
State-space formulae for the factorization of all-pass matrix functions 

MICHAEL GREEN7 and BRIAN D. 0. ANDERSON? 

We consider the factorization of an all-pass matrix function E(s) using proper stable 
minimum-phase factors. State-space formulae for the stable minimum-phase factors 
of E(s) are derived (when they exist), as well as state-space formulae for the 
Wiener-Hopf factors. This is achieved using the state-space characterization of all- 
pass matrix functions given by Glover (1984) in conjunction with the results of 
Green and Anderson (1987). 

1. Introduction 
The recent trend toward the analysis of multivariable time series via the theory of 

canonical correlations (Akaike 1975, 1976, Jewel and Bloomfield 1983, Jewel et al. 
1983) has motivated the study of the structure of all-pass matrices, since the canonical 
correlation operator associated with a stationary time series is the Hankel operator of 
an all-pass matrix. In particular, the analysis of time series via canonical correlations 
has led to the formulation of a stochastic model reduction technique, called phase 
matching (because of other connections), based on the approximation of the canonical 
correlation operator (Jonckheere and Helton 1985, Desai and Pal 1984, Opdenacker 
and Jonckheere 1985). In the latter paper the multivariable version of this model- 
reduction technique was envisioned and further developed by Green and Anderson 
(1986) exposing the necessity for a more detailed knowledge of all-pass matrices. In 
particular, the technique depends on the availability of a factorization theory for all- 
pass matrices. The phase matching, or canonical-correlations, approach to stochastic 
model reduction requires the factorization of an all-pass matrix (the phase matrix, the 
Hankel operator of which is the canonical correlation operator) E(s) using proper 
stable minimum-phase factors V(s), W(s) such that 

E(s) = V(-s)-' W(S)* (1.1) 

A complete solution requires that state-space realizations of the factors V(s), W(s) 
satisfying (1.1) be given. Our earlier paper (Green and Anderson 1987) was concerned 
with a number of fundamental issues. Does an arbitrary all-pass matrix have a 
factorization as in (1.1)? (It does not.) How can one characterize the class of all-pass 
matrices that do have such a factorization? Are the factors V(s), W(s) in (1.') unique? 
(They are not.) What are the key properties of the factors V(s) and W(s)? These 
questions were approached by relating the stable minimum-phase factorization 
problem to the Wiener-Hopf factorization problem (see e.g. Clancey and Gohberg 
1981). The above questions were then tackled by applying the state-space 
Wiener-Hopf factorization theory of Bart et al. (1983) to the state-space characteriza- 
tion of all-pass matrices developed in Glover (1984), where the problem of optimal 
Hankel norm approximation was studied. The only formulae given in Green and 
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Anderson (1987) for the factors V(s) ,  W ( s )  were, however, transfer-function formulae 
relating V(s) ,  W ( s )  to the Wiener-Hopf factors of E(s). This paper develops state-space 
formulae for V(s) ,  W ( s )  satisfying (1.1) directly from the state-space characterization of 
all-pass matrices in Glover (1984). This enables a closed-form solution for the phase- 
matching/canonical-correlations stochastic model-reduction method of Green and 
Anderson (1986) to be given. As an extension (for completeness), state-space formulae 
for the Wiener-Hopf factors are also derived. 

The organization of the paper is pedagogical rather than deductive, and is as 
follows. Section 2 consists of notation, definitions, the state-space characterization of 
all-pass matrices and a summary of the major results of Green and Anderson (1987). 
Section 3 shows that the factorization problem is related to the positive-real lemma, a 
link that was suggested by the stochastic model-reduction application. This provides 
proper, stable but not necessarily minimum-phase V(s) ,  W ( s )  satisfying (1.1). Section 4 
develops conditions that ensure that the solutions provided by 5 3 are minimum- 
phase. This is done by treating two extreme cases and then showing how the general 
case can be solved by suitably combining the results of the two extreme cases. Section 
5 extends the results to the Wiener-Hopf factorization. 

2. Definitions, notation and preliminaries 
2.1. Definitions 

Let L, denote the space of complex measurable p x p matrix functions that are 
bounded on the imaginary axis. Then 

L,= H L O H ,  

where 

H L  = { H E  L ,  : H(s) is analytic in Re (s)  3 0 and such that H ( m )  = O} 

H i  = { H E  L ,  : H(s) is analytic in Re (s)  < 0) 

Note that H: contains all asymptotically stable, strictly proper, rational p x p matrix 
functions. 

Definition 
If H(s) E L ,  then H(s) is uniquely decomposable as H(s) = H+(s )  + H-(s) ,  

H , (S )EH:  

and H+(s )  is called the stable part of H(s). 

From now on we will be dealing only with rational matrix functions. Thus for 
convenience H ( s ) E L ,  will mean that H(s) is yational and in L,. 

Definition 
Let H(s) E L , and H +  (s )  = C(s1- A)-  ' B, with A n x n, be a realization of H +  (s). 

Let P, Q be the hermitian solutions of the Lyapunov equations 
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Denote by Ai(PQ) the eigenvalues of PQ, which are invariant under state-space 
transformation. The quantities ui(H) given by 

are called the Hankel singular values of H ,  and by convention are ordered so that 

The number of non-zero Hankel singular values of H(s) is equal to the McMillan 
degree of H+(s). Note also that H(s) and H+ (s) have the same Hankel singular values. 

Definition 

H(s) E H :  O I is called minimum-phase if H(s) is non-singular for all s E {Re ( s )  2 01, 
but not necessarily at s = m. 

Definition 
H(s)E L,  is called all-pass if it satisfies 

H(s)H(-i)* = I for all s (2.3) 

Remark 

Recall from Green and Anderson(1987), or deduce from Lemma 5.1 and Theorem 6.1 
of Glover 1984, that all-pass matrices have Hankel singular values less than or equal 
to 1. 

Definition 
Let E(s)E L, be all-pass with m,  stable and m, unstable poles (counting 

multiplicities), let r be the number of Hankel singular ualues of E(s) that equal 1 .  That is, 
r is defined by 

u l =  ... = u r z u r + , ~  ... >a,, i f a l = l  (2.4 a) 

r = O  if u, < 1 (2.4 b) 

By Lemma 2.1 of Green and Anderson (1987) 

2.2. State-space characterization of all-pass matrices 

Theorem 2.1 
Let E(s) G L, be all-pass with minimal realization 
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where A is in, x m, and stable, A is m, x m, with -2 stable, B and C* are m, x p, and 
Band C* are m, x p. Further suppose (A, B, C) is balanced, with controllability/ob- 
servability grammian 

Z=diag(or+,, ..., urn,, 1,) (2.8 a) 

= diag (Z,, I,) (2.8 b) 

satisfying 

AZ+CA*+BB*=O (2.8 c) 

A*Z+ZA+C*C=O (2.8 d) 

where r is given by (2.4). Then we have the following. 

(i) There exist unique P. = P:, Q, = Q,* such that 

A,P, + P,AT + B,B: = 0 (2.9 a) 

A:Q,+Q,A,+C:C,=O (2.9 b) 

Peee  = (2.9 c) 

D*D = I (2.10 a) 

D*C, + B:Q, = 0, DB: + C,P, = 0 (2.10 b, C) 

(ii) Partition 

where R, S are m, x m, and M, N are m, x m,. Then with 1 = m, - (m, - r), 
non-negative by (2.6), 

where 

r = g - I  (2.12) 

and Tis an m, x m, non-singular matrix. (Tis a similarity transformation on - - - 
the realization (A, B, C) of E (s).) 

(iii) Partition A, B, C conformally with Z as 

where A , ,  is (m, r )  x (m, - r) and B,, C: are (m, - r) x p. Note that B, is 
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the matrix formed from the last r rows of B. Define 

Then (with T as in (ii)) 

where 

Proof 
See Glover (1984). (i) is Glover's Lemma 5.1. (ii) For T>O (i.e. G,(E) = 1) is 

Glover's Lemma 8.2 with k =  0. For the case r = O  the result follows via the same 
reasoning as in the proof of Glover's Lemma 8.2. (iii) For r > O is Glover's Lemma 8.5, 
and with r = O the result follows similarly. Note also that the r = 0 case can be proved 
simply from the r > O case using the device of Glover's Remark 8.4. 

Remarks 

(i) The non-singular matrix T is just a similarity transformation on the realiza- 
tion (c, B) of E _  (s). From now on, we shall assume that E(s) is realized so 
that T = I. 

(ii) The zero columns of M, N in (2.11) and the subscript-2 blocks of A, B, c a r e  
present if and only if 1 = m2 - (m, - r) > 0. The zero rows of M, N and the 
subscript-2 blocks of A, B, C are present if and only if r > 0, i.e. G,(E) = 1. 

(iii) Observe from (2.7) and (2.8) that 

and (A, B, C) is a balanced realization of E+ (s) 

(iv) In addition to developing the characterization of all-pass matrices, Glover 
(1984) applied this characterization to  the problem of optimal Hankel norm 
approximation of linear systems. This application was concerned with the 
additive decomposition of all-pass matrices. Here we apply Glover's all-pass 
characterization theorem to develop a product decomposition of all-pass 
matrices. 

Definition 
An all-pass matrix E(s) EL, with in, stable and m2 unstable poles and r defined by 

(2.4) will be called a minimal all-pass matrix if 

m2=m, - r  (2.1 7) 

The term 'minimal' derives from (2.6), and it follows from Theorem 2.1 that for a 
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- - - 
minimal all-pass matrix, the subscript-2 blocks of A, B, C do not exist. That is, I = 0 in 
Theorem 2.1. Thus all-pass matrices constructed by Glover's Theorem 6.3 are 
minimal. The following theorem derives from Glover's Theorem 6.3. 

Theorem 2.2 (Minimal all-pass extension theorem) 
Let G(s)eH; be a matrix function of McMillan degree m with balanced 

realization (A, B, C) satisfying 

and controllability/ohservability gramian 2 satisfying (2.8). Partition A, B, C conform- 
ally with C as in (2.13) and let D be any unitary matrix satisfying 

(Note that if r = 0, i.e. Z < I, D may be an arbitrary unitary matrix, since B,, C, do not 
exist.) 

Define A", , (m - r) x (m - r), B, (m - r) x p, C", p x (m - r)  by (2.14 a, b, c), and let 
E(s) be given by 

E(s)=D+c(sz-A)-~B-C,(SI -A, , ) -~B,  (2.20) 

Then E(s) is the unique minimal all-pass matrix satisfying 

E+ (s) = G(s) and E(m) = D (2.21) 

Proof 
This follows directly from Theorem 2.1. 

The message of Theorem 2.2 is that minimal all-pass matrices are completely 
determined by their stable part and their direct feedthrough term (E(m)). 

Notice that minimality in the context of Theorem 2.2 has the interpretation that an 
all-pass matrix E(s) satisfying (2.21), with G(s) prescribed, is minimal just when it has 
least possible McMillan degree among the class of all all-pass matrices satisfying 
(2.21). 

2.3. Factorization 
In this subsection we review the basis of Wiener-Hopf factorizations, and their 

relationship to stable minimum phase factorizations, the material being a summary of 
the results developed in Green and Anderson 1987. 

Theorem 2.3 (Clancey and Gohberg 1981: (generalized) Wiener-Hopf factorization) 
Let H(s) E L ,  have no zeros on s = jw, w E 1R u {m}. Then H(s) has a Wiener-Hopf 

factorization 
H(s) = H- (s)D(s)H+ (s), s = jw, w G lR (2.22 a) 

where 

(i) H +  (s) is proper, stable and non-singular in (Re (s) 2 0) u {m); 
(ii) H-(s) is proper, completely unstable ( € H i )  and non-singular in 

{Re (s) < 0) u {a); and 

(iii) 
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The numbers ki are integers, called the partial indices of H, and they are uniquely 
determined by H(s). 

Theorem 2.4 
Let H(s)EL, have no zeros on s = jo,  w E R u  {m}. Then 

H(s)=V(-s)-'W(?)*, s = j o  (2.23) 

with V(s), W(s) proper, stable and minimum-phase if and only if H(s) has no (strictly) 
negative partial indices. When this is the case 

W(i)* = C+ (s)H+ (s) (2.24 a) 

where H,(s), D(s) satisfy (2.22) and C+(s) is an arbitrary matrix function whose 
elements satisfy 

[C+(s)], is constant if kj = 0 (2.25 a) 

[C+ (s)], is a polynomial in (1 + s)-' of degree <kj if kj > 0 (2.25 b) 

and 
det C+(s)=a(s+ l)-k (2.26 a) 

with 
P 

k =  1 k . =  I ml -m2 (2.26 b) 
j = o  

and cr an arbitrary non-zero constant 
Furthermore, let 

p = rank V(w) = rank W(m) (2.27) 

then 
p - 1  i f k > 0  

number of zero partial indices < p < { (2.28) 
p i fk=O 

and for every p satisfying (2.28) there exists a V(s), W(s) pair satisfying (2.23), (2.27). 

Theorem 2.4 connects proper stable mininum-phase factorization of matrix 
functions with Wiener-Hopf factorization. Note that from (2.28) it follows that the 
only case when the rank of V(m), W(m) is uniquely determined is when all the partial 
indices are zero, in which case V(m), W(m) are non-singular and V(s), W(s) are unique 
up to a constant non-singular matrix (by (2.25)). Also, V(m), W(m) can he zero (i.e. 
V(s), W(s) strictly proper) if and only if k, > 0 for all j; of course they do not have to 
be zero in this case, but they do have to be singular. 

Theorem 2.5 
Let E(S)EL, be all-pass with realization A,, Be, C,, D as in Theorem 2.1. Then 

(b) the numher of strictly positive partial indices =rank B,; 
(c) the strictly positive k j  are the (non-zero) controllability indices of 

(A223 Bz); 
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(b) the number of strictly negative partial indices is equal to rank 6 (= 
rank c,); 

(c) the strictly negative partial indices are a permutation of the negative of the 
observability indices of (e,, A,,)-that is, k j  < 0 if and only if k j  is an 
observability index of (C",, A",,) (we do not count zero observability 
indices here). 

We now put together Theorems 2.5 and 2.4 to obtain a characterization of all-pass 
matrices that can be factored as in (1.1). 

Theorem 2.6 
Let E(s) E L, be all-pass with m, stable and m, unstable poles. Let r be defined by 

(2.4) and k j ,  j = 1, ..., p be the partial indices of E(s). Then 

with V(s), W(s) proper, stable and minimum-phase if and only if E(s) is a minimal all- 
pass matrix, i.e. m, = m, - r. Furthermore, 

(a) V(m), W(m) are non-singular if and only if r = 0 (so m, = m,); 
(b) V(m), W(m) are singular if and only if E(s) is a minimal-degree Nehari 

extension of E + (s), i.e. r > 0; 

(c) E(s) is the unique Nehari extension of E+(s) (among all possible Nehari 
extensions, whether or not all-pass) if and only if k j  > 0 for all j. 

Proof 
(a) follows from Theorem 2.4 and (2.30) of Theorem 2.5. 
(b) follows from (a)-note that since E(s) is all-pass IIE(s)lI, = 1, SO E(s) is a Nehari 

extension of E+(s) iff a,(E+) = 1, since a Nehari extension N(s) must satisfy N+(s) = 

E+(s) and llN(s)ll,=~~(E+). 
(c) follows from Theorem 2.5 (i) (b) and Theorem 8.7 of Glover 1984. 

Theorem 2.2 provides state-space formulae for an additive decomposition of a 
minimal all-pass matrix, while Theorem 2.6 asserts that minimal all-pass matrices 
have a certain multiplicative decomposition. The subject of this paper will be to use 
the state-space characterization of Theorem 2.2 to develop state-space formulae for 
the multiplicative decomposition of Theorem 2.6. More generally, we will use 
Theorem 2.1 to develop state-space formulae for the Wiener-Hopf factorization of 
all-pass matrices. 

3. Factorization and the positive-real lemma 
The role that stable minimum-phase factorizations of (minimal) all-pass matrices 

play in the phase-matching stochastic model-reduction algorithm (Green and Ander- 
son 1986) provides a clue as to how state-space formulae for the factors can be 
obtained. There is a natural relationship between V(s), W(s) satisfying (1.1) with E(s) 
all-pass and a positive-definite hermitian matrix P(s): since E(s) is a minimal all-pass 
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matrix, it follows that 

giving 

Thus V(s), W(s) are left and right stable, minimum-phase spectral factors of the 
'power spectrum' P(s). Given a power spectrum P(s), it is known how state-space 
formulae for stable V(s), W(s) satisfying (3.1) can be obtained and how to  ensure they 
are minimum phase (see e.g. Anderson and Vougpanitlerd 1973). An important role is 
played by the positive-real lemma in this construction. However, since we are dealing 
here with complex matrix functions, we shall generalize this concept to positive 
complex matrices and take the positive-real lemma, modified to allow complex 
matrices. as our definition. 

Definition 
A p x p complex proper rational matrix function 

Z(s) = J + H(s1- F)-' G, with (H, F, G )  minimal (3.2) 

will be called a positive complex matrix if there exist complex matrices P, L, W with 
P = P* > 0 such that 

P F  + F*P + L*L= 0 (3.3 a) 

PG=H*-L*W (3.3 b) 

W * W = J + J *  (3.3 c) 

The number of rows of Wand L is unspecified, while the number of columns of Wand 
L, as well as the dimension of P, is automatically fixed. 

If P(s) is a proper rational matrix, non-negative Hermitian for all s = jo, then there 
exists a positive complex matrix Z(s) such that 

P(s) = Z(s) + Z(- g* (3.4) 

This decomposition gives the following spectral-factorization result. 

Theorem 3.1 (Spectral factorization-see Anderson and Vongpanitlerd 1973) 
Let Z(s) be a positive complex matrix with realization as in (3.2). Let P, L, W be 

any solutions of (3.3). Define W(s) by 

Then 

Furthermore, W(s) is minimum-phase if (P, L, W) is a minimal solution of (3.2), i.e. 
P < P, where (F,  i, TV) is any other solution of (3.3). 

A left-spectral factor of P(s) can be obtained using Theorem 3.1 on Z(S)* instead of 
Z(s). This gives 
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where 

V(s)= V+ H(s1- F)- 'K  (3.8) 

and (Q, K, V) satisfy 

FQ+QF*+KK*=O (3.9 a) 

QH*=G-KV* (3.9 b) 

V V * = J + J *  (3.9 c) 

The following result is the major clue as to how the stable minimum-phase 
factorization of minimal all-pass matrices can be achieved. 

Le~nnta 3.1 
Let Z(s) be a p x p positive complex matrix with realization as in (3.2). Let V(s), 

W(s) be p x p left- and right-stable, minimum-phase spectral factors given by (3.5), 
(3.8) and let E(s) L V(-s)-' W(S)*. Then 

Proof 
See Green and Anderson (1986). 

It follows from (3.6) and (3.7) that E(s) is all-pass, and since V(s), W(s) are 
minimum-phase, E(s) is minimal by Theorem 2.6. 

The way that Theorem 3.1 is usually used (i.e. in the spectral-factorization 
problem) involves starting with (J, H, F, G) and finding (P, L, W). Lemma 3.1 suggests 
that to factorize an all-pass matrix E(s) we might use Theorem 3.1 backwards. That is, 
we start with K, F, L(and therefore P, Q satisfying (3.3 a) and (3.9 a)) and we look for 
G, H, V,  W satisfying (3.3 b, c) and (3.9 b, c). The result is the following. 

Theorem 3.2 
Let E(s) E L, he a minimal all-pass matrix with realization E(s) = D + C(sI - 

A -  ( I  - ) ' B ,  as in Theorem 2.2. Let G, H* m x p, V,  W p  x p be any 
solutions of 

(a solution procedure is discussed below). Define 

W(s)= W+B*(sl-A*)-'G (3.12 a) 

V(s) = V t H(s1- A*)-' C* (3.12 b) 

Then 

V(-s)E(s) = W(S)* (3.13) 

Before proceeding to the proof, we shal! establish a connection between G, H and 
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B, ,  C1 that facilitates the proof, and solves (3.11) for part of G and H. We also 
observe how (3.11) can be solved for the rest of G, H not covered in the lemma. 

Lemma 3.2 
Let A, 5, C, Z, D and G, H, W,  Vbe as in Theorem 3.2. Partition G, H conformally 

with B, C. Then 
G,= -B,w (3.14 a) 

H ,  = - vC,r-' (3.14 b) 

where B1, e,, r are given by (2.14), (2.12). 

Proof 
Consider the 1-blocks of (3.11 a, b): 

Z ,G,=HT-B,W (3.15 u)  

Z , H T = G , C T D W  (3.15 b)  

Premultiply (3.15 a) by C ,  and add to  (3.15 b) to obtain 

(z; - I )G,  = -(Z,B, t Cf D)W 

and (3.14 a) follows from (2.12), (2.14). The procedure is similar for (3.14 b). !I 

The above lemma shows how to  find G I ,  H I .  To see how G,, H,, K V are 
determined, consider now the 2-blocks of (3.1 1 a, b): 

Obviously W must be chosen to satisfy 

in which case G, can be chosen arbitrarily and H,  defined by H: = G, + B,W. 
Equation (2.19) guarantees that (3.16) is satisfied for all W. Thus G, and W can be 
chosen arbitrarily. 

Proof of Theorem 3.2 
By Theorem 2.2, E(s) is given by (2.20). Thus 

V(-s )E(s )=[V+H(-s l -  A*) - ' c*][D+c(s~-  A ) ~ ' B - ~ , ( ~ ~ - A " , , ) - ' B , ]  
= V D +  VC(s1-A) - 'B-  ~ C , ( s l - ~ , , ) - ' ~ ,  +H(-s l -A*) - 'C*D 

+ H(-s l -  A*)- 'C*C(sl- A ) - ' B  

- H ( - ~ I - A * ) - ' c * C , ( ~ ~ - A , , ) - ' B ,  (3.17) 

Now observe from (2.8 d) that 
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Also, it follows from the (1,3)- and (2,3)-blocks of (2.9 b), together with (2.11), that 

Thus 

H(-SI - A*)-'C*C,(sl- A",,)-'B^, = ~ , r ( s l -  A" , , ) 'B ,  

( I  - A ) ]  (3.20) 

Substituting (3.18) and (3.20) into (3.17), we obtain 

V(-s)E(s) = VD + (VC + HX)(sI - A ) ' B +  H(-sl- A*)-' C*D + XB - ( El) 
where the following have been used: 

Theorem 3.2 essentially provides a class of solutions to the factorization part of 
our problem. There is no guarantee, however, that all V(s), W(s) pairs constructed via 
Theorem 3.2 are minimum-phase, although they are obviously proper and stable. In 
the next section we shall show how to choose the free parameters G ,  and W so that 
V(s), W(s) in (3.12) will be minimum-phase. 

4. Minimum-phase conditions and the product decomposition of V(s), W(s) 
In this section we seek to define a subset of solutions to (3.11) such that the 

associated factors V(s), W(s) of E(s) are minimum-phase. This task will be divided into 
three subsections. Initially, we consider the case where Z c I (r  = 0), implying that the 
G ,  block does not exist, so we only have to decide how to choose W Next we deal 
with the other extreme case X = I, which implies that E(s) is a stable all-pass matrix. 
The final subsection shows how for the general case 0 < Z < I  the matrices V(s), W(s) 
can be obtained by combining the solutions for these two extremes. 

4.1. ThecaseO<Z<I( r=O)  
For this case the subscript-2 blocks of 5 3 are non-existent, so that G, H are 

completely determined by (3.11) as in Lemma 3.2, and the only free (matrix) parameter 
is W 
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Lemma 4.1 
Let A be m x m stable B, C* m x p and satisfying (2.8 c, d) with 0 < Z < I. Let 

G ,  H* be m x p, t! W p  x p and satisfying (3.11) with D an arbitrary unitary matrix. 
Then V(s), W(s) given by (3.12) are minimum-phase if and only if Wis non-singular. 

Proof 
We prove the result by showing W(s)-' and V(s)-I are stable. Observe from 

Lemma 3.2 that W(s) is given by 

(Since r = 0, we have B = B, and A =A,, . We use A,, ,  B, for later reference.) Thus if 
Wis singular then W(s) is singular for all s and so cannot be minimum-phase. 

Now suppose W is non-singular. By the matrix-inversion lemma, 

so we need to show that A:, + B , B ~  is a stable matrix. From the (1,3)-block of(2.9 a), 
together with (2.11), it follows that - 

A:, +B,BT= - A , ,  (4.2) 

Thus W(s)-' is stable, since A",, is completely unstable by Theorem 2.1, so W(s) is 
minimum-phase. 

Similarly by Lemma 3.2, 

V(s) = VLI - e , r - ' ( s l -  Af,)-'c:] 

Thus singular W implies singular V by (3.11 c), so V(s) is not minimum-phase. 
Conversely, with Wnon-singular Vis non-singular, and it follows as for W(s) that 

V(s) is minimum-phase from the observation that by the (1,3)-block of (2.9 b): 

Corollary 4.1 
Let E(S)G L, be a minimal all-pass matrix with a,(E) < 1 and realization 

E(s) = D + C,(sl- A,,)-'B, - ~,(s l-A"l , ) - 'B,  as in Theorem 2.2. Then V(s), 
W(s) satisfy (1.1) and are proper, stable and minimum-phase if and only if 

where W is an arbitrary p x p non-singular matrix. 

Proof 
E(s)= V(-s)-'W(F)* follows from Theorem 3.2 and Lemma 3.2. V(s), W(s) are 

stable by the stability of A and are minimum-phase by Lemma 4.1. That (4.4) defines 
all solutions follows from Theorem 2.4-see the remarks following Theorem 2.4. 

4.2. Factorization of stable all-pass matrices-the case Z = 1 
Subsection 4.1 dealt with the case when the subscript-2 blocks of 3 were non- 

existent. This subsection deals with the opposite extreme, where the subscript-1 blocks 
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are non-existent. We shall continue to use a subscript 2 so that we can later refer to the 
results without confusion. Note that when Z = I we have r = m in theminimal all-pass 
extension theorem, so the minimal all-pass extension of C,(sl -A,,)-'B, is just 
D + C,(sl - A 2 , ) ' B 2 ,  where D satisfies (2.19), and this is a stable all-pass matrix. 
Note that the Lyapunov equations (2.8 c, d) are 

Lemma 4.2 
Let A be r x r stable, B, C* r - x  p and satisfying (2.8 c, d) with 2 = 1. Let G, H* be 

r x p, T! W p x p and satisfying (3.11) with D satisfying (2.19). Let V(s), W(s )  be given 
by (3.12). Then so is a finite zero of W(s)  if and only if -so is a finite zero of V(s). 

Proof 
so is a finite zero of W(s) if and only if there exist vectors x ,  y not both zero such 

that 

o ( s , l - A ; , ) x + G y = O  and -B:x+Wy=O 

-(sol-  A,, + B,B;)x+(H:- B,W)y = O  and -B:x+ W y  =O by (4.5) 

and (3.11 a) 

o ( s , l -  A,,)x + H:y - B,(-B:x + Wy) = 0 and - Bzx + W y  = 0 

-(sol -A,,)x+ HTy=O and C,x+ V * y  = O  by (2.19) and (3.11 c) 

[ I  - A c?] 
9 ( - x *  - y*) = 0 

-Hz V 

c, -so is a finite zero of V(s). 

Corollary 4.2 
Let E(s) E L,  be a stable all-pass matrix. Let V(s), W(s )  be proper, stable and satisfy 

(1.1). Then V(s), W(s )  are minimum-phase if and only if they are non-singular for all 
finite s. 

Proof 
This follows from Lemma 4.2. Alternatively, consider the following argument. 

Suppose that V(s),  W(s )  are minimum-phase. Then V(-s) ,  W(S)* have no common 
zeros. It follows from (1 .1 )  that the poles of E(s) are the zeros of V(-s)  and the poles of 
W(S)*. Clearly then, since E(s) is stable and any zeros of V(-s )  must be unstable, V(s) 
has no finite zeros. That W(s)  has no finite zeros follows by applying the above 
argument to E ( s ) '  = E ( - S ) * .  Conversely if V(s),  W(s )  have no finite zeros then they 
are minimum-phase. 0 

As a consequence of Lemma 4.2, we must show how to choose G ,  and W 
in Theorem 3.2 such that V(s), W(s) have no finite zeros. First, consider W(s) = 
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D(s)-'N(s), where N(s), D(s) are coprime polynomial matrices with D(s) row-reduced. 
The finite zeros of W(s) are given by the solutions of det N(s) = 0. Thus for W(s) to 
have no finite zeros, we must have det N(s) = non-zero constant, i.e. N(s) is a 
unimodular polynomial matrix. Observe from (3.12 b) that D(s) is determined and 
the choice available for W, G, affects only N(s). The simplest way to make N(s) 
unimodular is to make it lower-triangular with constants on the diagonal. This can be 
done as follows. 

Lemma 4.3 
Let A,, be r x r stable, B, r x p with (A,,, B,) controllable. Let q rank B,  and 

TI be a p x p non-singular matrix such that B, = [B, 01 TI, with 5, r x q and of rank 
q. Let T, be the r x r non-singular similarity transformation transforming (A22, B,) to 
controllable canonical form (see equation (3.6.9) of Wolovich 1974) and v;, i = 1, ..., q, 
the controllability indices of (A,,, B,). Let A,, B, be defined as in Wolovich's 
structure theorem (Wolovich 1974, p. 105). Define 

W, is an arbitrary (p - q) x @ - q) non-singular matrix 

W: BB,' is an arbitrary q x q lower-triangular matrix 
with zeros on the diagonal 

GZ=LT2*G2 Y1 ( ~ x P )  

Y 1s an arbitrary r x @ - q) matrix 

G:= W ~ B ~ A ~ + N  

N , = i t h r o w o f N = [ N , ,  ... N, ,  0 ... 01 

Njj is a 1 x v j  matrix 

if i < j  

0 ... 01, where n, is any non-zero number if i = j  

arbitrary if i z j  

Then 
~ ( s )  = W+ B;(SI - A:,)-'G, (4.9) 

has no  finite zeros. 

Proof 
By (4.9) and the definition of TI, 

Hence W(s) has no finite zeros if and only if I, is non-singular and 

@s)A W, +B:(sI- A:,)-'T?~, 
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has no finite zeros. W2 is non-singular by construction, and we prove ~ ( s )  has no finite 
zeros by applying Wolovich's structure theorem (Wolovich 1974, p. 106, Theorem 
4.3.3) to w(s)*. This gives 

w('(s)* = [ ( 6 $  - W: B;'A,)s(s) + W: B; ' diag (s")]D(s)-I (4.1 1) 

where 

S(S)* = black diag ( [ I ,  s, ..., s " ' ] ) ,  i = 1, ..., q (4.12 a) 

D(s) is a polynomial matrix, non-singular almost everywhere, 

with column degrees vi, i = 1 ,  ..., q (4.12 b) 

Now from (4.6 c) 

W: B; ' diag (sV') = 0 (4.13 a) 

and from (4.7 c)  

6: - WTB;'A, = N (4.13 b) 

Hence, substituting (4.8), (4.13) into (4.11), 

w(z)* = N ( s ) D ( s ) - I  (4.14 a)  

N(s) is a lower-triangular polynomial matrix with column degrees < vi 
and with ni on the diagonal (4.14 b) 

Clearly det N(s) = n ni = a non-zero constant by (4.8 c), so W ( S )  has no finite zeros. 

The precise formulae for D(s), A,, B, can be found in Wolovich (1974). 
The lemma allows us to construct W ( s )  so that W =  W ( m )  has arbitrary rank 

between p - q and p - 1 (by (4.6)). This connects nicely with Theorem 2.4, (2.27) and 
(2.28), since 

p - q = p - rank B, = p - # { k j  > 0 )  by Theorem 2.5 

= # { k j  = 0 )  

where k j  are the partial indices of E(s) = D + C2(sI - A,,)-'B,. 

Corollary 4.3 
Let E(s) E L, be a stable all-pass matrix of degree r with realization D + C ,  

(s l  - A,,)-'B2 satisfying (4.5). Let G,, r x p, and W ,  p x p, be constructed in accord- 
ance with Lemma 4.3. Define 

V = ( D W ) *  

Then 

are proper, stable, minimum-phase and satisfy 
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Proof 
This follows from Lemmas 4.2, 4.3 and Theorem 3.2. 

4.3. Product decomposition of V(s), W(s)-The general case 0 < X G I 
In this subsection, taking our lead from Theorem 2.4, we shall show how to 

decompose V(s), W(s) given by (3.12) as a product of two matrix functions: 

where V,(s), W, (s) are stable, minimum-phase and non-singular at infinity (i.e. they are 
like the case treated in 5 4.1) and L(s) = V2(-s)' W2(s')* is stable all-pass (i.e. L(s) is 
like the case treated in 5 4.2). The result is the following. 

Theorem 4.1 
Let E(s)e L, be a minimal all-pass matrix with realization E(s) = D + C(sl - 

A)-'B- C",(sI - ~ , , ) - ' f i ,  as in Theorem 2.2. Define 

L(s) = D  + C2(sl - Az2)-'B2 (4.19) 

Then 

(i) V, (s), W, (s) are proper, stable, minimum phase and non-singular at infinity; 
(ii) L(s) is a stable all-pass matrix; 

( i )  E )  = V (- s ' L(s) W, (S)* (4.20) 

Proof 
(ii) That u s )  is a stable all-pass matrix follows from the (2,2)-blocks of (2.8 c, d) 

and Theorem 5.1 of Glover (1984). 
(i) Since A is stable, %(a) = Wl(co) = I, and (4.18) holds, it follows that V, (s), 

W,(s) are proper, stable and non-singular at infinity. Thus we need to show that they 
are minimum-phase. As in the proof of Lemma 4.1, we do this by showing W1(s)-' and 
Vl(s)-' are stable. 

To show W,(s)-' is stable, we need to show that A* + [@ 0]*B is a stable 
matrix: 

where we have used (4.2) and the (2,3)-block of (2.9 a), which gives 

A,, + B,@ = 0 (4.22) 

Since -all and A,, are stable, it follows from (4.21) that W(s) is minimum-phase. 
For V(s) we need to show that A* + C*[C",r-' 0] is a stable matrix. This follows 

as above using (4.3) and the (2,3)-block of (2.9 b), which gives 
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(iii) The proof of this is along the lines of the proof of Theorem 3.2: 

%(-s)E(s)= [ I +  [ e , r - '  O](sI+ A*)-"?] 

x [D+ C(sI -A) - 'B-C, (SI  - & l ) - l B l ]  
Observe that 

(sI+ A*)-'C*C(sI - A ) - ' B =  -Z(sI-  A ) - 'B+(s i+  A*)-'ZB by (2.8 d )  

and 

( s I + A * ) - ~ c * ~ , ( s I - ~ ~ ~ ) - ~ ~ ,  = -[r o ] * ( s I - A , , ) - ~ B ,  + ( s I+A*) [@r  0]* 

using (3.20). Hence 

V1(-s)E(s) = D  + [c, - ~ , X , T '  C,](sI - A ) ' B  

+ [e , r l  O ] ( S I +  A*)-'(ZB+C*D- [@r 0]*) 

= D + [ - D &  C,](s l -A)- 'B (4.24) 

where we have used the 3-block of (2.10 c), which gives 

D@ + c,X,T-' = 0 (4.25) 

and (3.23). 
By the matrix-inversion lemma, 

w l ( s ) - * = I + [ @  o ] ( ~ r - A ) - ~ s  (4.26) 

where 

A = A + B [ @  01 (4.27) 

Observe from (4.27) that 

(SI-A)-IB[B: o ] ( s ~ - A ) - ~ = ( s I - A ) - ~ - ( s I - A ) - ~  (4.28) 

Hence by (4.24), using (4.28), 

V,(-s)E(s)W,(S)-* = D + [0 C,](SI - 2)-'B 
= D + C,(si - A,,)-'B,, using (4.27) and (4.21) 

= Lb-1 0 

Theorem 4.1 gives a multiplicative characterization of minimal all-pass matrices 
instead of the additive characterization provided by Theorem 2.2. Of course, with 
Theorem 4.1 and Corollary 4.3 we have our stable minimum-phase factorization 
theorem. 

Corollary 4.4 
Let E(s) E L, be a minimal all-pass matrix with realization E(s) = D + C(sI - A)-'B 

- C",(sl- A,,)-'i?, as in Theorem 2.2. Let G,, H,, W ,  V be constructed in 
accordance with Corollary 4.3 and define GI,  H, by (3.14). Then V(s), W(s)  given 
by (3.12) are proper, stable, minimum-phase and satisfy E(s) = V(-s)- 'W(s)*. 
Furthermore, 
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v ( s )  = v2 ( s ) v ~ ( s )  (4.29 b) 

with Vl(s), Wl(s)  as in Theorem 4.1, see (4.18), and V,(s), W,(s) as in Corollary 4.3, see 
(4.15). 

Proof 
If (4.29) is true then it follows immediately from Corollary 4.3 and Theorem 4.1 

that V(s), W(s )  are proper, stable, minimum-phase and satisfy (1.1). Thus we need to 
prove (4.29). Consider the right-hand side of (4.29 b): 

V2(s)Vl(s)= v + H , ( s l -  A j i ; , ) - ' C ; - [ V e , r ~ '  O](sI- A * ) ' C *  

+ H,(sl - A;,)-'[AT, O](s l -  A*)-"?, using (4.23) 

= v + [ H ,  O I ( S I - A * ) - ~ C *  

+ H,(SI - A; , ) -~[LO I I ( S I  - A*)+ [A:, 011 
x (sl - A*)-'C*, using (3.14 b) 

= V +  [ H I  O](sl-  A*)-'C* 

+ H,(sl - A;,)-'[O s l -  A;,](sl - A*)-'C* 

= V +  H(SI  - A*)-'c* 

Thus (4.29 b) is equivalent to (3.12 b), with H,, V defined as in Corollary 4.3. 
It follows similarly, using (4.22) and (3.14 a), that W ( s )  defined by the right-hand - 

side of (4.29 a) is equivalent to (3.12 a). U 

(4 
Figure 1. Structure of V(s):  (a) Minimal realization; (b) product decomposition with feedback 

(minimal); (c)  product decomposition (non-minimal). 
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Consider V(s) given by (3.12 b). Now recall the product formula for transfer 
matrices, viz (in obvious notation) 

Now observe the formula (3.12 b) for V(s) and consider (3.14 b) and (4.23). V(s) is easily 
seen to be decomposable as a product with feedback from the state of T, to the state of 
TI ,  the feedback gain matrix being A:, (see Fig. 1). To completely decompose V(s) as a 
product, we need to take the feedback from T2 into account in our calculation of the 
state of TI, which we do by augmenting the state of TI with the state of T2 and 
assigning the output matrix from the T2 state to be zero. This leads to (4.18 b) for F(s). 
The observation that V(s), W(s) have the product described above plus feedback form 
is in fact how formulae (4.18) came about. Thus the product decomposition of V(s) in 
(4.29 b) contains two copies of the state of V,(s), one of which is uncontrollable. This 
can be simply verified by multiplying V,  and V, using the above product formula and 
performing an obvious state transformation. 

5. Wiener-Hopf factorization of all-pass matrices 
Until now, we have been dealing with the factorization of minimal all-pass 

matrices since we have been primarily concerned with the factorization (1.1). Now we 
turn to deriving formulae for the Wiener-Hopf factors of Theorem 2.3 in the all-pass 
case (for the general case see Bart et al. 1983). It is easily observed that Theorem 4.1 in 
fact provides a 'pre-Wiener-Hopf' factorization of a minimal all-pass matrix. The 
factorization of Theorem 4.1 is not quite a Wiener-Hopf factorization, because the 
centre term L(s) is not diagonal, nor does it have centralized singularities-see 
(2.22 b). In this section we first extend Theorem 4.1 to the case when E(s) is not 
minimal, thus providing a 'pre-Wiener-Hopf' factorization. We then show how to 
Wiener-Hopf-factorize the remaining central term (L(s) in Theorem 4.1). 

5.1. Reduction to a simple all-pass matrix 
In this subsection we extend Theorem 4.1 to non-minimal all-pass matrix 

functions. 

Definition 
Let E(s)E L, be all-pass and write 

E(s) = E(m) +- E + (s) + E _ (s) (5.1) 

with E+(s), E-(-s)eH;. E(s) will be called a simple all-pass matrix when E(m) + 
E+(s) and E(m) + E-(s) are both all-pass. 

Obviously, stable all-pass matrices are simple, as are completely unstable all-pass 
matrices. 

Lemma 5.1 
Let E(s)e L, be all-pass. Then E(s) is simple if and only if it can be written as 

E(s)= D + C,(SI - A,,)-~B, - C",(SI - A,,)-~B, (5.2) 

where (D, C , ,  A,,, B2) satisfy (4.5) and (2.19), and (e2, x,,, 4) satisfy (2.15 a, b, e). 
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Proof 
This follows from Theorem 2.1 

It also follows (from Lemma 5.1 or directly) that E(s) is simple if and only if 
E + ( s ) E - ( S ) *  = 0, where E+(s) are as in (5.1) (see (2.15 a)). Additionally, simple all- 
pass matrices can also be characterized by their factorization properties: by Lemma 
5.1 and Theorem 2.5, an all-pass matrix E(s) is simple if and only if the positive partial 
factorization indices of E(s) are the controllability indices of E(cQ)+ E+(s)  
and the negative partial indices are the negatives of the observability indices of 
E ( m )  + E _ (s). 

Theorem 5.1 
Let E(s)E L, be all-pass with realization 

~ ( s )  = D + C(SI - A)- 'B- e(s1  -L)-'B (5.3) 

as in Theorem 2.1. Define 

W,(S) = I - ~ * ( s l -  A*)-l[[B": OI* + [CIT- '  O]*C"2(sl + A"22)-1B21 (5.4 a) 

V,(s) = I [[C",r-' 01 + C",(s1+ ~ 2 2 ) - 1 B " 2 [ ~ ~ T - 1  O](s l -  A*)-'C* (5.4 b) 

Es(s) = D + C2(sl  - A Z 2 ) ' B 2  - C",(sl -AZ2)-'B2 (5.5) 

Then 

(i) Vl(s), W,(s) are proper, stable, minimum-phase and non-singular at infinity; 
(ii) E,(s) is a simple all-pass matrix; 
(iii) ~ ( s )  = v,(-s)-'E,(s)w,(s)* (5.6) 

Proof 
(i) Obviously V,(s), W1(s)  are proper and non-singular at infinity. Also, since A is 

stable and -Az2 is stable (by (2.15 e)), we see that Vl(s), W ,  (s) are stable. Thus we need 
to show V,(s) and W,(s) are minimum-phase. Write W,(f)* as 

A12 B ,  

I(.)*= I - LQ o Dz{sI - [ A "1 J 2 ]  (5.7) 

- AT2 -A:2 

where we have used (2.15 c) and the formula for triangular-block matrix inversion. 
W,(s) will be minimum-phase if W,(S)-* is stable. By the matrix-inversion lemma, 
W1(S)* is stable if A is stable, where 

A,, A12 0 

Now using (4.2), (4.22) and (2.15 d ) ,  observe that 

-A";, A,, -A,*, 
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and clearly, for an obvious non-singular X, 

-A":, A ^  A , ,  

(5.8 c)  

which is stable since -A" and A,, are stable. Thus W1(s)  is minimum-phase. It can 
similarly be shown, using (4.3), (4.23) and (2.15 c) that V1(s) is minimum phase. 

(ii) follows from Lemma 5.1. 
(iii) We show that 

First observe from (2.9) together with (2.11) that 

(s l  + A*) 'C*C(s I  - A ) '  = - Z ( s l -  A ) '  +(sI + A * ) ' Z  (5.10 a)  

( s I + A * ) - ~ c * C ( S I - A ) - ~ = N ( S I - A ) ~ - ( ~ I + A * ) ~ N  (5.10 b) 

where N is as in (2.1 1 e). Using (5.3), (5.4 b) and (5.10), 

v , ( - s )E(s )=~(s )+  [ [ C l r - '  01 - c " , ( s I - A 2 , ) ' & [ B T r 1  
- 011 

x [ - Z ( s I -  A ) - ' B + ( s I + A * ) ' ( ~ * + C * D  I ,4) B H 5 . 1 1 j  - 
Recall from (2.19), (2.14 b) and (2.11 +see (3.23)-that Z B  + C*D + NB= 0. Now 
consider the (s l  - A")-'B terms in (5.11): 

[ - C  - [ C , r - l  O]N  + C,(SI - A " 2 2 ) - 1 B 2 [ ~ 1 r - 1  O ] ( S I  - A")-'B 
= [ [ O  -c",] + c",(sI -A^,,)-'[A",, O]](sI -A^)B by (2.11 e) and (2.15 d )  

= -C,(SI -A^,,)-'[[0 s I -  A",,] - [A"2i;, O ] ] ( S I - X ) - ' B  
= - C 2 ( s ~ - A " 2 2 ) 1 [ ~  1113 

- 
= -C,(sI- A",,)-'B, (5.12) 

Thus 

V ( S ) E ( S )  = D - C2(s i  - A"22)-1i72 

+ [[c, - C , Z ~ T - '  c,] - C,(SI - A22)-1[A21~,r '  011 
x ( S I  - A ) ' B  (5.13) 

We now calculate Es(s)W1(F)*. First observe (2.15 a) and that 

(s l  - A2,)- '&i7~(s l  + A:,)' = ( s I - A " ~ ~ ) ~ '  - ($1 + A^:,)-' (5.14) 

by (2.15 e). Now using (5.4 a) and ( 5 3 ,  

E,(s)w,(~)* = E,(s)- E,(S)C[D: 01 + @(SI  + A":2)-1c":[~1r-1 O I I ( ~ I  - A)- 'B 

= E,(s)+ [ [ -D@ 01 + C,(SI - A,,)-~[A,,,o] 

+ C2(sl  -A",,)-'(&[& 01 + C , [ C , ~ - '  O])](s l -  A)-'B (5.15) 

using (2.15 b) and (4.22). Consider the C,(sl - A,,)-' terms: 
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C,(sI - A,,)-'[B, + [A,, O](sI - A)-'B] 

=C2(sI-A,,)-'[LO I](sI-A)+[AZ1 O]](SZ-A)-~B 

= C,(sI - A,,)-'I0 SI - A,,](sI -A)-'B 

= [O C,](sI-A)-'B (5.16) 

Also 

B,BT + C^,C,T-' = &(D*C, + B:X,)r-' - B,D*C~T ' ,  by (2.14 b) and (2.15 b) 

= B,BTx,~- '  = -A", ,z ,~-~,  by (2.15 d )  (5.17) 

Now substituting (5.17), (5.16) and (4.25) into (5.15), 

E,(s)W(i)* = D- C2(sI - ~ 2 2 ) - ' B 2  

+[[el - e , ~ , r - ~  c,] - C,(SI - A"22)-1[J21zlr~-1 011 
x (sI - A ) ' B  

= V(-s)E(s), by (5.13) (5.18) 

Figure 2 gives a block diagram for Theorem 5.1, from which the formulae for, and 
the symmetry between, W(f)* and V(-s)-I can he seen. 

It now remains to show how to convert a simple all-pass matrix to a diagonal all- 
pass matrix with centralized singularities (nomenclature from Bart et al. 1983), i.e. how 
to Wiener-Hopf-factorize a simple all-pass matrix. 

5.2. Wiener-Hopf factorization of simple all-pass matrices 

Definition 
Let H,(s)eL,, i = l,2, have no zeros on s = jw, w e  R u  {a}. HI(.$ will he said 

to he factorization-equivalent to H,(s) if H,(s) and H,(s) have the same partial 
factorization indices. 

Equivalently, H,(s), i = 1,2, are factorization-equivalent if and only if there exist 
H+( -  s), H ( - s )  proper, stable, minimum phase and non-singular at infinity such 
that H,(s) = H _  (s)H,(s)H+ (s). Thus in Theorem 5.1, E(s) and Es(s) are factorization- 
equivalent. This also follows from the definition, since by Theorem 2.5 the partial 
indices of E(s) are determined by A,,, B, and A",,, &, implying that E(s) and E,(s) 
have the same partial indices. 

This subsection shows how to construct H,(s), with the above properties, such 
that E,(s) = H-(s)E, (s)H+ (s), where El (s) and E,(s) are factorization-equivalent 
simple all-pass matrices. The idea is quite simple: write E,(s) = Xi(s)x(s) for some 
rational matrix functions X,(s), x(s) (not necessarily polynomial, or proper). Clearly 

Ez(s) = Xz(s)X~(s) '  E~(s)yI(s)-' Yz(s) 
The problem is then to show how to choose X,(s), x(s) such that Y1(s)-I Y,(s) and 
X,(-$XI(-s)-' are proper, stable, minimum-phase and non-singular at infinity. 

First consider the simplest case-that of stable all-pass matrices with all partial 
indices strictly positive (i.e. B full column rank by Theorem 2.5). For this we drop our 
previous subscript conventions on realization, because we now need to differentiate 
between realizations of different all-pass matrices. 
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Lemma 5.2 
Let E,(s)E L, be a stable all-pass matrix with partial indices k j >  0, j =  1, ..., p. 

Let E,(s)cL, be stable, all-pass and factorization-equivalent to E,(s). Let E,(s)= 
Ni(-s)Mi(s)-', i =  l ,2 ,  with Ni(s), Mi(s) coprime polynomial matrices and Mi(s) 
column-proper (Wolovich 1974). Define 

~ ( s )  = ~ , ( - s ) ~ , ( - s ) - l  (5.19 a) 

H+(s) = M1(s)M2(s)r1 (5.19 b) 

Then H +  (s), H-(s) are proper, stable, minimum-phase, non-singular at infinity and 

Proof 
It is trivial to verify (5.20). What need to be proved are the properties of H,(s). 

Consider first H+(s). Since E,(s), i =  l,2, are simple with no negative indices, their 
partial indices are their controllability indices. Since Ei(s) are factorization-equivalent, 
they have the same partial indices. Hence E,(s) have the same controllability indices k,. 
Consequently, M,(s) have the same column degrees k,, and have only LHP zeros since 

, Ei(s) are stable. It follows that H+(s) is proper (by Lemma 6.3-10 of Kailath 1980), 
stable (since M,(s) has only LHP zeros), minimum-phase (since M,(s) has only LHP 
zeros) and non-singular at infinity (since M,(s) have the same column degrees and are 
column-proper). 

Now since E,(m) are non-singular, it follows that the column degrees of N,(s) are 
equal to those of Mi(s), and Ni(s) are column-proper. Thus H_(s) is proper and non- 
singular at infinity. Since EL(-$' are stable (equivalently the zeros of E,(s) are in the 
right half plane) it follows that H-(-s) is stable and minimum-phase. 

If state-space formulae for H,(s) are desired, they can easily be obtained from 
(5.19) and Wolovich's structure theorem (Wolovich 1974). Also note that W(f)* = 
M(s)-' and V(s) = N(s)-' provides a stable minimum-phase factorization of E(s) 
with V(s), W(s) strictly proper. We now use Lemma 5.2 to handle the case of simple all- 
pass matrices. 

Firstly consider (2.15 a): BE* = 0. It follows that there exists a unitary p x p matrix 
U such that 

B = [ p  0 0]U and B=[O 0 

where p, Bhave full column rank. Also observe from Lemma 5.1 and Theorem 2.5 that 
for factorization-equivalent simple all-pass matrices E,(s), i = 1,2, rank B, = rank B, 
and rank El =rank E,. 

Lemma 5.3 
Let E,(s)E L,, i =  l ,2, be factorization-equivalent simple all-pass matrices with 

partial indices k j ,  j = 1, ..., p, and balanced realizations 

Ei(s) = Di+ Ci(sl - A,)-'Bi- C",(sl- L i ) ' B j ,  i = 1,2 (5.21) 

Let q h rank Bi and t h rank &, i = 1,2. Let Ui be p x p unitary such that 

Bi=[bi 0 O]Ui, i = 1 , 2  (5.22 a) 

&=[0  0 Pi]u,, i = 1 , 2  (5.22 b) 
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with pi,  8", full column rank. Let 

be irreducible polynomial matrix-fraction descriptions. Define 

N2(-s)N,(-s)- '  0 0 q rows 

~ ( s )  = D,u;' 1 0 UIDT (5.24 a) 

0 A Y , ( - S ) - ~ & ? ~ ( - S )  trows 

0 q rows 

H+(s)= U;' I 0 lu2 (5.24 b) 

0 m,(s)-'#,(s) t rows 

Then H+(s),  H -  ( -s )  are proper, stable, minimum-phase and satisfy 

Proof 
First note that A,, A ,  are the same dimension r x r, where r is given by (2.4) and 

a,, 2, are the same dimension I x 1 (by factorization equivalence and Theorem 2.5, 
since r = sum of positive partial indices, and 1 = -sum of negative partial indices). We 
also have (by factorization equivalence and Theorem 2.5) rank B, =rank B,  P q and 
rank Dl =rank B2 2 t. Also note that q + t < p by (2.15 a) and Lemma 5.1. By (2.19), 
for i = 1, 2, 

Thus (5.25) follows from (5.26), (5.24) and (5.23). 
By Theorem 5.1 of Glover (1984), I - PT(s1- A,)-'/I, is stable and all-pass, and by 

Theorem 2.5 it has strictly positive partial indices k,, ..., k,, since Pi has full column 
rank. Also, I - BT(s1- A , ) ' p ,  is factorization-equivalent to I - flf(s1 - A2)-'p2. 
Thus the hypotheses of Lemma 5.2 are satisfied. 

Similarly, [I + 8:(sI- A , ) - ' E ] - ' ,  i = 1,2, are factorization-equivalent stable all- 
pass matrices with strictly positive partial indices - kp- ,+  ,, ..., - kp.  

It now follows from Lemma 5.2 that H +  (s) and H _  (s) have the desired properties. 
D 
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With Lemma 5.3 in hand, we can now Wiener-Hopf-factorize a simple all-pass 
matrix, and therefore, in conjunction with Theorem 5.1, we can Wiener-Hopf- 
factorize any all-pass matrix E(s) E L , .  

Corollary 5.1 
Let E ( s ) E L ,  be all-pass with realization E(s) = D + C(s1-  A ) - 'B  - ~ ( S I  - ;?)-ID 

and partial indices k,, j = 1 ,  ..., p. Define V1(s) ,  W,(s )  and E,(s) as in Theorem 5.1 and 
E,(s) = Es(s). Define 

E,(s )  = D(s) = diag [(s - l)k'(s + l ) - k ' ] ,  j = I, ..., p (5.27) 

Define H,( s )  relating E, ( s )  and E,(s) as in Lemma 5.3. Then 

is a Wiener-Hopf factorization of E(s). 
Note that state-space formulae for D(s) in (5.27) are easily derived, and have been 

given by Bart et al. (1983). 
The Wiener-Hopf factorization of general rational matrices (in L , )  is considered 

in Bart et al. (1983), which is quite opaque. This theory could have been specialized 
to the case of all-pass matrices, but it is almost certainly easier to develop the 
factorization theory of all-pass matrices directly from the results of Glover (1984) 
using linear algebra and linear system theory, as we have done. The results of Bart et 
a / .  were used only to prove Theorem 2.5, and even this could now, in retrospect, be 
dispensed with. 

6. Conclusions 
State-space formulae for the stable minimum-phase factors of a minimal all-pass 

matrix and the Wiener-Hopf factors of an arbitrary all-pass matrix have been derived 
from the state-space characterization of all-pass matrices developed by Glover (1984), 
furthering the understanding of the structure of all-pass matrices. For example, we 
have related the inysterious importance of B, in Glover's work to the factorization 
properties of all-pass matrices. The results of this paper are, however, to be seen as of 
prime use in the analysis of the canonical correlation structure of stationary multiple 
time series. Applications in this area include the selection of canonical variables, the 
simplification of proofs, and most importantly the closed-form solution of a stochastic 
model-reduction algorithm, based on canonical correlation analysis, using practically 
implementable state-space formulae. This model-reduction algorithm in turn can be 
seen as providing a technique for the design of reduced-order Kalman filters for 
stochastic processes. 
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