necessitate some hypothesis on 
the channel h to be fulfilled. The signal u for our application 
will model the effects of initial conditions in the XI block 
since all our sequences are defined only for k r 0, whereas 
the real system may have been operating from the distant past, 
i.e., k = - a. Note that this signal u, as shown in Fig. 4, is 
unaffected by the introduction of h,*. From Fig. 2, we use 
superposition on the upper X linear operator of impulse 
response (0, h l ,  ha, . - ) to represent the effects of arbitrary 
initial conditions, i.e., an arbitrary initial error state via the 
signal 

wherevaluesq - 1 , ~  - 2 ,q  - 3;-- ,  takingvaluesin{-2, 
0, + 2) define the initial (error) state at time k = 0. (Every 
initial condition can be represented in this form.) To ensure u 
E I2 we impose some sufficient conditions on the channel h. 

Lemma 5: Suppose h E 1; satisfies I h, 1 = O(m-7) as m 
+ a where q is constant. Then 

Proof: 1) Is straightforward. 2) It is easy to show from 
(4.3) that lukl I 2 CEk+,,lh;( = O(k-'+I) as k + cp, by 
using integral approximations to the summations. Then p k  A 
u i  = O(k-2q+2) as k -+ a. However, u E l2 if and only i f p  
E II. Using(4.4a)onpthisimplies2q - 2 > 1, i.e., q > 3/ 
2, is sufficient. 
We state our first main DFE result. 

Theorem 6: Suppose a channel h P { ho, hl , .  . . ) , used for 
binary transmissions of symbols {ak),  satisfies (h,( = 
O(m-3'2-') as m + w where E > 0. Suppose 36 > 0 such 
that 

where 6 (z )  denotes the Z-transform of h. Then given an ideal 
DFE output sequence {Bk) generated through (2.4), then for 
some K < a, we have Bk = ak, Vk 2 K. 

Proof: By Lemma 5(1) the constraint on the channel 
implies h E 11, thus 6(eje) exists, and we can use Lemma 2. 
Set h,* = ho/2 in Fig. 4. By Lemma 2 we have Re (K(eje) - 
ho/2) r 6, Vfl E [O, 2n] if and only if operator XI in Fig. 4 is 
linear and strictly passive. Operator X2 in Fig. 4, on the other 
hand, is passive by Lemma 4. By Lemma 5(2) the constraint 
on the channel implies u E 12, therefore, Theorem 3 applies 
and we deduce e E 12, which proves the result. 
A somewhat clearer and conceptually simpler result takes the 
form. 

Corollary 7: DFE's with weights correctly adjusted to the 
coefficients of an exponentially stable channel h whose 
Nyquist plot 6(eje) satisfies 

h 
Re ( ~ ( e j ~ ) ) > A  ve E [0, 2n] 

2 '  



I- ho-+I 
Fig. 5. 3 tap FIR channel regions. 

have finite error recovery times regardless of the initial 
conditions, and regardless of the input sequence. 

An explicit bound on the error recovery time is the subject 
of Section V. Note, a finite recovery time means there are not 
any pathological input sequences [2], 141. Now we look at 
some applications of Theorem 6. 

Example (I): Suppose (4.4b) is satisfied, 36' > 0 and 
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Then it follows that (4.5) is trivially satisfied. In fact condition 
(4.6) is equivalent to ho > I r k  1 Vk E Z +  . In this case, the 
DFE has always recovered by (2.5), i.e., it never makes errors 
(in the absence of noise). 

Example (2): Let the channel be FIR with impulse response 
{ho, hl, hz) (such that ho > 0). Then condition (4.5) is simply 

This defines a region as 6 + 0 in (hl, hz)-space shown shaded 
in Fig. 5 (see [lo]). Note this ice-cream cone region consists 
of two straight boundaries which tangent into an ellipse at 
points (* 2/3 ho, 1/6ho). This region is shown sandwiched 
between two other regions: (1) an inner diamond which is 
(4.6), and (2) an outer triangle which is the region which 
defines the necessary and sufficient conditions for a finite 
recovery time (demonstrated in [2]). This highlights that the 
converse of Theorem 6 is false (see Section V1.B). 

Example (3): Let h P {h, = B m  cos (mu), vm E Z + )  
where 0 I 0 < 1 and w E [0,2?r]. Then g(z) 4 6 ( z )  - 1/2 
is given by 

1 
- (z2-P2)  
2 

= 
zZ-20 cos wz+p2 ' 

We need g ( e 3  to have positive real part and this can be shown 
to be equivalent to checking 

Re ((eJ2@ - P2)(e -J2@ - 20 cos we - je  + p2)) > 0, 

V8  E [0, TI .  (4.8) 

But the left-hand side of (4.8) can be decomposed thus 

Thus all decaying exponential channels with impressed sinus- 
oidal oscillation (of the appropriate phase) have a finite 
recovery time. This same result but restricted to the case 
where w = 0 was proven in 163. Note that one can extend this 
result to h P {h, = cum cos (mu + d), Vm E Z,) to 

Fig. 6. 3 km twisted pair cable response. 

Fig. 7. Nyquist plot for twisted pair cable. 

Fig. 8. Convergence rates via multipliers. 

conclude that one can tradeoff cr against 4 and maintain g(z)  
strictly passive provided 4 remains close to zero. 

Example (4): Fig. 6 shows the (sampled) measured impulse 
response of a 3 km twisted pair copper cable which is the line 
between a subscriber and a local exchange [ l  11. Fig. 7 shows 
the Nyquist plot of the same channel. Since the closed Nyquist 
curve lies completely to the right of the line Re (K(ejs)) = ho/ 
2 (the shaded region in Fig. 6), then Theorem 6 establishes any 
error recovery time is finite. Also shown in Fig. 7 is a 
geometrical interpretation of 6 in Theorem 6. This type of 
channel is ideal for the use of a DFE. 

V. CONVERGENCE RATES AND EXPLICIT BOUNDS 

Theorem 6 gives no indication of the maximum time one 
needs to wait before the DFE returns to an error-free mode. 
Intuitively, the more dissipative the upper block XI is (Fig. 
3), i.e., the greater is 61, the more rapidly the error signal 
should go to zero. We investigate this intuitive insight further. 

Consider Fig. 8 which shows the use of multipliers [9] to 
transform Fig. 3. The signals ek, yk, uk, vk, and z k  are 
identical to those in Fig. 3, being unaffected by the introduc- 
tion of the multipliers. We will be applying Theorem 6 to the 
new starred system where Xr maps e; = pkek toy: = pkyk, 
and X: maps v,* = p k ~ k  to z,* = pkzk. The new external 
signal is now u,* = p k ~ k .  We take the multiplier p > 1. 

Now since we take p > 1 we trivially have sgn(vk) = 
sgn(u,*) and sgn(zk) = sgn(z,*). Thus X: is passive since Xz 
is so. To check that XT is strictly passive is simplified by 
linearity. It is easy to see that the 2-transforms of X T: e,* - 
y; and $2,: ek - yk are related through 

This implies that more stringent conditions need to be enforced 
on the channel h than those given by Lemma 5 if the starred 
signals are to belong to l2 and then other conditions need to be 
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checked for passivity. Appealing to Lemma 5, the only 
sensible condition for stability takes the following form. 

Assumption: 

This assumption ensures K:(z) has an impulse response in I, 
Then X is strictly passive if and only if for some 6: > 0 

The main difficulty before we can invoke Theorem 3 is to 
show u* E 12. Using (5.2) and (4.3), we may prove the 
following, noting u: = p k ~ k ,  

provided Ipy 1 < 1, i.e., (1 u* 1) < w . Thus with an exponential 
overbound of the channel and lpy 1 < 1, Theorem 3 applies to 
the starred system in Fig. 8 and we conclude from (3.14) that 

m 

I(e*I12 A C le,*12s6f-211u*112 
k = O  

i.e., e* E I2 provided lpy 1 < 1). This provides an exponential 
rate of decay on )ekl = ~ - ~ l e , * I  I p-klle*ll. However ek is 
restricted to the set { - 2, 0, + 2) and therefore must be zero 
after some time K(p) E Z+ which is the least integer 
satisfying 

i.e., the least integer K(p) E Z+ such that, 

This K(p) is an explicit error recovery time bound that we 
desired. We will not elaborate further but rather give an 
example which makes the above analysis clearer and shows 
how to determine a suitable multiplier p. 

We consider the special case of Example (3) given in 
Section IV by setting o = 0, i.e., hi = yi,  V i  E Z+ for some 
0 < y < 1 (this case resembles Fig. 6). This channel trivially 
satisfies (5.2) with B = 1. For this channel it can be shown 
using elementary analysis that 

where p is chosen such that y < py < 1. [Note also h,? = 
(PY)i, V i  E Z + , by (5. I)]. From (5.8) the 6 : associated with 
strict passivity of X ;C is given by 6 ;C = 1/2(1 - py)/(l + 
py), being the minimum of (5.8) achieved when 0 = a. We 

TABLE I 
ERROR RECOVERY TIME BOUNDS 

I Analysis Technique 1 7 = 0.50 1 7 = 0.81 1 7 = 0.95 1 

Thcr  bound. vc on the me." nor the mu,mum m a e v  ,,me 

Passivity Theory (5.7) 

Exponential Reaults [6] 

Markov Procnvrs 11-41 

can now use (5.7) to compute the bound on the error recovery 
time for various p > 1. To obtain the tightest bound we can 
optimize over 1 < p < l /y ,  noting K(p) + w whenever p + 

l / y  or p -+ 1. We give three numerical examples: 1) y = 0.50 
then using (5.7), we can determine an optimum p = 1.642 
yielding 6 ;" = 0.0492 leading to Kop, = K(1.642) = 8, 2) y = 
0.81 with optimum p = 1.194 yielding 6 = 0.0083 leading 
to K,,, = K(l.  194) = 43, and 3) y = 0.95 with p = 1.047 
yielding 6: = 0.0014 leading to Kept = K(1.047) = 258. 

These bounds are conservative by the nature of the analysis. 
In [6] (but only for exponential channels), it is shown that the 
tight bounds on the maximum error recovery times are 2, 11, 
and 71, respectively. It is interesting to compare both sets of 
bounds (see the first two rows of Table I) with mean error 
recovery time bounds which can be deduced from the DFE 
literature based on Markov processes [I]-[4]. Of course being 
statistical bounds we need a statistical model of the input 
sequence {ak)-an independent, equiprobable binary distribu- 
tion being standard. This does not invalidate the comparison 
because the error recovery time bound K(p) in (5.7) always 
overbounds the true mean error recovery time. 

To compute the mean error recovery time bounds based on 
the work in [ l ]  we define an effective channel length n for the 
exponential channel. This is given by the minimum n such that 

8 

2 

6' 

The meaning attached to the quantity n is simply that the DFE 
needs to make n consecutive correct decisions to recover from 
any error state with Ck- I # ak- (k  being the present instant of 
time). Now for the worst case channels implicitly considered 
in [I]-[4], subject to (5.9), the probability of making an error 
is precisely 112 for every decision before recovery (i.e., 
before n consecutive correct decisions have been made). By 

43 

11 

4094' 

the theory of success runs [4] the mean recovery time is given 
by 2(2" - 1). Looking at our three examples we have: 1) y = 
0.50 implying n = 2 and thus a mean recovery time of 6, 2) y 
= 0.81 implying n = 11 and thus a mean recovery time of 
4094, and 3) y = 0.95 implying n = 71 and thus a mean 
recovery time of 5 x lo2'. These three bounds are displayed 
in the third row of Table I. 

Table I shows that using the theory of Markov processes 
one may get ridiculously conservative results, even though we 
have (minimally) exploited some structural assumptions (5.9). 
Also note that here the Markov techniques are incapable of 
telling us directly that the recovery time is finite. The Markov 
mean bounds in Table I can presumably be improved on by the 
techniques in [7], [8]. However, the amount of computation 
that would be necessary looks formidable. 

258 

71 

5 x lo2" 

VI. SOME GENERALIZATIONS 

A. Error Recovery Under Imperfect Equalization 

This subsection represents a three-fold generalization of the 
previous results. These modifications involve, in part, relaxa- 
tion of some of the previous assumptions regarding the model 
of the system under study. The generalizations are as follows: 
1) the DFE tapped delay line is assumed to be FIR of length N 
rather than IIR, whilst the channel may be IIR; 2) the 
assumption that di = hi, v i  r 1 is relaxed to a condition 
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which stipulates the di are sufficiently close but not necessarily 
equal to some ideal values, and 3) the results are generalized to 
the situation where error-free behavior is characterized by cik 
= ~@'I(h&)a~-~,  Vk 2 K for Some fixed delay 6 E (0, 1, ' ' ' , 
N )  rather than Cik = ak, Vk 2 K. All these generalizations 
will be treated in parallel. A key feature of the analysis 
performed in this subsection is showing explicitly the close 
relationship between eye diagrams and rates of error recovery. 

As some motivation to studying delay-type behavior, 
alluded to above, consider the situation where a DFE has its 
taps adapted blindly, i.e., without a training sequence. In this 
case, it was shown in [12] that the DFE taps may adapt not 
only to an (ideal) equilibrium where di = hi, i E { 1, 2, - - - , 
N )  but also to a delay equilibrium where di = ~ g n ( h ~ ) h ~ + ~ ,  i 
E { 1 ,2 ,  - - - , N) provided certain conditions are met. We will 
show that when in the vicinity of a delay equilibrium, after 
some finite time K, all decisions will be of the form ak = 
sgn(h6)ak_, Vk 2 K ,  hence the terminology. 

To analyze nonideal behavior we take (2.3) and set di = 0 
for i > N, i.e., the tapped delay line is FIR of length N rather 
than IIR. Define a6 4 sgn(h6). We can decompose (2.3) as 
follows: 

N 

hiak-,- x 44-9 (6. la) 
i = O  i= 1 

where 

and 

m 

fk(8) x hiak-i. (6. le) 
i=N+6+1 

In (6. I), 1) rk(6) acts as the basic residual IS1 term [note if we 
let 6 = 0 and N -* oo then (6. lc) becomes (2.4b)l; 2) ~ ~ ( 6 )  is a 
term which generally gets smaller as the taps (dl,  dz, - - , dN?' 
approach the 6-delay equilibrium at a6(h6+ 1, ' ' ' , 
and includes any precursor; and 3) tk(6) is that part of the tail 
of the channel which cannot be modeled by the DFE because 
the tapped delay line is FIR. 

Beginning with tk(6) in (6. le), it is clear that we need 

with a sufficiently small else the DFE problem is not well 
posed, i.e., N ,  the number of DFE taps, needs to be chosen 
large enough in the first place so that the DFE can effectively 
cancel the ISI. 

Now when in the vicinity of a delay equilibrium we claim itk 
= a* ak-6 Vk 1 K provided certain conditions are met, which 
we now determine. Define new (delay) errors . 

then the basic residual IS1 term rk(6) (6. lc) may be written 

Fig. 9. Imperfect equalization error propagation. 

and will be zero whenever we make N consecutive correct 6- 
delay decisions. Now suppose 

Then some perusal, based on (6. lb) when (6.5) holds, will 
show that whenever N consecutive correct decisions are made, 
all future decisions will be correct (in the delay sense) because 
rk(6) = 0 and h6 is larger in magnitude than ~ ~ ( 6 )  + tk(6) can 
ever be. This defines a new form of error recovery, i.e., (6.5) 
is a sufficient condition for all decisions to be (delay) correct 
whenever N consecutive 6-delay decisions have been made. 
Note that if all decisions are to be of the form cik = 06 ak-6 for 
all input sequences, given N consecutive correct decisions 
have been made, then condition (6.5) is also a necessary 
condition (see [12] which treats a similar problem). 

Define Ak(6) P (haak-* + ~ ~ ( 6 )  + fk(6))~6ak-6, noting that 
by (6.5) we have Ak(6) 2 A- (6) > 0. From (6.lb), cik = 
sgn(abak- Ak(8) + rk (6)); then clearly the analogue of Lemma 
1 is as follows. 

Lemma 8: Suppose condition (6.5) holds. Then 

Thus we have the picture in Fig. 9 which differs marginally 
from Fig. 2. Note the lower block is sector bounded within the 
1st and 3rd quadrants whilst A ~ ,  (6) > 0. The critical value at 
which ~ ~ ( 6 )  causes a change from zk = 0 to Zk = + 2 is Ak(6) 
and is thus time-varying p u t  bounded below by Afin (@]-we 
have depicted this behavior by a fuzziness of the switching 
value in the nonlinearity in Fig. 9. The generalization of 
Theorem 6 is then as follows. 

(Imperfect Equalization) Theorem 9: Suppose the param- 
eters of a binary linear channel h 4 { ho, hl, . - . ) and of the 
DFE tapped delay line d & (0, dl, d2; - - )  satisfy (6.5) for 
some (at most one) delay 6 E (0, 1,. . . , N) and a* P sgn(h6). 
Further, suppose 35: > 0 such that 

Given a nonideal DFE output sequence {cik) generated 
through (6. la), then for some K < a, we have cik = a#k-6, 
Vk r K. 

Remarks: 
1) The asymptotic condition on h in Theorem 6, in reality, 

controls the behavior of the tail of the ideal DFE tap setting, 
not the tail of the channel. That is why such a condition is 
absent in Theorem 9. However we still have h E ll because a 
< oo (6.2) is implied by (6.5) and this implies h E ll . 

2) Note condition (6.5) stipulates that the di need to be 
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sufficiently close to the as hi+* (in an 11-norm sense) if a certain 
operator is to be strictly passive. Note that the worse the 
mismatch, the less Amin (6) will be. This forms a convenient 
geometrical picture to replace the messy algebra. 

4) Note Amin (6) may be interpreted precisely as the amount 
that a certain eye diagram is open after recovery. Thus, the 
wider the postrecovery eye can be, the more rapid one can 
expect recovery to be. Theorem 9 is saying that given the eye 
is initially closed (an arbitrary error state) it will always open 
after at most some finite time K (and again this is quantifiable). 

B. Comparison with the Exact Theory 
An exact theory treating error recovery capable (in princi- 

ple) of providing necessary and sufficient conditions on the 
system parameters for finite error recovery times and related 
problems can be found in [2]. One conclusion of [2] is that if 
inclusion in a certain region of the channel parameter space is 
a necessary and sufficient condition for a (guaranteed) finite 
error recovery time then that region is, without exception, a 
union of a (countable) number of polytopes, i.e., the region is 
bounded by hyperplanes. In contrast, the region determined in 
Theorem 6 has in general some curved boundaries (see Fig. 
5). Thus we can see immediately that Theorem 6 can only be a 
sufficiency result-a conclusion we arrived at earlier. How- 
ever, it is quite easy to strengthen Theorem 6 such that the 
region appearing in (4.5) is replaced by a suitable union of 
polytopes which contains the region (4.5). For example, in 
Fig. 5, the passivity analysis ice-cream cone region can in fact 
be replaced by the outer triangle in the theorem statement. The 
reason is the following. The property which defines the 
polytopes in [2] is that all points interior to a given polytope 
have indistinguishable error recovery properties [a manifesta- 
tion of the sgn(-) quantization in (2.3)]. Let us refer to all 
points inside a given polytope as isomorphic, then we have 
the following straightforward extension of Theorem 6. 

[Extended] Theorem 9: All channels h which are isomor- 
phic to at least one channel satisfying the passivity constraint 
in (4.5) have a guaranteed finite recovery time. 

Remarks: 
1) For example in Fig. 5 the outer triangle is composed of 

five polytopes (see also [2]) each of which intersect with 
the passivity region in (4.7). Therefore, e.g., h = (2, 
1.5, 0.75) violates (4.7) (e.g., at 0 = 135") but is 
isomorphic to h = (2, 1.1, 0.50) which does satisfies 
(4.7). 

2) The degree of passivity 61 > 0 that we can associate with 
any channel h can be maximized by searching over all 
channels which are isomorphic to h ,  thus giving a tighter 
overbound on the error recovery rate, e.g., h = (2, 0, 
0.9) has 61 = 0.1 but is isomorphic to h = (2, 0, 0 )  
with 61 = 1. This may explain why the passivity theory 
does not give the tight result of [6] in Table I. 

3) For FIR channels with less than or equal to three 
parameters, Theorem 9 provides both necessary and 
sufficient conditions for a guaranteed finite recovery 
time. It is not known whether this property holds for 
higher dimensions. 

C. M-ary Results 
The theory developed for binary systems can be extended to 

larger alphabets where M symbols are used. We outline some 
of the important differences. For brevity we restrict attention 
to zero delay systems. Let { a k )  E (1 - M ,  3 - M; -, M 
- 1) where M is positive and even. The standard decision 
function &(.) which replaces sgn(-) in the binary analysis is 
defined by 

& ( x )  i2 sgn ( x + 2 k ) .  
k =  1-M/2 

(6.6) 

Fig. 10. M-ary A'(h,) function. 

The M-ary version of (2.4a) where we have ideal equalization, 
becomes 

where rk is as in (2.4b) with the exception that ek E (0, 
k2;. . ,  -+2(M - 1)). 

Now suppose we had no residual ISI, i.e., rk = 0, then (6.7) 
reduces to 

from which it is clear that (with M 2 4) we need ho = 1 for 
error-free behavior. (This differs from the binary case, M = 2 
where it was only necessary that ho > 0.) Elaborating, we 
have the following. 

Lemma 10: Given ek-; = 0, v i  E Z,, and M r 4 even, 
then 

Proof: (Outline): If ho exceeds the upper bound in (6.9) 
then ak = M - 3 gets decoded as dk = M - 1 in (6.8). 
Similarly, if ho is less than the lower bound in (6.9) then ak = 
M - 1 gets decoded as dk = M - 3. These symbols define 
the critical cases. 

So, in summary, we require the right-hand condition in 
(6.9) to be in force if the M-ary error recovery problem is to 
be well posed. 

Consider the error propagation mechanism for the well- 
posed M-ary problem. We now verify that the operator 6: 
which maps r to z = - e (the residual IS1 to the negative of the 
errors) is passive, indeed sector bounded. The proof is not 
difficult and given only in outline. 

Lemma 11: Let rk 4 hiek-, and zk A - ek = ek - ak. 
Then the operator C: r -- z is sector bounded according to 

where (see Fig. 1 1) 

( M -  l )ho-  ( M - 2 )  if h o r l ;  A1(ho) i2 
- ( M - 3 ) h o + ( M - 2 )  if h o l l ,  

(6.11) 

provided the M-ary error recovery problem is well posed, i.e., 
ho satisfies (6.9). 

Proof: (outline): That zk / rk  is nonnegative will be 
implicit in the following development. To compute the upper 
bound we search over all possible values of zk E (0, + 2, - - . , 
& 2 ( M  - 1)). Note we can restrict attention to the set (2, 
4, - - a ,  2 ( M  - 1)) by symmetry (and discarding the zero error 
case which cannot violate passivity). We begin with zk = 2. 
By definition this implies zk = 2 * ek = &(hoak + rk)  = ak 
+ 2 which in turn implies 
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and 

With zk = 2 fixed, the two critical inequalities which 
minimize rk [in the light of (6. lo)] are: 1) the LHS of (6.12a) 
with ak = 1 - M, and 2) (6.12b) where ak = M - 3. 
Imposing further that rk > 0 (i.e., stipulating that the non- 
linearity lies in the 1 st quadrant) leads to the two line segments 
which define A1(ho) (6.1 l), shown in Fig. 10. We can verify 
that other values of zk > 2 do not yield higher values for the 
ratio zk/rk and the methodology is the same as the above. 

Fig. 10 shows the function A'(-) versus ho. At a conceptual 
level A'(.) may be thought of as an effective cursor replacing 
ho. Note A'(M - 2/M - 1) = 0, A'(M - 2/M - 3) = 0 
and A'(1) = 1 (the maximum). In analogy to Theorem 6 (and 
Fig. 3), we have the M-ary result where M r 4 is even. 

(M-ary) Theorem 12: Suppose ak E { 1 - M, 3 - M, . . , 
M - 1) is the input to a linear channel h P {ho, hl;..) 
which satisfies (6.9) (to be well posed) and I h, 1 = 
O(m-3/2-E) as m + w where E > 0. Suppose 36 > 0 such 
that 

A'(h0)+ .i h. cos (m8) r  6, V8 E 10, 2x1 (6.13) 
2 m=1 

where A1(ho) is given by (6.11). Given an ideal DFE output 
sequence {Ck ) generated through (6.7) then for some K < 00, 

we have (ik = ak, tlk B K. 
Remarks: 
1) Theorems relating the rates of convergence and robust- 

ness for the M-ary case can be generated by analogy 
with the binary case. 

2) The error recovery rate is most rapid with ho = 1 which 
implies A '(ho) = 1 because this makes (6.13) the most 
strictly passive, which is in accord with intuition. If ho 
differs from 1 there will be a diminishing of passivity 
and hence a drop in the rate of error recovery (this is 
represented graphically in Fig. 10). This highlights the 
crucial role that gain compensation plays in the M-ary 
case (not a consideration for the binary case). 

3) Normalized channels where h is scaled such that ho = 1 
(e.g., if we had ideal gain compensation in the DFE), 
whsch results in a finite recovery time for binary 
symbols will also have a finite recovery time for the M- 
ary case because then conditions (6.13) and (4.5) are 
identical. The explicit error recovery times, however, 
will be different as we now indicate. Letting KM(p) 
denote the error recovery time bound for the M-ary case, 
in analogy to (5.7), then this is related to the binary error 
recovej time bound K(p) via 

To prove this note that in a calculation which mimics (5.4) the 
factor of 4 (the maximum binary error squared) is replaced by 
4 (M - 1)' (the maximum M-ary error squared). 

D. Noise and Asymptotic Error Probability Bounds 

In [3] it is shown how the mean error recovery time is 
related to the error probability in the important case-of a high 
SNR channel. To calculate an error ~robabilitv bound we 
include additive channel noise with variance a: into the 
analysis, and following [I] we define the fully open eye error 
probability as E P Pr(Ck # ak Irk = 0) where rk is the residual 
IS1 (2.4b), and E = O(u2) (Chebyshev's Inequality, [3]). We 
can then use the techniques in [3] to bound asymptotically the 
stationary error probability PE P Pr(& # ak) for channels 
satisfying the conditions (5.2) and (5.3), via 

where K(p) is the passivity analysis error recovery time bound 
which appears in (5.7). From Table I, bound (6.14) may be 
anything up to a factor of loZ0 tighter than the oft-cited result 
in [I] which says PE 5 e 2" (effectively derived by replacing 
K(p) by 2(2" - 1) the worst case error recovery time implicit 
in 143). 

VII. CONCLUSIONS 

A. Summary 

We make a list of the main contributions of this paper. 
1) Any channel satisfying the Nyquist conditions in Theo- 

rem 6 (or its variants Theorem 9 and Theorem 12) will have a 
finite recovery time regardless of the initial conditions and 
regardless of the particular input sequence. These channels 
possess no pathological input sequences. 

2) The maximum time to recover from error can be 
bounded in terms of the degree of strict passivity of a operator 
derived from the channel parameters. This degree of passivity 
is intimately related to a posterror recovery eye diagram 
opening and an overbound on the rate of recovery. 

3) With imperfect equalization this (post recovery) eye 
closes in proportion to an /,-norm measure between the ideal 
DFE tapped delay line parameters and the actual values. The 
eye also closes when we use too few tap parameters in the 
DFE. 

4) In the absence of ideal equalization, it is possible for the 
DFE to exhibit nice error recovery properties in a delay sense, 
i.e., the DFE output always settles down in a finite time to a 
fixed delay of the input with a possible (fixed) sign inversion. 
The conditions under which this behavior is possible are 
stringent and have been determined. 

5) The techniques extend naturally to M-ary systems. 
Under ideal gain compensation (scaling of h such that ho = 1) 
any channel which behaves satisfactorily for binary signals 
will be satisfactory for M-ary signals (and vice-versa) because 
the conditions for passivity will then be identical. 

6) A bound on the error probability for high signal-to-noise 
ratio channels has been given based on the passivity tech- 
niques. 

B. Discussion 

Up until now there has been scant theoretical justification 
that nontrivial, nonadaptive DFE's behave satisfactorily be- 
cause of error propagation, perhaps only [5], [6] being 
relevant. This is in stark contrast with the purported popularity 
of DFE's in practice. Previous theoretical work [I], [4], 171, 
181 concentrated on bounds which turn out to be hopelessly 
conservative in the majority of cases. These latter bounds will 
not be improved without relying heavily on explicit knowledge 
of the channel to be equalized-this was emphasized in 121, 131 
and [6] In this paper, we have determined some nontrivial 
broad classes of channels for which a DFE can be effectively 
used (the results in [5], [6] are very narrow and are subsumed 
by our present analysis). This class, motivated by the work in 
[6], includes channels which have near exponential impulse 
responses-thus capable of modelling twisted pair cable [ l  11. 
This provides some theoretical justification to the (controlled) 
use of DFE's in practice. 

As well as defining a nontrivial case of channels for which 
the DFE behaves satisfactorily, the passivity analysis appears 
to provide an opportunity to clarify the role and function of a 
DFE. Recently, the intuition that sensibly the DFE can only be 
used on minimum phase channels was shown to be misguided 
[2]. In [2] it is highlighted that minimum phaseness or near 
minimum phaseness of 

is not enough to imply satisfactory DFE error recovery. In 
comparison we have shown that the stronger notion of strict 
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passivity of the object (or its generalizations) 

is a concept which leads to a sensible decision feedback 
equalization problem (for both binary and M-ary alphabets). 
Naturally, strict passivity of (7.2) implies strict passivity and 
thus minimum phaseness of (7.1) [but not vice versa]. If the 
channel fails the passivity condition it is our contention that a 
linear equalizer with a DFE must be used. Note that our 
analysis covers the case of a cascade of a linear equalizer with 
a DFE because we can interpret h as being not just the channel 
impulse response but alternatively as the convolution of the 
channel impulse response with the linear equalizer. We 
interpret the function of the linear equalizer as being to 
transform the channel into a passive object which aligns well 
with the intuition that the linear equalizer is needed to remove 
precursor ISI. We believe this is a new way of viewing the 
digital equalization problem and we are pursuing these 
investigations further. 

The authors would like to thank Monsieur G. Pulford for his 
insights into the M-ary generalization. 
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