Performance of suboptimal linear control systems

L. Meier and B. D. O. Anderson

Synopsis

It is shown that the calculation of the performance of a class of suboptimal linear control systems is similar to the calculation of the performance of an equivalent optimal system. The performances of both optimal and suboptimal linear systems have terms for cost owing to uncertainty about the initial state of the plant, a nonzero mean of the initial state, error in the estimate of the state, and error in control owing to additive noise at the input. A suboptimal system, in addition to having greater costs than the optimal system for each of these terms, has a cost term which vanishes if either optimal control or optimal estimation is used.

List of symbols

- \(x, x_0 \) = state and state estimate
- \(F, G, H \) = matrices describing a finite-dimensional dynamic system
- \(v, w \) = additive noise at output and input
- \(y, u \) = output and input
- \(K \) = feedback law
- \(V \) = performance index
- \(Q, R \) = weighting matrices for control problem
- \(M, N \) = noise-covariance matrices
- \(x_0, m \) = initial state and mean initial state
- \(S \) = state-estimate covariance
- \(S_0 \) = initial \(S \)
- \(L \) = feedback law for state estimator
- \(t_0, t_f \) = initial and final time
- \(\pi \) = state of suboptimal system
- \(P \) = matrix appearing in control problem
- \(E \) = expectation operator

Subscript \(s \) indicates parameters of suboptimal system

A prime indicates transposition

1 Introduction

The systems under consideration are linear finite-dimensional systems, with additive Gaussian noise at the input and output, and thus can be described by the state-space equations:

\[
\begin{align*}
\dot{x} &= F(t)x + G(t)u + w \\ y &= H(t)x + v
\end{align*}
\]

where \(x \) is an \(n \)-vector (the state), \(u \) is a \(r \)-vector (the input), \(y \) is an \(m \)-vector (the output), and the matrices \(F, G, H \) are of the appropriate dimensions. The terms \(v \) and \(w \) represent the noise, and are discussed later. Under certain conditions, discussed in later Sections, the optimum performance, given by

\[
V[E(x(t_0))], t_0 = \min E \left\{ \int_{t_0}^{t_f} (x'Qx + w'Rw)dt \right\}
\]

(2)
can be achieved by choosing

\[
u = -Kx_0
\]

(3)

where \(x_0 \) is the minimum-variance estimate of \(x \); i.e. a linear feedback of the best estimate of the state is used to provide the optimal input. The question now arises as to what \(V \) is under this feedback law, and what \(V \) results if the law is varied. The first is to change the feedback law \(K \); the second consists in using a suboptimal estimate of \(x \). Problems of this, or a similar, nature have been considered in References 1–4, which deal with discrete-time oroblems, and References 5–8, which deal with continuous-time problems. These References consider, principally, optimal control laws, while Reference 9, on the other hand, presents a detailed consideration of suboptimal discrete systems.

paralels much of the discussion in Reference 9. It was first shown by Sivan, although only for the discrete-time case, that the only stochastic optimal-control problems leading to a linear-feedback law are those involving Gaussian noise and a quadratic loss function. For this case, References 2 and 11 demonstrate that it is valid to decouple the problems of estimation, i.e. determining \(E(x) \), and control, i.e. determining the feedback law \(K \). The conclusion is that the same feedback law can be used, irrespective of the noise statistics. As Reference 7 points out, however, a completely rigorous treatment, deriving this result, is still lacking for the continuous-time case. It is not our aim to present such a treatment, but rather to examine the consequences of using certain feedback laws, assuming that decoupling is valid.

The paper is arranged as follows. In Section 2 the filtering and control problem is reviewed, and in Section 3 the optimal-control problem is posed precisely, for derivation of the optimum-performance index (Theorem 4). At the same time, the awkward points which remain to be cleared up by more rigorous arguments in the derivation of the optimal law are stated explicitly. The optimal law itself will not, however, be derived. In Section 4, suboptimal systems are discussed, and it is shown how the results of Section 3 may be used for the calculation of the suboptimal-performance indexes. Section 5 discusses directions for future research, which, if followed, might yield results describing simpler, and more economical, designs of large-dimensional systems than are at present possible.

2 Review of filtering and control problems

This discussion of the filtering problem summarises the development of Reference 12. Consider a linear system, governed by eqns. 1a and 1b, where, at time \(t_0 \), the initial state \(x_0 \) is known only to the extent that its probability distribution is Gaussian, with mean \(m \) and

\[
cov(x_0, x_0) = S_0
\]

(4)

Naturally, \(S_0 \) is a nonnegative definite symmetric matrix. The input and output additive noises are independent and Gaussian, with mean zero, and

\[
cov(w(t), w(t')) = M(t)\delta(t - t') \\
cov(u(t), u(t')) = N(t)\delta(t - t')
\]

(5a)

(5b)

Both \(M \) and \(N \) are nonnegative definite symmetric matrices; furthermore, \(N \) is nonsingular, which implies that no component of the output can be measured exactly.

The problem is to design a dynamic system, with inputs \(u \) and \(y \), whose output is the minimum-variance estimate of \(x \), the mean of \(x(t) \), conditional on a knowledge of \(u \) and \(y \) over the interval \([t_0, t] \). It is possible to do this with a finite-dimensional linear system, as shown in Reference 12. Fig. 1 shows the form of the system, the estimate of \(x(t) \) being denoted by \(x_0(t) \). The initial state of the estimator is taken as \(m \). The solution to the filter problem is given by the following theorem.12

Theorem 1. Consider the plant described by eqn. 1, with noise as defined in eqns. 4 and 5. Then the gain matrix of the filter (Fig. 1), optimal in the sense described, is

\[
L = SH^{-1}N^{-1}
\]

(6)

PROC. IEE, Vol. 114, No. 1, JANUARY 1967
where \(S \) is the solution of the matrix Riccati differential equation
\[
\dot{S} = FS + SF' - SH'N^{-1}HS + M \quad (7)
\]
subject to the initial condition
\[
S(t_0) = S_0 \quad (8)
\]
It is shown\(^{12}\) that eqn. 7 has a solution, defined by \([t_0, t_1]\), for any \(t_1 > t_0 \). A most important fact also given in Reference 12 is lemma 1.

Lemma 1. Irrespective of \(u(t_0, t_1) \), i.e., the history of \(u \) over the interval \([t_0, t_1]\),
\[
\text{cov} \{x(t), x(t) - x(t)|u(t_0, t_1), y(t_0, t_1)\} = S(t) \quad (9)
\]
In other words, \(S(t) \) is the covariance of the error involved in estimating the state, conditional on a knowledge of \(u \) and \(y \), from the initial time up to time \(t \). The state \(x(t) \) is a

![Fig. 1 Optimal estimation](image)

Gaussian random variable, and thus knowledge of \(x(t) \) and \(S(t) \) gives the full conditional statistical distribution of \(x(t) \).

For the control problem, suppose there is no noise present; so the system is described by
\[
\dot{x} = Fx + Gu \quad (10)
\]
The objective is to select \(u \), as a function of \(x \), to find
\[
V(x_0, t_0) = \min \int_{t_0}^{t_1} \text{tr} \{x'Qx + u'Ru(dt) \} \quad (11)
\]
which, as the notation implies, is a function of the initial state. The matrices \(Q \) and \(R \) are nonnegative definite symmetric, with \(R \) nonsingular. The solution to the control problem is given by theorem 2.\(^{13}\)

Theorem 2. Consider a plant (eqn. 10) with a performance index defined by eqn. 11. Optimum performance is achieved by taking
\[
u = -Kx \quad (12)
\]
where \(K = R^{-1}G'P \)

and \(P \) is the solution of the matrix Riccati differential equation
\[
\dot{P} = F'P + PF - PGR^{-1}G'P + Q \quad (14)
\]
subject to
\[
P(t_1) = 0 \quad (15)
\]
Then
\[
V(x_0, t_0) = x_0'P(t_0)x_0 \quad (16)
\]
It is shown\(^{13}\) that eqn 14 has a unique, symmetric, nonnegative definite solution, for all \([t_0, t_1]\), \(t_0 < t_1 \), so that eqn 16 is well defined.

The duality of the estimation and control problem is shown by the similarity between eqns. 7 and 14.

3 Stochastic optimal-control problem

Consider the problem: given the system described by eqns. 1a, 1b, 4a, 5a, and 5c; where, as before, \(w \) and \(v \) are independent and Gaussian with mean zero, and \(x_0 \) is Gaussian with mean \(m_0 \), show how to select \(u \) as a function of \(y \) to obtain \(V \) as given in eqn. 2. As remarked in Section 1, other workers have shown that, provided that \(x \) is replaced by \(x_\tau \), the optimal control law is independent of the noise statistics. In particular, the optimal gain is identical with the optimal gain for the deterministic case. We can thus state theorem 3.

Theorem 3. Consider the plant (eqn. 1) with noise given statistically by eqns. 4 and 5. The performance index (eqn. 2) is obtained by choosing
\[
u(t) = -K(t)x(t) \quad (17)
\]
where \(K \) is derived from eqns. 14, 15 and 16, and is the solution to the corresponding problem of theorem 2.

The complete system of plant and controller is shown in Fig. 2. The equations of this combined system are
\[
\begin{align*}
\dot{x} &= Fx - Gx + w & \quad (18a) \\
\dot{x}_e &= Fx_e - Gx_e + LH(x - x_e) + Lw & \quad (18b)
\end{align*}
\]
Though the feedback law (eqn. 17) is independent of the statistics of the noise, i.e. the matrices \(S(t) \) and \(N(t) \), the optimum performance is not. This optimum performance is given by noting that
\[
x'Qx + u'Ru = x'Qx + x'_ePGR^{-1}G'P(x_e) \quad (by eqns. 17 and 13) \]

\[
\begin{align*}
&= x'(-P - F'P + PGR^{-1}G'P)x + x'_ePGR^{-1}G'P(x_e) \\
&= x'P - x'_eP - 2xPGR^{-1}G'P(x_e) \\
&= 2x'Pw + x'_ePGR^{-1}G'P(x_e) \quad (by eqns. 18a and 13)
\end{align*}
\]

\[
\dot{x}_e = Fx_e - Gx_e + LH(x - x_e) + Lw \quad (18b)
\]

The first term may readily be separated out to give
\[
E \left\{ -x'P \delta x \right\} = E \left\{ x'_eP(t_0)x_0 \right\}
\]
using the boundary condition on \(P \) (eqn. 15). The initial statistical conditions on \(x(t) \) are also given in terms of its covariance \(S(t) \) and thus
\[
E \left\{ -x'P \delta x \right\} = \text{tr} (S_0P(t_0)) + m'P(t_0)m
\]
\(\text{tr} \) denoting the trace of a matrix (Appendix 8.1).

The second term in the integrand of eqn. 20 can be evaluated as follows. It follows from eqn. 18a, where \(\phi \) is the system transition matrix, that
\[
x(t) = \phi(t, t_0)x_0 + \int_{t_0}^{t} \phi(t, \tau)(-G(\tau)K(t)x_\tau(\tau) + \nu(\tau))d\tau
\]
and
\[
\text{cov} \{x(t), \nu \} = \frac{1}{2}M(t) \quad (21a)
\]
where the \(\frac{1}{2} \) follows from properties of the delta function, and is further discussed at the end of this Section. Now a second application of the method of Appendix 8.1 yields
\[
E \left\{ 2x'P \delta w \right\} = \text{tr} (M(t)) \quad (21b)
\]
since \(w \) has zero mean. Lemma 1 is stated in terms of conditional, i.e. a posteriori, covariances, while the expectation in eqn. 20 is a priori; therefore to use lemma 1 to evaluate the third term of eqn. 20 requires the identity
\[
E(\delta x) = E(E(\delta x | y)) \quad (22a)
\]
Hence, from eqn. 9, and using Appendix 8.1 a third time,
\[
E \left\{ \int_{t_0}^{t} (x - x_\tau)'PGR^{-1}G'P(x - x_\tau)d\tau \right\}
\]

125
Because S, P, R and G are all deterministic, the final expectation can be dropped, and we have theorem 4.

Theorem 4. With the same hypothesis as theorem 3, we have

$$V(m, t_0) = \text{tr} \left(S, P(t_0) \right) + m^T P(t_0) m$$

where S is as defined in theorem 1, and P is as defined in theorem 2. Clearly, the second term in eqn. 23 is nonnegative, since $P(t_0)$ is a nonnegative definite matrix. The first term and the two integrands are also nonnegative (in fact, positive in nondegenerate situations), since $S, P(t_0), S, PGR^{-1}G'P, M$ and P are all nonnegative definite (Appendix 8.2). Thus all four terms are nonnegative; they are due, respectively, to

(a) uncertainty about the initial state
(b) a nonzero mean of the initial state
(c) error in the estimate of the state
(d) error in the control due to the additive noise at the input.

Note that, in the noisefree case, only the second term is present, and eqn. 23 reduces to eqn. 16, the solution for the deterministic problem.

Under suitable conditions for the plant, e.g. complete observability and complete controllability, it is possible to examine the filtering and control problems separately, when the upper time limit t_1 becomes infinite. In the case of a time-invariant plant with stationary noise, the feedback law K and the estimator feedback law L become time-invariant. Under these conditions, it is evident from eqn. 23 that V will increase without bound. The physical reasoning behind this is not hard to see: there will always be noise, perturbing the system and the estimator from the zero state, and, as a result, compensatory control. Thus, even if the system state did become zero, it would not stay there; further control, contributing to V, would result. Note, however, that, if there is no output or input noise ($M = N = 0$) but only uncertainty about the initial state, V will be finite for the time-invariant ($t_1 = \infty$) case.

This Section closes with some remarks on the derivations of eqn. 22 and, more generally, the optimal law. The derivation by Kalman and Bucy of the differential equation satisfied by S (eqn. 7) includes essentially the same difficulty as the derivation of eqn. 21; integrals containing δ functions appear which have the δ function singularity at one of the endpoints of an integral. Presumably, this is due to the imperfect characterisation of the stochastic differential equations. Eqs. 18a and 1B, or the equivalent equations in the Kalman and Bucy paper. The derivation of the optimal law appears to depend on similar manipulations. There is, however, every indication that the end results are quite correct and only their derivation is open to criticism.

4 Calculation of suboptimal performance indexes

A suboptimal system will result if the estimator is built incorrectly or the wrong feedback law is used. Referring to Fig. 2, consider systems where L is replaced by L_s and K is replaced by K_s. This Section is devoted to showing how such a system may be analysed.

Taking the plant, estimator, and feedback law realisation as one combined system, suppose it has a state vector

$$z = \begin{bmatrix} x \\ x_a - x \end{bmatrix}$$

For the second set of components of z, x_a could have been used, but $x_a - x$ proves more convenient. From eqns. 18a and 1B,

$$\dot{x} = (F - GK)x - GK(x_a - x) + w$$

and

$$\dot{x}_a - \dot{x} = (F - L_s H)(x_a - x) + L_s v - w$$

Consequently,

$$\dot{z} = \begin{bmatrix} F - GK_s & -GK_s \\ 0 & F - L_s H \end{bmatrix} z + \begin{bmatrix} w \\ L_s v - w \end{bmatrix}$$

which may be written, in briefer form, as

$$\dot{z} = F_z z + w_z$$

Moreover, easy calculations yield

$$\text{cov} (w_z, w_z) = M_z = \begin{bmatrix} M & -M \\ -M & M + L_s N L_s' \end{bmatrix}$$

The cost of using laws K_s, L_s for control of the plant (eqn. 1) is

$$V_z(m, t_0) = \int_{t_0}^{t_1} \left(x'Qx + u'Ru \right) dt$$

$$= \int_{t_0}^{t_1} \left(x'Qx + (x' + x_a - x)K_s R K_s (x + x_a - x) \right) dt$$

$$= \int_{t_0}^{t_1} x'Q x dt$$

where $Q_z = \begin{bmatrix} Q & K_s R K_s, K_s R K_s \\ K_s R K_s, K_s R K_s \end{bmatrix}$

Eqn. 26 states the cost, using suboptimal laws for the original system. Consider now the combined system, and suppose that we allow inputs u_z, but with the input matrix G_z zero; i.e. the inputs have no effect on the system.

Eqn. 23, with G replaced by O, P replaced by P_z and S replaced by S_z, is used to calculate V_z.

$$V_z(m, t_0) = \text{tr} \left(S_z P_t(t_0) + m_z P_z(t_0) m_z \right) + \int_{t_0}^{t_1} \text{tr} (M_z P_z) dt$$

The matrix S_z is the covariance at time t_0 of z, and is given by

$$S_z = \begin{bmatrix} S_0 & S_0 \\ S_0 & S_0 \end{bmatrix}$$

The matrix P_z is the solution of the Riccati equation (eqn. 14):

\[\text{PROC. IEE, Vol. 114, No. 1, JANUARY 1967} \]
\[-P_s = F_s P_s + P_s F_s + Q \]

where \(F_s \) and \(Q \) are as given in eqns. 25c and 27. The initial condition is

\[P_s(t_0) = 0 \]

Proceeding to the second term of eqn. 28, we note that

\[m_s = \begin{bmatrix} m \\ 0 \end{bmatrix} \]

The third term derives from eqn. 25c, giving \(M_s \) and eqn. 30, giving \(P_s \). Hence, in principle, eqn. 28 may be evaluated. The expression on the right-hand side of eqn. 28 is not in its most convenient form, however, and does not exhibit separately the dependence of \(V \) on the initial covariance of the state, the output noise and so on. Therefore, an alternative representation of \(V \) is developed. It is convenient to partition \(P_s \) in the same fashion as the other matrices:

\[P_s = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \]

Then eqn. 30 becomes

\[-P_1 = (F - GK) P_1 + P_1 (F - GK) + Q + K'_s R_k \]

\[-P_2 = (F - GK) P_2 + P_2 (F - L H) - P_1 K'_s + K'_s R_k \]

\[-P_3 = -(GK)' P_3 - P'_3 G K + (F - L H) P_3 \]

\[+ P_3 (F - L H) + K'_s R_k \]

with \(P_1(t_0) = P_2(t_0) = P_3(t_0) = 0 \).

The covariance \(S \) of \(z \) can be found, by using eqn. 7 and replacing \(F \) by \(F_s \), \(M \) by \(M_s \), and setting \(H = 0 \). The result is

\[S_z = 2 P_s S_z + S F_s P + M_s \]

Partitioning \(S \) in the same way as \(P_s \), allows rewriting of eqn. 36 as

\[S_1 = (F - GK) S_1 + S_1 (F - GK)' - G S_2 - S_2 (GK)' + M \]

\[S_2 = (F - GK) S_2 + S_2 (F - L H) - G S_3 + K'_s R_k \]

\[S_3 = (F - L H) S_3 + S_3 (F - L H)' + M + L N_L \]

with eqn. 29,

\[S_1(t_0) = S_2(t_0) = S_3(t_0) = S_0 \]

Substitution of eqns. 34, 35, 37 and 38 into eqn. 28 yields theorem 5, after much algebraic manipulation, which is given in Appendix 8.3.

Theorem 5. Consider the plant (eqn. 1), with noise as defined in eqns. 4 and 5. Suppose an estimator has feedback law \(L_0 \), while the plant has a feedback law \(K \). Then

\[V_s(m, t_0) = \frac{1}{2} \left[\text{tr} \left\{ S_0 P(t_0) \right\} + m^T P(t_0) m \right] \]

\[+ \int_{t_0}^{t_1} \left(\text{tr} \left\{ S_0 (G K P_1 + P_1 K'_s G - K'_s R_k) \right\} \right) dt \]

\[+ MP_1 + 2 (L N_L' - S H' L_0 P_1) \]

The various costs in this expression can be allocated to different sources. Thus, \(m^T P(t_0) m \) is the performance index of a deterministic linear regulator, when the feedback law \(K \) is used, instead of the optimal law \(K \). If the initial state \(x_0 \) is only known to the extent of its mean and covariance, but there is no input or output additive noise, the additional contribution to the performance index is given by \(\text{tr} \left\{ S_0 P(t_0) \right\} \). As for the optimal case, the first term of the integrand corresponds to error in the estimate of the state; the second term to error in the control from the additive noise at the input. The third term is new, and arises from the suboptimality; it involves both \(S_0 \), a modified estimation-error covariance, and a matrix \(P_2 \), which depends on the feedback law chosen.

If \(K \) is set equal to the optimal gain, eqns. 14 and 34 can be used to show that \(P_1 = P, P_2 = 0 \). This yields, for eqn. 39,

\[V_s(m, t_0) = \frac{1}{2} \left[\text{tr} \left\{ S_0 P(t_0) \right\} + m^T P(t_0) m \right] \]

\[+ \int_{t_0}^{t_1} \left(\text{tr} \left\{ S_0 (G K P_1 + P_1 K'_s G - K'_s R_k) \right\} \right) dt \]

which is remarkably similar to the optimal result (eqn. 23), the only difference being the appearance of \(S_0 \) rather than \(S \). Likewise, if \(L_0 \) is replaced by the optimal \(L \), eqns. 7 and 37e yield \(S_0 = S \) and

\[V_s(m, t_0) = \frac{1}{2} \left[\text{tr} \left\{ S_0 P(t_0) \right\} + m^T P(t_0) m \right] \]

\[+ \int_{t_0}^{t_1} \left(\text{tr} \left\{ S (G K P_1 + P_1 K'_s G - K'_s R_k) + MP_1 \right\} \right) dt \]

Again the fifth term in eqn. 39 drops out; use of either the optimal-estimator law or the optimal-feedback law causes it to vanish. From eqn. 41, if both optimal-feedback and estimator laws are used, the optimal performance index (eqn. 23) is recovered.

5 Conclusions

The equations in this paper are suitable for digital computation, as discussed in Reference 12, despite the fact that they are nonlinear. Moreover, the equations required for calculating suboptimal-performance indexes are of the same nature as those required for calculating the optimal-performance index.

Further investigation of the variation of performance index resulting from simplified controller design (corresponding to zero columns of \(L \) or \(K \)) is clearly in order. Many systems today are, no doubt, over-designed, in the sense that only small changes in the performance index would result from gross simplification of the controller. The breakdown of the performance into the sum of components, each arising from different parts of the overall system, should make investigation easier.

6 Acknowledgment

The work was carried out under Joint Services Contract Nonr 225(83), and was based on work done by NASA Ames Research Center on Contract NAS-2-2457. One of the authors (B.D.O.A.) would also like to acknowledge the financial assistance of the Services Canteens Trust Fund, an agency of the Australian Government, and to thank the United States Education Foundation in Australia for a Fulbright travelling grant.

7 References

Appendices

8.1 Evaluation of two expectations
To evaluate $E(x'Ax)$, where A is any $n \times n$ square matrix,

$$E(x'Ax) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}E(x_i x_j). \quad (42)$$

Now

$$E(x_i x_j) = E(x_i)E(x_j) + E[(x_i - E(x_i))(x_j - E(x_j))] \quad (43)$$

and so, if

$$A \text{ and } V = \text{cov}(x - \bar{x}, x - \bar{x}) \quad (44)$$

then

$$E(x'Ax) = x'Ax + \text{tr}(AV) \quad (46)$$

Similarly,

$$E(x'Ay) = y'A\bar{x} - \text{tr}(AW) \quad (47)$$

where $W = \text{cov}(x - \bar{x}, y - \bar{y}) \quad (48)$

8.2 Trace of product of nonnegative definite matrices
In this Appendix it is shown that, if A and B are nonnegative definite,

$$\text{tr}(AB) \geq 0 \quad (49)$$

Since

$$\text{tr}(AB) = \text{tr}(BA)$$

for all nonsingular T

$$\text{tr}(AB) = \text{tr}(TATT^{-1}B(T^{-1})) \quad (50)$$

which means that A may be taken to be diagonal. Then

$$\text{tr}(AB) = \sum_{i} a_{ii} b_{ii} \geq 0 \quad (51)$$

since the elements on the main diagonal of a nonnegative definite matrix are themselves nonnegative.

8.3 Derivation of eqn. 39
The purpose of this Appendix is to present the algebraic manipulations needed to derive eqn. 39. From eqns. 25 and 23, we have

$$\text{tr}(M,P_2) = \text{tr}(MP_1 - MP_2 - MP_2 + MP_3 + L_N P_3) \quad (52)$$

and from eqn. 37c,

$$\text{tr}(MP_2) = \text{tr}(S_2 P_2 - \text{tr}(L_N P_3)$$

$$- \text{tr}[(F - L_H)S_2 P_2 + S_2(F - L_H)Y P_2] \quad (53)$$

From Appendix 8.2 and eqn. 34b, it follows that

$$\text{tr}((F - L_H)S_2 P_2) = \text{tr}(S_1 P_1 F - L_H)$$

$$- \text{tr}(S_1 P_2) - \text{tr}(S_1 P_1 G K_s) + \text{tr}(S_1 K_s R K_s)$$

$$- \text{tr}(S_1 G K_s - L_H Y P_2) \quad (54)$$

and combining eqns. 53 and 54,

$$\text{tr}(MP_2) = \text{tr}(S_2 P_2 - \text{tr}(L_N P_3)$$

$$+ \text{tr}(S_1 P_2) + \text{tr}(S_1 P_1 G K_s) + \text{tr}(S_1 K_s R K_s)$$

$$- \text{tr}(S_1 G K_s - L_H Y P_2) \quad (55)$$

Similarly,

$$\text{tr}(MP_2) = \text{tr}(S_2 P_2 - \text{tr}(L_N P_3)$$

$$+ \text{tr}(S_1 P_2) + \text{tr}(S_1 P_1 G K_s) + \text{tr}(S_1 K_s R K_s)$$

$$- \text{tr}(S_1 G K_s - L_H Y P_2) \quad (56)$$

and from eqns. 37c and 44e,

$$\text{tr}(M + L_N P_3) = \text{tr}(S_2 P_3 + S_2 P_3)$$

$$+ \text{tr}(S_1 P_3) + \text{tr}(S_1 P_1 G K_s) + \text{tr}(S_1 K_s R K_s)$$

$$- \text{tr}(S_1 G K_s - L_H Y P_2) \quad (57)$$

Substitution of eqns. 55, 56 and 57 in eqn. 52 yields

$$\text{tr}(MP_2) = \text{tr}(S_2 P_2 - \text{tr}(L_N P_3)$$

$$+ \text{tr}(S_1 P_2) + \text{tr}(S_1 P_1 G K_s) + \text{tr}(S_1 K_s R K_s)$$

$$2 \text{tr}(L_N P_3 - S_2 H P_3) \quad (58)$$

where use has been made of the fact that

$$\text{tr}(A'B') = \text{tr}(BA) = \text{tr}(AB) \quad (59)$$

But

$$\frac{d}{dt} \text{tr}(S_2 (P_3 - P_2 - P_2) = \text{tr}(S_2 (P_3 - P_2 - P_2)$$

$$+ S_2 (P_3 - P_2 - P_2) \quad (60)$$

and therefore

$$\int_{t_0}^{t} \text{tr}(MP_2) dt = \int_{t_0}^{t} \text{tr}(S_2 (P_3 - P_2 - P_2)$$

$$+ S_2 (P_3 - P_2 - P_2) + 2(L_N P_3 - S_2 H P_3) dt \quad (61)$$

Substitution of this result into eqn. 28 yields eqn. 39, since $G_s = 0$ and $m'_s = [m', 0]$.

128

PROC. IEE, Vol. 114, No. 1, JANUARY 1967