Stability and the Matrix Lyapunov Equation for Discrete 2-Dimensional Systems

BRIAN D. O. ANDERSON, FELLOW, IEEE, PANAJOTIS AGATHOKLIS, MEMBER, IEEE,
E. J. JURY, FELLOW, IEEE, AND M. MANSOUR, FELLOW, IEEE

Abstract — The stability of two-dimensional, linear, discrete systems is examined using the 2-D matrix Lyapunov equation. While the existence of a positive definite solution pair to the 2-D Lyapunov equation is sufficient for stability, the paper proves that such existence is not necessary for stability, disproving a long-standing conjecture.

I. INTRODUCTION

THE introduction of state-space models for 2-D discrete systems allows the investigation of stability using the state-space approach. The question then arises as to how one of the standard 1-D linear stability tools, the Lyapunov matrix equation, could be extended to the 2-D case. One would hope that the extension of the Lyapunov equation to the 2-D case would give necessary and sufficient conditions for the characteristic polynomial of a linear discrete 2-D system to be void of zeros in the unit bidisc in terms of properties of the solutions to the 2-D Lyapunov equation.

There are essentially two different approaches to this problem. The first consists of developing a 2-D Lyapunov equation with constant coefficients [1], [2], while the second approach is considering a 1-D Lyapunov equation with coefficients which are functions in a complex variable [3], [4]. In [1], the formulation of the Lyapunov equation for n-dimensional continuous systems was first considered. This formulation is extended to discrete systems in [2] using the multi-dimensional bilinear transformation. Furthermore, it has been asserted that the existence of positive definite matrices satisfying the 2-D Lyapunov equation is necessary and sufficient for the 2-D characteristic polynomial to be void of zeros in the unit bidisc. Although the sufficiency part of this assertion can be easily proven, the necessity part has not been satisfactorily established yet.

The aim of this paper is to establish a necessary and sufficient condition for the existence of positive definite solutions of the 2-D Lyapunov equation. This condition is developed based on properties of strictly bounded real matrices. Furthermore, it is shown that the developed condition is stronger than the condition that the characteristic polynomial has no zeros in the unit bidisc. This is demonstrated with an example of a stable 2-D system for which no positive definite solutions of the 2-D Lyapunov equation can be found.

The paper is organized as follows: In Section II the 2-D discrete state-space model is introduced and some properties of strictly bounded real matrices are briefly discussed. In Section III the necessary and sufficient condition for the existence of positive definite solutions of the 2-D Lyapunov equation is developed, and compared with the condition that the characteristic polynomial has no zeros in the unit bidisc. Finally, in Section IV the result of Section III is applied to two special classes of 2-D systems.

Notation: \mathbb{U}^2 denotes the closed unit bidisc.

$$\mathbb{U}^2 := \{ (z_1, z_2) | |z_1| \leq 1, |z_2| \leq 1 \}$$

I_n the $n \times n$ unity matrix and \oplus the direct sum of matrices.

II. PRELIMINARIES

Linear shift invariant 2-D discrete systems can be represented by the following state space model [5]:

$$\begin{bmatrix} x^h(i+1, j) \\ x^v(i, j+1) \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x^h(i, j) \\ x^v(i, j) \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(i, j)$$

$$y(i, j) = [C_1, C_2] \begin{bmatrix} x^h(i, j) \\ x^v(i, j) \end{bmatrix}$$

where $x^h \in \mathbb{R}^n$, $x^v \in \mathbb{R}^m$ represent the horizontal and vertical states, respectively, u is the input and y the output. The system matrix A is given by

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
with the submatrices A_{ij}, $i, j = 1, 2$ of appropriate dimensions. In the investigation of stability of a 2-D discrete system realized with a model of the above type, it is required to establish that the zeros of the characteristic polynomial are outside \bar{U}^2, i.e.,

$$C(z_1, z_2) = \det \begin{bmatrix} I_n - z_1 A_{11} & -z_1 A_{12} \\ -z_2 A_{21} & I_m - z_2 A_{22} \end{bmatrix} \neq 0 \quad \text{in } \bar{U}^2$$

(4)

Although it is possible to test the stability condition (4) in the frequency domain using one of the known methods for testing stability of 2-D polynomials [6], the 2-D Lyapunov equation could be an important tool in the stability analysis and in the design of 2-D systems in the state-space.

The n-D Lyapunov equation was first presented in [1] as a condition for the multivariable characteristic polynomial of an n-D continuous system to be strictly Hurwitzian (i.e., to have no zeros in the region $\text{Re}(s) \geq 0$, $i = 1, \cdots, n$). This was extended to the discrete case using the double bilinear transformation in [2]. The resulting discrete 2-D Lyapunov condition is as follows:

2-D Lyapunov condition: There exist matrices $W_1(n \times n)$, $W_2(m \times m)$, $W = W_1 \otimes W_2$ and Q symmetric and positive definite such that

$$A^T W A - W = -Q$$

(5)

is satisfied.

It has been asserted [2], [1] that the above 2-D Lyapunov condition is necessary and sufficient for the stability condition (4). In the next section it will be shown that the 2-D Lyapunov condition is in general only sufficient for the stability condition (4) and not necessary. To show this the following definitions and preliminary results for strictly bounded real matrices will be needed.

Definition 1: Let $S(z^{-1})$ be a square matrix of real rational functions in the complex variable z^{-1}. Then $S(z^{-1})$ is called strictly bounded real if

i) all poles of $S(z^{-1})$ lie in $|z^{-1}| < 1$;

ii) $I - S^T(e^{-j\omega})S(e^{j\omega})$ is positive definite for all $\omega \in [0, 2\pi]$.

This definition is given in [7] with the only difference that z is used as the complex variable instead of z^{-1}, z^{-1} is used here in order to conform with the fact that in 2-D stability theory the stability region is defined as the area outside the unit bidisc. Conditions i) and ii) on $S(z^{-1})$ can be reduced to conditions on the matrices of a minimal state-space realization of $S(z^{-1})$ using the Bounded Real Lemma [7]. Suppose that $S(z^{-1})$ has a minimal realization given by the quadruple $\{F, G, H, J\}$ such that

$$S(z^{-1}) = J + H^T(z^{-1}I - F)^{-1}G$$

then the strictly Bounded Real Lemma can be formulated:

Lemma 1: Let $S(z^{-1})$ be a square matrix of real rational functions in z^{-1} and $\{F, G, H, J\}$ a minimal realization of $S(z^{-1})$. Then $S(z^{-1})$ is strictly bounded real if, and only if, there exists a symmetric positive definite matrix P such that the matrix Q_1 given by

$$Q_1 = \begin{bmatrix} I - J^TJ - G^TPG & -(F^TPG + H^THJ) \\ -F^TPG - H^THJ & P - F^TPF - HH^T \end{bmatrix}$$

(7)

is positive definite.

This result was essentially established by Anderson and Vongpanitlerd ([7, lemma 11.2.1]) except for two minor differences. The first is that in [7] the lemma is stated using a particular minimal realization of $S(z^{-1})$ with a coordinate basis in which $P = I$. Matrix Q_1, (7), results after changing the coordinate basis used in [7, lemma 11.2.1] by applying a transformation matrix T such that $T^T T = P$.

The second difference is that in [7], the case of $S(z^{-1})$ being only bounded real and not strictly bounded real is considered. As a result of this the condition on Q_1 in [7] is weaker than the one in Lemma 1. In particular, the condition for $S(z^{-1})$ to be strictly bounded real is that Q_1, (7), is positive definite, while in [7] the condition for $S(z^{-1})$ to be bounded real is that Q_1 is nonnegative definite.

Remark: If $\{F, G, H, J\}$ is not a minimal realization of $S(z^{-1})$ and there exists a positive definite P such that matrix Q_1 in (7) is positive definite, then $S(z^{-1})$ is still strictly bounded real. However, the converse cannot be established.

II. THE 2-D LYAPUNOV EQUATION

In this section the necessary and sufficient condition for the existence of positive definite matrices $W = W_1 \otimes W_2$, Q satisfying the 2-D Lyapunov (5) will be presented. This result is based on the Bounded Real Lemma outlined in the previous section. The condition presented in Theorem 1 will be subsequently compared with the stability condition (4) and it will be shown by means of an example that the stability condition (4) is not sufficient for the existence of positive definite matrices W and Q satisfying the 2-D Lyapunov equation.

Theorem 1: Consider a 2-D discrete system described by (1). If for some nonsingular T, $S(z^{-1})$ given by

$$S(z^{-1}) = T \begin{bmatrix} A_{11} + A_{12}(z_2^{-1}I - A_{22})^{-1}A_{21} \end{bmatrix} T^{-1}$$

(8)

is strictly bounded real and if (A_{22}, A_{31}) and (A_{21}, A_{32}) are, respectively, completely reachable and completely observable, then there exists some positive definite matrices W_1, W_2, and Q such that $W = W_1 \otimes W_2$ and Q satisfy the 2-D Lyapunov equation:

$$A^T W A - W = -Q$$

(9)

Conversely, if (9) holds for positive definite $W = W_1 \otimes W_2$ and Q, then there exists a nonsingular matrix T such that $S(z^{-1})$ is strictly bounded real.

Proof: Sufficiency: T nonsingular and (A_{22}, A_{31}), (A_{21}, A_{32}) completely reachable and observable imply that the quadruple $\{A_{22}, A_{31}, A_{12}^T T, TA_{12} T^{-1}\}$ is a minimal realization of $S(z_2^{-1})$. From lemma 1, it follows that there
exists a positive definite matrix P such that the matrix:

$$Q_1 = \begin{bmatrix} I - T^{-1}A_{11}^T T T^T A_{11}^{-1} - T^{-1}A_{21}^T P A_{21}^{-1} \\
- A_{22}^T P A_{22}^{-1} - A_{12}^T T T^T A_{12}^{-1} \\
- \left(A_{12}^T P A_{22}^{-1} + A_{12}^T T T^T A_{12}^{-1} \right)^T \end{bmatrix}$$

is positive definite. Equation (10) gives after premultiplication with $(T^T \otimes I_m)$ and postmultiplication with $(T \otimes I_m)$:

$$\begin{bmatrix} T^T & 0 \\
0 & I_m \end{bmatrix} Q_1 \begin{bmatrix} T & 0 \\
0 & I_m \end{bmatrix} = \begin{bmatrix} T^T T & 0 \\
0 & P \end{bmatrix} \begin{bmatrix} A_{11}^T & A_{21}^T \\
A_{12}^T & A_{22}^T \end{bmatrix}$$

which is the 2-D Lyapunov equation (9) with $W = T^T \otimes P$ and $Q = (T^T \otimes I_m)$.

Necessity: Suppose (9) is satisfied. Set $T = W_{1}^{1/2}$, $F = A_{22}$, $G = A_{21}T^{-1}$, $H^T = TA_{12}$ and $J = TA_{11}T^{-1}$. Then premultiply and postmultiply (9) by $(T^{-1} \otimes I_m)$ and (7) results with $P = W_2$ and $Q_1 = (T^{-1} \otimes I_m) Q (T^{-1} \otimes I_m)$. The strictly bounded property of $S(z^{-1})$ follows then directly from Lemma 1.

The stability condition (4) will now be compared with the condition for the existence of positive definite matrices satisfying the 2-D Lyapunov equation given in Theorem 1. It can be assumed without loss of generality that the systems considered have completely reachable and observable pairs (A_{22}, A_{21}) and (A_{22}, A_{22}^T), respectively. For in the next section it will be shown that if the reachability and/or observability condition is not satisfied, then the system can be decomposed into two subsystems. The first subsystem is a 1-D system and the second is a 2-D one satisfying the observability and reachability conditions. The stability condition (4) can be rewritten as

$$\det \begin{bmatrix} I_n - z_1 S_1(z^{-1}) \\
- z_2 A_{21} \\
I_m - z_2 A_{22} \end{bmatrix} \neq 0, \quad \text{for all } (z_1, z_2) \in \mathbb{U}^2$$

(12)

where

$$S_1(z^{-1}) = A_{11} + A_{12}(z^{-1}I_m - A_{22})^{-1} A_{21}. \quad (13)$$

Using Huang’s condition [9], [4], it follows that condition (12) is equivalent to the following two conditions:

$$\det (I - z_2 A_{22}) \neq 0, \quad \text{for all } \|z_2\| \leq 1$$

(14)

$$\det (I - z_1 S_1(z_2 - 1)) \neq 0, \quad \text{for all } \|z_1\| \leq 1 \text{ and } \|z_2\| = 1. \quad (15)$$

These two conditions require that the eigenvalues of A_{22} and $S_1(e^{j \omega})$, denoted by $\lambda_i(A_{22})$ and $\lambda_i(S_1(e^{j \omega}))$, satisfy

$$|\lambda_i(A_{22})| < 1, \quad i = 1, \ldots, m. \quad (16)$$

From the strictly bounded real property of $S(z^{-1})$, it follows that

$$I - S^T(e^{-j \omega})S(e^{j \omega}) > 0 \quad \text{for all } \omega \in [0, 2\pi] \quad (19)$$

which implies

$$\lambda_i(S_1(e^{j \omega})) < 1 \quad \text{for all } \omega \in [0, 2\pi] \text{ and } i = 1, \ldots, n.$$

The converse of the above lemma is not true. In other words, the stability condition (4) does not imply that $S(z^{-1})$ is strictly bounded real, and hence, there exist systems with a stable characteristic polynomial and a $S(z^{-1})$ which is not strictly bounded real. From Theorem 1 it follows that for such a system positive definite matrices $W = W_{1} \otimes W_2$ and Q satisfying the 2-D Lyapunov equation do not exist. In example 1 such a system is discussed.

Example: Consider the 2-D discrete system described by the following system matrix:

$$A = \begin{bmatrix}
0.5 & 0.007 & 0.012 & -0.008 & 0.028 & 0 & 0 & 0 \\
-0.007 & 0.5 & 0 & 0 & 0 & 0.012 & 0.008 & 0.012 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0.845 & -2.657 & 2.81 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & -0.845 & -2.657 & -2.81 \\
\end{bmatrix} \quad (20)
where $x^h \in \mathbb{R}^2$ and $x^u \in \mathbb{R}^6$.

Claim 1: The 2-D characteristic polynomial of matrix A, (20), has no zeros in \mathbb{C}^2.

Proof: The characteristic polynomial of A can be given by

$$
\text{det}
\begin{bmatrix}
I_n - z_1 S_1(z^{-1}) & 0 \\
- z_2 A_{31} & I_m - z_2 A_{22}
\end{bmatrix}
$$

(21)

where

$$
S_1(z^{-1}) = A_{11} + A_{12} (z^{-1} I - A_{22})^{-1} A_{21}
$$

(22)

which gives

$$
S_1(z^{-1}) = \begin{bmatrix}
0.5 & S_9(z^{-1}) \\
S_6(z^{-1}) & 0.5
\end{bmatrix}
$$

(23)

with

$$
S_9(z^{-1}) = \frac{0.028 z^{-2} - 0.008 z^{-1} + 0.012}{z^{-3} - 2.81 z^{-2} + 2.65 z^{-1} - 0.845} + 0.007
$$

(24)

and

$$
S_6(z^{-1}) = \frac{0.028 z^{-2} + 0.008 z^{-1} + 0.012}{z^{-3} + 2.81 z^{-2} + 2.65 z^{-1} + 0.845} - 0.007.
$$

(25)

In order to prove that the characteristic polynomial has no zeros in \mathbb{C}^2, we have to show that conditions (16) and (17)

$$
\left| \lambda_i \{ A_{22} \} \right| < 1, \quad \text{for } i = 1, \ldots, 6
$$

and

$$
\left| \lambda_i \{ S_9(e^{j\omega}) \} \right| < 1, \quad \text{for } i = 1, 2 \quad \text{and all } \omega \in [0, 2\pi]
$$

are satisfied.

Claim 2: There is no nonsingular matrix T for which $S(z^{-1}) = TS(z^{-1}) T^{-1}$ satisfies

$$
I - S^T(e^{-j\omega}) \cdot S(e^{j\omega}) > 0, \quad \text{for all } \omega \in [0, 2\pi]
$$

(28)

Proof: Let us assume that there exists a nonsingular T such that (28) is satisfied and we will show that this results in a contradiction. Let

$$
P = T^T T
$$

(29)

then, (28) can be rewritten as

$$
P - S^T(e^{-j\omega}) P S(e^{j\omega}) > 0, \quad \text{for all } \omega \in [0, 2\pi].
$$

It will be shown that there exists no positive definite P such that

$$
P - S^T(1) P S(1) > 0
$$

(30)

and

$$
P - S^T(-1) P S(-1) > 0
$$

(31)

are satisfied. From (23) to (25) we obtain

$$
S_9(1) = \begin{bmatrix}
0.5 & \beta \\
-\alpha & 0.5
\end{bmatrix}
$$

(32)

and

$$
S_9(-1) = \begin{bmatrix}
0.5 & \alpha \\
-\beta & 0.5
\end{bmatrix}
$$

(33)

where $\alpha = 0.000435$ and $\beta = 16.007$.

P is positive definite and without loss of generality we can assume that $p_{11} = 1$, which implies the following condition:

$$
\left| p_{12} \right| < \sqrt{p_{22}}.
$$

(34)

Consider (30)

The positive definiteness condition requires

$$
0.75 p_{22} - \beta p_{12} - \beta^2 > 0
$$

(36)

or

$$
0.75 p_{22} > \beta^2 - \beta p_{12}
$$

which gives using (34)

$$
0.75 p_{22} > \beta^2 - \beta p_{12}
$$

or

$$
\left(\frac{p_{22} + \frac{1}{4}|\beta|^2}{\beta^2} \right)^2 - \frac{1}{4} \beta^2 > 0
$$

(37)

which implies

$$
\sqrt{p_{22}} > \frac{1}{2}|\beta| = 10.
$$

Consider next (31)

$$
P - S^T(-1) P S(-1) = \begin{bmatrix}
0.75 + \alpha p_{12} - \alpha^2 p_{22} & -0.5\beta - (0.25 - \alpha \beta) p_{12} + 0.5\alpha p_{22} - 0.5\beta p_{22} + 0.5\alpha p_{22} \\
-0.5\alpha - (0.25 - \alpha \beta) p_{12} + 0.5\beta p_{22} + 0.5\alpha p_{22} & 0.75 p_{22} - \beta p_{12} - \beta^2
\end{bmatrix}
$$

(38)
The condition for positive definiteness requires
\[0.75 + \beta p_{12} - \beta^2 p_{22} > 0 \] (39)
which, after similar calculations as in the previous case, yields the condition
\[\sqrt{p_{22}} < \frac{3}{2|\beta|} = 0.1. \] (40)

Condition (40) contradicts condition (37), and, therefore, there is no nonsingular matrix \(T \) such that (28) is satisfied.

The implication of Claim 2 and Theorem 1 is that for this 2-D system there exist no positive definite matrices \(\dot{W} = W_1 \oplus W_2 \) and \(\dot{Q} \) such that the 2-D Lyapunov equation is satisfied. This same system has a characteristic polynomial which has no zeros in \(\mathbb{U}^2 \) as shown in Claim 1. Consequently, the assertion that the stability of the characteristic polynomial implies the existence of positive definite matrices \(\dot{W} = W_1 \oplus W_2 \) and \(\dot{Q} \) satisfying the 2-D Lyapunov equation is not correct. In other words, the necessity part of the 2-D Lyapunov condition is different than in the 1-D case. This establishes another case where 1-D results cannot be extended to the higher-dimensional case. Furthermore, it should be noted that these results can easily be extended to the continuous case.

IV. SPECIAL CASES

In this section Theorem 1 is applied to the following two classes of 2-D discrete systems.

i) 2-D realizations with a non reachable pair \((A_{22}, A_{21}) \);

ii) 2-D systems with a characteristic polynomial which is first order in at least one variable.

Consider the 2-D discrete system described by (1) where the pair \((A_{22}, A_{21}) \) is not reachable. This implies that the quadruple \(\{A_{22}, A_{21}, A_{22}, A_{11}\} \) is not a minimal realization of \(S(z_1^2) \), and, therefore, theorems 1 cannot be applied. However, it is well known that a minimal realization of \(S(z_1^2) \) can be obtained by separating out the reachable part of \(\{A_{22}, A_{21}, A_{22}, A_{11}\} \). There exists a nonsingular matrix \(R \) such that
\[
R^{-1} A_{22} R = \begin{bmatrix} A_{221} & A_{221} \\ 0 & A_{223} \end{bmatrix} q \quad m - q
\] (41)
\[
R^{-1} A_{21} = \begin{bmatrix} A_{211} \\ 0 \end{bmatrix} q \quad m - q
\] (42)
and
\[
A_{12} R = \begin{bmatrix} q \\ m - q \end{bmatrix}
\] (43)

Further, the pair \((A_{221}, A_{211}) \) is completely reachable.

Applying the coordinate transformation \(\{I_n \oplus R\} \) to the 2-D system described by (1), the system yields
\[
\hat{A} = \begin{bmatrix} A_{11} & A_{121} & A_{122} \\ A_{211} & A_{212} & A_{222} \\ 0 & 0 & A_{223} \end{bmatrix}
\]

with the following characteristic polynomial,
\[
C(z_1, z_2) = \det \begin{bmatrix} I_n - z_1 A_{11} & -z_1 A_{121} \\ -z_1 A_{221} & I_q - z_2 A_{222} \\ - \det [I_m - q - z_2 A_{223}] \end{bmatrix} \] (44)

The structure of the system matrix \(\hat{A} \) in the new coordinate basis allows the decomposition of the original 2-D system into two subsystems. The first one is with a 1-D characteristic polynomial, and the second has a 2-D characteristic polynomial, and in addition \(\{A_{221}, A_{221}, A_{222}, A_{11}\} \) is a minimal realization of \(S(z_1^2) \).

Theorem 1 can now be applied to the reduced 2-D system and if \(S(z_1^2) \) is strictly bounded real, there exist positive definite solutions of the 2-D Lyapunov equation for the reduced 2-D system. It should be noticed, however, that even if positive definite solutions of the Lyapunov equations for both the 1-D and the 2-D subsystems exist, it is not necessary that positive definite solutions to the 2-D Lyapunov equation for the original 2-D system exist. Obviously, similar observations can be made in the case where the pair \((A_{22}, A_{21}) \) is not observable.

Consider now the second special class of 2-D systems, namely those with a characteristic polynomial which is first order in at least one of the variables \(z_1, z_2 \). For these systems Corollary 1 can be given.

Corollary 1: Consider a 2-D discrete system described by (1) with \(n = 1 \). If the characteristic polynomial of this system has no zeros in \(\mathbb{U}^2 \) and if the pairs \((A_{11}, A_{21}) \) and \((A_{11}, A_{22}) \) are completely reachable and observable, respectively, then there exist some positive definite matrices \(\dot{W} = W_1 \oplus W_2 \) and \(\dot{Q} \) such that the 2-D Lyapunov equation
\[
A^T W A = - \dot{Q}
\] (45)
is satisfied. Conversely, if (45) is satisfied, then the characteristic polynomial of the system has no zeros in \(\mathbb{U}^2 \).

Proof: The proof of this theorem follows from theorem 1 and the fact that for \(n = 1 \), \(S(z_1^2) \) is scalar function in \(z_1^2 \). Consequently, the two scalar conditions
\[
|\lambda_1 (S(e^{j\omega}))| < 1, \quad \text{for all } \omega \in [0, 2\pi]
\]
and
\[
1 - S(e^{-j\omega})S(e^{j\omega}) > 0, \quad \text{for all } \omega \in [0, 2\pi]
\]
are equivalent.

A similar corollary can be given for the case \(m = 1 \). In the case \(m = n = 1 \), \(A_{ij} \) \((i,j = 1,2)\) become scalar and, therefore, the reachability and observability conditions are not needed, which yields the same condition given in Theorem 2 in [6].

V. CONCLUSIONS

The necessary and sufficient condition for the existence of positive definite matrices satisfying the 2-D Lyapunov equation has been developed. It has been shown that the existence of such solution pairs implies that the 2-D characteristic polynomial has no zeros in the unit bidisc but the converse is not true. A stable 2-D system is given for which
no positive definite matrices satisfying the 2-D Lyapunov equation exist.

REFERENCES

[1] M. S. Piekarski, “Algebraic characterization of matrices whose multi-
variable characteristic polynomial is Hurwitzian,” in Proc. Int. Symp.

1975.

1984.

Brian D. O. Anderson was born in Sydney, Australia, in 1941. He received the B.S.
degrees in pure mathematics and electrical engineering from the University of Sydney, Sydney, Australia, and the Ph.D. degree in electrical engineering from Stanford University, Stanford, CA, in 1966. He is currently Professor and Head of Department of Systems Engineering at the Australian National University; from 1967 through 1981 he was Professor of Electrical Engineering at the University of Newcastle. He has also held appointments as Visiting Professor at a number of universities in the U.S., Australasia, and Europe. He is co-author of several books and his research interests are in control and signal processing. He was editor of Automatica and is currently a Vice-President of IFAC. Dr. Anderson is a Fellow of the Australian Academy of Science, Australasian Academy of Technological Sciences and an Honorary Fellow of the Institute of Engineers, Australia.

Panajotis Agathoklis (M’81) received the Dipl.-Ing. degree in electrical engineering and the Dr.Sc.Tech. degree from the Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, in 1975 and 1980, respectively.

From 1976 until 1980, he was with the Institute of Automatic Control and Industrial Electronics at ETH, initially as an Assistant, and from 1979, as a Research Assistant. From 1980 until 1983, he was with the Department of Electrical Engineering at the University of Calgary, Calgary, Alta., Canada as a Post-Doctoral Fellow. Since 1983, he has been with the Department of Electrical Engineering, University of Victoria, Victoria, B.C., Canada, as a Visiting Assistant Professor and from 1984 as NSERC University Research Fellow and Adjunct Assistant Professor. His fields of interest are the stability and design of 2-D digital filters and control systems.

M. Mansour (SM’77–F’89) was born in Damietta, Egypt, in August 1928. He received the B.Sc. and M.Sc. degrees in electrical engineering from the University of Alexandria, Egypt, in 1951 and 1963, respectively, and the Dr.Sc.Tech. degree in electrical engineering from ETH-Zurich, Switzerland, in 1965, when he was awarded the silver medal of ETH.

He was Assistant Professor in Electrical Engineering at Queen’s University, Canada, from 1967 to 1968. He has been Professor and Head of...
the Department of Automatic Control at ETH-Zürich since 1968, Dean of Electrical Engineering 1967–1978, and Director of the Institute of Automatic Control and Industrial Electronics, ETH-Zürich, during 1976–1978, 1980–1982, and since 1984. He was Visiting Professor from September to December 1974 at IBM Research Laboratory, San Jose, CA; from January to March 1975 at the University of Florida, Gainesville; from August to December 1981 at the University of Illinois, Urbana; and from January to March 1983 at the University of California, Berkeley. He is also President of the Swiss Federation of Automatic Control, member of the Council and Treasurer of IFAC, President of the 4th IFAC/IFIPS Conference on Digital Computer Applications for Process Control 1074, Chairman of the International Program Committee of the IFAC Symposium on Computer Aided Design of Control Systems, 1979, Chairman of the International Program Committee of the 4th IFAC/IFORS Symposium on Large Scale Systems: Theory and Applications, 1986, Vice-Chairman of the IFAC Education Committee 1978–1981, member of the Senate of the Swiss Academy of Natural Sciences, 1979–1984, and Delegate of IFAC to the United Nations in Geneva. His fields of interest are control systems, especially stability theory and digital control, stability of power systems, and digital filters.