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By using (3.9) and Corollary 3.15, part i). we contract R(t) to 

(4.8) 

so that the estimator E (aggregation of E )  becomes 

(4.9) 

for the original system S (aggregation of S). 

discussed in [5]. 
The suboptimality aspects of the decentralized estimator design are 

B. Restriction and Control 

In the restriction case we have f(t) = vx(t), where 

L -I 

and 

0 CI2(t)/2  -Clz(t)/2 0 
(4.1 1) 

(4.12) 
and the subsystems appear  as disjoint. 

For the decentralized control purposes, we set all the off-(block) 
diagonal terms in the matrices A(t) and B(t)  of (4.12) to zero so the 
subsystems become decoupled. Then we build decentralized control laws 
for the decoupled subsystems. and we make sure that the restriction 
conditions are satisfied [2]. The resulting controller gain matrix t ( t )  = 
diag [L , ( t ) ,  L&)] can then be used as a suboptimal decentralized control 
for the expansion Sof (4.12). In order to get the gain matrix L ( t )  for the 
original system s of (4. I ) ,  we represent t ( t )  as 

to conform with the representation (4.12). Then we contract z(t) [2] by 
using L(t )  = C(t )  V and get 

r 

(4.14) 

which can be implemented in the original system S. 
For obvious reasons, the proposed control design is not optimal in 

general. The stability and suboptimality aspects of the continuous version 
are discussed in [5] and [2]. 

V. CONCLUSION 

A solution to the decentralized estimation and control problems with 
overlapping information structure constraints has been presented. The 
described method is based on  the expansion-contraction framework of the 
stochastic inclusion principle which is extended here to cover inclusion of 
Gauss-Markov models and associated estimators. It has been shown how 
a separation principle can be used to formulate independently the 
estimation and control laws for systems composed of interconnected 
overlapping subsystems. 
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In this note we combine some earlier results [I]-[4] to provide a 
framework for stability analysis of adaptive systems. We consider here 
the continuous-time adaptive control of a scalar plant' with input u and 
output y, described by 

Plant: y = d+ Pu (la) 

Control: u = - 8'e (lb) 

Adaptation: 8 = -,ze, B(o) E ~g ( 1 ~ )  

where P is linear with strictly proper transfer function P(s), d is an 
external disturbance, 8 is the adjustable parameter vector, y > 0 is the 
constant adaptive gain, z is the regressor (information) vector consisting 
of filtered measurable signals, e.g., u, y, and references, and e is an error 
signal which drives the adaptation. System (I)  can also be described in an 
error system form (e.g., [7], [8]) by proceeding as follows. 

Define the parameter error by 

where 0, E RP is a constant vector of tuned parameters, i.e., the 
parameters that would be selected if the plant P were known. Using (2) 
we can rewrite (Ib) as 

where v is the adaptive control error. An equivalent representation of (1) 
is given by the adaptive error system depicted in Fig. 1 and described by 

8= yze, e(o) = e(o) - e, (4d) 

where (e,, z,) are the outputs of the tuned system which is defined as 
system (I) with 8(t) = 0,. The operators Ha, and Hz, are linear with 
strictly proper transfer functions H,,(s) and H,(s), respectively, which 
are dependent on the tuned parameter 0,. From the definition of the tuned 
system [3], 141, it follows that H,(s) and H,( s )  are exponentially stable. 
By the same reasoning the tuned signals e,(t) and z,(t) are bounded. 

One of the very useful features of this error system is that the nonlinear 
effect of the adaptive algorithm can be analyzed separately from the 
analysis of the tuned system. The tuned system represents an ideal which 
would be achieved with the given structure of the adaptive control. 
Hence, the algebraic design procedure is separated from the nonlinear 
stability analysis. It is convenient, therefore, to view e,, z*, and 8, as 
"inputs" to the error system. The assumptio_n, naturally, is that e, and z,  
are well behaved with e, small. Note that 0, need not be small. In the 
ideal case, assuming perfect model following and no disturbances in the 
tuned system, e,(r) = 0. If the disturbances are of a special kind then 
e,(t) + 0, i.e., the tuned system exhibits servo action. The more realistic 
case, however, is when e, E L,  due to bounded disturbances which 
cannot be asymptotically rejected. 

By global stability of (2) we mean that all bounded inputs e,, z,, and 8, 
produce bounded outputs e, 8, and z. In general, no restrictions are placed 

on the initial parameter error 8, other than boundedness. Sufficient 
conditions for global stability can be obtained for (2) using passivity 
theory (e.g., 15, p. 1821). A detailed analysis can be found in [3], [4]. One 
of the conditions is that H,(s) is strictlypositive real (SPR), i.e., Ha,@) 
is strictly proper2, exponentially stable and there exist a positive constant 
p such that 

Unfortunately, H,,(s) E SPR is not robust with respect to even mild 
modeling error, particularly high-frequency unmodeled dynamics [6]. For 
example, H,(s) E SPR implies that the relative degree of H,(s) cannot 
exceed one, from which it follows that applying this restriction to (1) 
imposes the same relative degree restriction on P(s) as well. This is 
unrealistic, even in this simple example. 

Conditions for local stability require not only that the inputs e,, z,, and 
8, are bounded, but that these bounds are not arbitrary. The local analysis 
is facilitated by transforming the error system (4) to the variational form 

where x, X L ,  G ,  and f (x)  are defined by 

with 

and where L has the transfer function. 

with y from the adaptive algorithm (lc). This error system (6) is arrived at 
by separating the nonlinear cross-product terms in f (x)  from the linear 
terms in xL. We shall refer to x~ as the response of the linearized system. 
This is almost identical to the linearized system studied by Rohrs et al. 
[6] ,  which was arrived at by a "final approach analysis." Note that in this 
case the linearized system is the input to the nonlinear system. The 
operators K and G are linear and time-varying due to their dependence on 
the tuned signals. If the linearized response xL in (6c) is small, and if the 
nonlinear term f(x) is suitably restricted. then intuitively, x would be 
attracted to some neighborhood of xL. The following theorem makes this 

' Extension to MIMO plant is straightfonvard, e.g., [31 
' When HAS)  is proper but not strictly proper, then SPR is defined as Re Hevow) 2 c 

> 0, VweR. 
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Then 

implies 

Fig. 1. Adaptive error system. 

notion precise. We use the notation y,(.) and 11 11, to denote L,-gain and of reducing large system transients, however, this may be less than 
L,-norm, respectively. prudent if the system is initially unstable or lightly damped. 

Theorem 1: Suppose there exist finite positive constants g, E.  and 6 ( ~ )  No claims are made in Theorem 1 about the mechanism that provides 
such that xL E L p d  G E L,-stable. However, it follows from the definition of 

the tuned system that e, E L,, z, E L k  and H,, H, E L,-stable, thus, 
y m ( G ) s g <  116 (7a) M in (60  is L,-stable. Hence, a term by term inspection of G (64 and xL 

(6c) reveals that XL E L k  and G E L,-stable, if and only ifBL E L:. 
Ixl<6(~)-lf(x)l <flxl .  (7b) Looking at (6c) we can also describe GL(t) as the solution to the 

differential equation 

E(t) = -r(MO(t) +rw(t )  (9) 
IIxrllm5 (1 -gcN(c) (7c) 

with w = z,e, and ~ ( 0 )  = &. Referring to (6) and (9), the operator K is 
equivalent to the mapping from w into $. Hence, the stability analysis of 

llxll=s6(c). (7d) (9) is of fundamental importance. 

Theorem 1 follows directly from the linearization theorem of [ 5 ,  p. 13 11. PERSISTENT EXCITATION AND EXPONENTIAL STABILITY 
Theorem 1 asserts that the error outputs x of the adaptive error system are 
L,-bounded in an E-neighborhood of the linearized response, provided Equations similar to (9) have been studied by invoking a persistent 
that the linearized response is small enough and that G E L,-stable. excitation condition on z,(t). The following definition and lemma from 
Condition (7d) shows that the actual response can be arbitrarily close to [l]  provides the basic result. 
the linearized response. Since Theorem 1 provides sufficient conditions, Definition: A regulated function f(-):R, -+ R" is persistently 
instability does not follow if xL E L",but exceeds the magnitude exciting, denoted f E PE, if there exist positive constants a l ,  a,, and a3 
constraint of (7c). such that 

The function 6 ( ~ )  in (7b) can be determined from the definition of f(x) 
in (6b) and the norm selected. For example, if the norm on R"  is defined 
as 1x1 = Max, Ix,l and llxllrn = sup, Ix(t)l, then 

6(t) = E (8a) Lemma 1: Consider the differential equation: 

and using the corresponding induced matrix norm, we obtain &(t) = - y f  (t)(Hf'E)(t) +rw(t) ,  t2O. (118) 

Iff E PE and H(s) E SPR then the map ($(0), w)( + 5 is exponentially 

(8b) 
stable, i.e., there exist positive constants m and A such that, 

where 
The usefulness of applying Lemma 1 to determine stability conditions 

of (9) is made apparent by writing H, as, 

Although Theorem 1 provides conditions for local L,-stability, these 
do not immediately provide a region of attraction, i.e., bounds on e,, where Ra is the nominal representation of Ha and is the deviation 

z,, and 0,. These bounds in turn are determined from the set of allowable induced, for example, by modeling error. combining (12) with (9), and 

reference commands. olant initial conditions. and disturbances. Since e, using the definitions in (6) gives 
. . 

and z, are bounded by predetermined perf&mance goals of the tuned 5 = -rz,&z;£ + yQt + Y W  
system, it follows that 8, is the unknown driving factor governing the size 

(13a) 

of IlxLII, That the initial parameter error vector occupies this position of where 
villainy should come as no surprise. One way to offset large initial 
parameter errors is to keep the adaptation gain y small. This has the effect 0 - := M-Z,H~Z;=Z,&Z;+~,H,Z',. (13b) 
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Hence, k from (8) is, 

( 15a) k=--By,(K) 
m 
x 

and from (14) with .$ replaced by 8, we get, 

provided ymq < 1 where 

[lo] B. Riedle and P. Kokotovic. “A stability-instability bnundaq for disturbance-free 
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Combining (8), (15), and Theorem 1 gives the following result. 

some E < I/g, 
Lemma 2: The adaptive system (1) or (2) is locally La-stable if for 

u = l -  l ~ o l + r m l l z * e * l l ~ ~ ~ > O  
(1 - 

(16a) 

and 

y m q s  a. (16b) 

Lemma 2 together with (15) and (8) provides an explicit upper bound 
o! Il&ll,, lO,,l, and the amount by which He, can deviate from a nominal 
He, which is SPR. If the bounds are satisfied then Theorem 1 asserts that 
the signals in the adaptive system (1) are all bounded. 

Unlike the global stability case where the bound on the deviation geu is 
severely restricted, the bound here can be large. 

CONCLUDING REMARKS 

The stability analysis provided here involves establishing the exponen- 
tial stability of a differential equation (9) which arises in the study of most 
adaptive systems. Although the connection between exponential stability 
of (a) and persistent excitation is known [I], it is important here to obtain 
specific formulas for the rates  and gains involved, e.g., (8)$ (15),  (16). 
Other methods to obtain these values can be found in [9] and [lo]. Note 
also that Theorem 1 only requires L,-stability which is certainly provided 
when (9) is exponentially stability. However, L,-stabi_lity can be obtained 
by using a nonlinear adaptation gain in (IC),  Le., O = yh(z ,  e). For 
example, h(z, e) can arise from using a dead-zone, leakage, or 
normalization [ll]. Such schemes can be incorporated in the general 
framework presented here but require  further analysis in order  to obtain 
explicit signal bounds. 
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Sufficient  Sequences and State-Space  Models for 
Random Processes 

BRADLEY W. DICKINSON 

Abstract--Let ( ( I I ,  U,, . . .) be a sequence of observed random 
variables whose probability distributions  are described by a parameter- 
ized family of density functions { p k ( u I ,  ..., &; @}. If there exists a 
sequence of sufficient statistics for O(T,(Ul), T,(Ul, U2), .-.), and if a 
realizability assumption holds, then there is a finite-dimensional state- 
space model whose output process agrees with (Ul ,  Uz, . . .) in 
distribution. 

I. INTRODUCTION 

The purpose of this note is to develop some stochastic system theory 
related to parameter estimation problems arising in applications such as 
linear predictive modeling of signals. We will focus attention on problems 
which admit a nontrivial sufficient statistic. In previous work [l]. 
sufficient statistics were introduced as a means of classifying the structure 
of finite observation records of discrete-time, stationary Gaussian random 
processes. In the study of problems where the observation record 
increases, it is natural for the system theorist to view a sequence of 
sufficient statistics as defining the input/output map of a dynamical 
system. In [2], some realization theory was developed and applied to a 
study of sufficient sequences from the perspective of nonlinear filtering 
theory. 

An example derived in  [2] shows that there  are sufficient sequences 
admitting no smooth finitedimensional realization. In particular, for 
observations from a stationary Gaussian process with unknown mean and 
known, nonrational power spectral density function, there is a one- 
dimensional sufficient sequence defining a linear inputloutput map that 
has no smooth finite-dimensional realization, linear or nonlinear. Viewed 
from the perspective of the observed process, this result is perhaps not 
unexpected, since there is no smooth finite-dimensional model which 
generates such observations [3]. 
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