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A prediction problem of the following variety is considered. A stationary random process w(.) 
of known spectrum is observed over 1 1  < a .  Using these observed values, w(b) is to be predicted 
for some b with lbl>a. We present a physical interpretation of a solution to this problem due 
to Krein, which used the theory of inverse Sturm-Liouville problems. Our physical model involves 
a nonuniform lossless transmission line excited at one end by white noise. The signal at the other 
end is the process w(t), and the prediction is found by calculating as intermediate quantities the 
voltage and current stored on the line at t =O. These quantities are spatially uncorrelated and 
provide a spatial representation at t = 0 of the innovations of w ( t )  over t l  S a. 

Statlonary processes predlct~on 
random process modelhng 

1. Introduction 

The subject of this paper is largely another paper [6] of Krein. This other paper 
considers what is now viewed as a fairly standard problem: given a partial time 
record over an interval of a stationary process, predict (with minimum mean square 
error) the value that the process will take at some time outside the interval for 
which the record is available. Krein's solution of this problem is noteworthy for 
two reasons. First, the solution is of a form allowing ready adjustment of the 
end-points of the record interval as well as of the time argument of the estimate. 
Second, the solution uses ideas that are largely foreign to work in random processes, 
in particular Sturm-Liouville equations, their eigenfunctions and an associated 
inverse problem. Even the form of the solution looks quite unlike any other solution 
of the same problem, and is mildly surprising in that the estimate is usually displayed 
via two separate linear operators acting on the data, rather than one. 
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134 B.D.O. Anderson / Krein's prediction formula 

Krein gives some physical significance to his formulas in terms of a nonuniform 
string. However, the physical characterization never goes as far as associating a 
random process with the string, and so can only be considered partial. 

The main aim of this paper is to provide a physical basis for Krein's formula in 
terms of a nonuniform lossless transmission line, with the physical basis including 
a random process. A string could doubtless also have been used. So also could an 
acoustlc line; the acoustic line model actually makes contact with a now large body 
of literature dealing with the technologically important area of speech recognition 
and synthesis, see e.g. [8] for a survey of many of the ideas, including ideas related 
to inverse problems, and filtering and prediction of random processes. 

In the broadest of outline, we verify that the Krein formulas correspond to do~ng 
certain calculations on the quantities in the transmission line model. (Thus an 
independent proof of the Krein formula is not being offered; rather, an interpreta- 
tion is being given.) Then we give an argument independent of the Krein formula 
as to why the calculations on the transmission line model quantities provide the 
desired prediction. If desired, this can be regarded as an independent proof of the 
Krein formula. 

Our purpose is to explain, rather than to prove under the weakest set of 
smoothness or other assumptions. Since many of the prospective audience will be 
deficient in knowledge in one or more of the relevant background areas, e.g. 
transmission lines, Sturm-Liouville theory, partial differential equations, the paper 
has a more tutorial flavour than is common. 

The paper is structured in the following way. In Section 2, Krein's solution is 
stated, and in Section 3, the physical interpretation of Krein's solution is presented. 
Sections 2 and 3 are essentially summary in nature. Section 4 is more tutorial: it 
provides various descriptions, including the Sturm-Liouville description, of a non- 
uniform transmission line. Given the summary of Sections 2 and 3 and the back- 
ground of Section 4, Sections 5 and 6 verify the physical interpretation stated in 
Section 3.  Section 7 argues the prediction formula of Krein from first principles, 
while Section 8 contains concluding remarks. 

2. Krein's prediction formula 

Imagine a real stationary random process w (t) with known spectrum, and suppose 
that the process is known over i t l ~ a .  An estimate of w(b) is required in terms of 
the known values of the process for some b with lbl> a. Krein [6] offers a formula 
for this prediction. 

The statement of Krein's prediction formula embodies three ideas: 
(a) Construction of a Sturm-Liouville equation with spectrum (in the differential 

equation sense) equal to the prescribed spectrum (which is the spectrum of the 
random process). 

(b) Construction of eigenfunctions of the Sturm-Liouville equation. 



B.D.O. Anderson / Krein's prediction formula 135 

(c) The stating of a formula for the prediction in a space isomorphic to the 
Hilbert space spanned by the random process; the formula involves the eigenfunc- 
tions of the Sturm-Liouville equation. 

We shall now review these ideas in detail, without at this stage, explaining why 
the Krein result is true. 

2.1. The inverse Sturm-Liouville problem and its eigenfunctions 

Consider the differential equation for x E [0, a) 

with boundary conditions 

The function q(x)  is assumed to be continuous. Let +(x, A) be the solution. By 
analogy with the case when q(x) = O for all x, h =0 ,  so that +(x, A) is cos Ax, we 
define for arbitrary f E L'[o, m) a generalized transform 

(Some care needs to be taken in defining the infinite integral, naturally.) One can 
show (and it is standard result [3]) that there exists a unique monotonic function 
p(A), bounded on each finite interval, such that p(A) provides a Parseval theorem: 

(Again, some care is needed in defining the infinite integrals.) The function +(x, A) 
is termed an eigenfunction of (2.1) and p(A) is termed the spectrum of (2.1). The 
inverse Sturm-Liouville problem is: given p(A) (with suitable constraints) find q(x) 
and h. The solution to this problem is now considered standard. For a discussion, 
see e.g. [3]. It is clear that, given p(A) and ability to solve the inverse problem, the 
eigenfunctions +(x, A )  are in principle known. 

Two other points can be made. First, the eigenfunctions satisfy an orthogonality 
condition 

This can be obtained formally from the Parseval theorem in the following way. 
First, by writing the Parseval theorem for fl(x)+fz(x) and fl(x) -fz(x), one derives 

rn rn 

fl(x)f2(x) dx = EI(A)Ez(A) ~ P ( A ) .  

Then take fl(x)=S(x-y), f2(x)=S(x-z), and use (2.3). 
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Second, we shall have occasion to use functions $(x, A ) ,  defining them by 

It turns out that these functions satisfy a different, but related, Sturm-Liouville 
equation, with 

We will clarify the connection between (2.1) and the equation satisfied by the 
$(x,  A )  in a later section. 

2.2. A standard isomorphism 

Let w ( t ) ,  -m < t < m  be a real stationary process. We define a Hilhert space X 
via a more or less standard procedure: X consists of finite sums of the form 

with -m < t,, sf < m, a; real constants, together with limits of such random variables. 
The limit is defined using the norm 

which induces the inner product 

( Z I , Z Z ) X  = E ( z ~ z z ) .  

Suppose that 

E[w (t)w ( t  + 7 ) ]  = S ( r )  + K (7) 

where K ( T )  is a smooth kernel, and let p ( A )  be the associated spectrum. Thus the 
standard relation 

holds. 
Now consider the mapping 

w(t)-e'"', j=J-l (2.12) 

so that 

On the left-hand side in (2.12) f is a fixed argument, while on the right-hand side, 
A is a running variable. Thus random variables are being mapped into analytic 
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functions. If under this mapping, the random variables zl ,  zz map into fl(A), fz(A), 
then one can verify that 

. +m 

and so an isomorphism is set up between the Hilbert space X and the Hilbert space 
&' of functions f(A), satisfying 

Of course, 

2.3. The projection problem 

The task of estimating w(b) via w(t), It1 s a ,  is the same as the task of projecting 
w(b) onto the subspace of X spanned by w(t), it1 s a. By virtue of the isomorphism 
set up above, this is identical with the task of projecting the function elAb onto the 
subspace of &' spanned by the functions elA', i t l s a  (or equivalently, cos At, sin At 
for it1 s a) .  Of course, the projection has to be a linear combination of the functions 
spanning the subspace, and the error has to be orthogonal to the subspace, i.e. the 
inner product of the error with any one of the functions which generate the subspace 
must be zero. 

2.4. The Krein solution 

With w(t) and K(t) as in Section 2.2, the spectrum p(A) is obtained and from 
it, the associated Sturm-Liouville equation, and thence the eigenfunctions 4(x, A) 
and associated quantities # ( x ,  A ) .  Then the formula yielding the projection of w(b) 
on w(t), i t l s a ,  is presented in the isomorphic Hilbert space &' as a formula for 
projecting el" on e'"', it1 s a .  It is 

Remark. It is not obvious that the right-hand side is contained in the subspace 
generated by elAL, it1 <a. That this is so follows from the nonobvious fact that +(A, z )  
and $(A, z )  as functions of A are in the subspace generated by el", It\ S a (see [3]). 
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3. Physical description of the Krein formula 

The purpose of this section is to indicate, in summary form, a physical basis for 
the Krein formula. Detailed derivation is left to a later section. We note that the 
relation of nonuniform lossless transmission lines with the inverse Sturm-Liouville 
problem is discussed in [11] and with an impedance modelling problem in [4]. 

3.1. Obtaining equal random process and differential equation spectra in the one 
physical object 

An early point of puzzlement in the Krein approach is that two different concepts 
of spectra are in one sense married. This can he done physically in the following 
way. A nonuniform lossless transmission line has associated with it a Sturm- 
Liouville equation, in fact two such equations; if all excitations are sinusoidal in 
time, the variation of voltage and current along the line are described by related 
Sturm Liouville equations. Of course, there is a spectrum associated with each 
equation; we shall focus on the voltage equation, and its spectrum. 

Next, suppose the line is finite, of electrical length L greater than b. Leave its 
left-hand end, corresponding to x = 0, open-circuit, and terminate its right-hand 
end, corresponding to x = L, in a resistor, with a series white noise voltage source 
(see Fig. 1). (Any R ohm resistor at temperature ToA has a zero mean noise voltage 

Nonuniform 
L i n e  :IR 

Fig. 1 

which is usually modelled as gaussian, with correlation function 2kTRS(t), k being 
Boltzmann's constant[9].) This noise source generates signals in the line, and a 
voltage at x = 0. This voltage is a stationary random process, in general not white. 
With suitable smoothness properties in the line and matching of the resistor to the 
local characteristic impedance of the line at x = L, this voltage will have a covariance 
of the form S(t) + K ( t )  (to within a scaling factor) and an associated spectrum. 

It turns out that the two spectra (differentlal equation and random process) differ 
by a scaling constant only. 

The above remarks are restricted to finite length lines, but it is possible to let 
the line length L approach infinity. In fact, the analysis of Section 5 is done for 
the infinite line case when the claim of this subsection is established. Notice that 
the infinite line case subsumes the finite line case, because an R ohm resistor can 
be replaced by an infinite uniform line of characteristic impedance R ohms [ll]. 
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3.2. Calculations for nonuniform transmission lines 

Using a standard normalization which we describe in more detail later, it becomes 
possible to assume that wavefronts travel at unit velocity in a nonuniform line, i.e., 
if a line is initially unexcited, and an input is applied beginning at time t = 0 at the 
left-hand end, corresponding to x = 0, no response will he observed at the point 
x = c until c seconds have elapsed. Under this sort of assumption, tlie equations 
for normalized voltage 6 and current i along the line take the form, as we clarify 
in the next section, 

The point is that hyperbolic partial differential equations are involved. This means 
that a wide body of existing theory, see e.g. [7], can be used to conclude what is 
in principle knowable, or computable, for the line. 

Particular conclusions of the theory are: 
(a) Knowing G(0, r)  for c S t S c  and that I(0, t) = 0 for -c s t s c  (due to the 

open-circuit conditions), one can deduce G(x, t )  and T(x, t) for all x, t inside the 
triangle of Fig. 2; in particular, one can deduce G(x, 0) and i(x, 0) for OSx S c ,  i.e., 
the quantities stored on the line at time t = 0. 

Fig. 2. 

(b) Knowing 6(x, 0) and i(x, 0) for O s x  s c  and knowing that i(0, t )= 0 for 
-c S t S c ,  one can deduce G(x, t )  and i(x, t) for all x, t inside the triangle of Fig. 
2;  in particular, one can deduce G(0, t), -c - < t s c .  
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The first of these conclusions is a consequence of the fact that 'Cauchy data' are 
given, and that the characteristics passing through the end-points of the Cauchy 
data interval are the sloping sides of the triangle. The second is a little less obvious. 
Imagine the line is extended into the region [-c, 01 as a mirror image of the given 
part over [0, c], i.e., the inductance and capacitance per unit length at x = d are 
the same as those at x = -d, d E [O, c]. Adopt initial conditions G(-x, 0) = G(x, O), 
T(-x, 0) = -i(x, 0). This Cauchy problem yields a solution in a region which includes 
the triangle of Fig. 2 and yields T(0,t) = 0. 

Calculations of the type referred to will be done in Section 6. 

3.3. Estimating w (b) in physical terms 

We assume that the random process w (t) is generated by the mechanism depicted 
in Fig. 1 and appears perhaps with scaling at the left-hand end of the line. 
Measurements of w(f) are available over l t l s a .  Since the normalization is known, 
this is equivalent to knowing G(0, t )  for -a s t s a, while also i(O, t) = 0. Henceforth, 
we shall identify w(t) with G(0, 1). 

From G(0, t), it1 < a ,  the quantities G(x, O), i(x, 0) for O s x  s a  are found. These 
are (normalized) voltages and currents stored on the line at t = 0. 

Next, we define functions E(x, 01, f(x, 0) for 0 S x  S b by 

and similarly for f The superscript hat should be thought of as denoting an estimate; 
we know what the stored values of G(x, 0) and T(x, 0) are for O s x  <a ,  and the 
estimate is naturally set equal to these known values. However, the true stored 
values of G(x, 0) and i(x, 0) for x > a  are unknown. We estimate them as zero (and 
later we shall argue why this is an appropriate estimate). 

We now have stored values on the line for O s x  s b ,  albeit in part estimated 
values. We can accordingly compute the resulting normalized voltage at x = 0, 
S(0, t), for -b s f  s 6. For -a s t  s a this agrees with the known values G(0, I). For 
other values of t, and in particular for t = b, it turns out that it is the projection of 
the unknown G(0, b) onto G(0, I), l f l sa .  

That this calculation parallels the calculation implied by the Krein formula is 
shown in Section 6. That the calculation does yield the projection is argued 
independently of any appeal to the Krein formula in Section 7. 

4. Transmission line calculations 

In this section we obtain various descriptions of nonuniform lossless transmission 
lines. 
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4.1. Obtaining Sturm-Liouuille equations from the telegraph equations 

For a nonuniform lossless line, in a region where no sources are present, the 
standard telegraph equations are, see e.g. [7, 111, 

Here, y is a distance variable, l(y) and c(y) are the inductance and capacitance 
per unit length, assumed positive for all y; voltage and current are denoted by u 
and i. 

We shall describe two (standard) normalizations of these equations and obtain 
coupled first-order partial differential equations for the normalized variables, 
uncoupled second-order partial differential equations for the normalized 
variables, and uncoupled Sturm-Liouville equations associated with the 
normalized variables when sinusoidal time variation is assumed. 

The first normalization is to deform (in general nonlinearly) the distance variable 
so as to obtain a situation in which wavefronts travel at unit velocity. The indepen- 
dent variable y is replaced by x where 

The variable x measures electrical length. The voltage and current now become 
functions of x and t, and (4.1) is replaced by 

Here 

~ O ( X )  = Jl(x)lc(x) 

is termed the characteristic impedance of the line. 
The second normalization represents a position-dependent scaling of the voltage 

and current. Define 

and define also 

We assume that [(x), c(x) have sufficient smoothness properties as to ensure that 
S(X) is itself continuously differentiable. With these definitions, (4.3) yield the 
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normalized telegraph equations 

and in turn, (4.7) yield 
Z v,, = fi,, + (s  - s,)V, 

1;, = i,,+(sZ+s,)i. 

The derivation of the hyperbolic equations (4.8) was foreshadowed in the last 
section. 

The last step in obtaining a Sturm-Liouville equation is to assume that 

for some complex V ( x ,  A ) ,  I ( x ,  A ) ,  i.e., that signals of only one frequency are 
present. Then (4.8) yield 

where 

4.2. Boundary conditions for the Sturm-Liouville equation 

Suppose there is an open circuit at x = O .  Set x =O in (4.7). We see that 
v,(O, t) = -s(O)G(O, t ) ,  and so 

V ' ( 0 ,  A)=-s(O)V(O, A ) .  (4.11) 

Eigenfunctions of (4.10a) will be used with the defining initial conditions 

V ( 0 ,  A )  = 4 ( 0 ,  A )  = 1, V'(0,  A )  =4'(O, A )  = -s(O). (4.12) 

For the current equation we have of course i (0 ,  t )  = 0, while i,(O, t) = -6,(x, t ) .  
So parallel with (4.11) we have 

I ( 0 ,  A ) = O ,  I ' (0,  A)=-jAV(0, A ) = - j A .  (4.13) 
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4.3. The eigenfunction $(x, A )  

In this section we shall exhibit the importance of the function $(x, A), defined 
in (2.6), under the open-circuit boundary conditions just discussed. 

With +(x, A )  the solution of 

subject to d ( 0 ,  A )  = 1 ,  b ' (0 ,  A )  = -s(O), we recall the definition of the function 
$(x, A ) :  

We claim: 

4 ' (x ,  0 )  (a) s ( X  ) = 
d ( x ,  0) ' 

(b) 4 ' (x ,  A)=A$(x, A)-s(x)d(x ,  A ) ,  

$'(x,A) =-Ad(& A)+s(x)$(x, A )  

and 

$(0,  A )  = 0, $'(0, A )  = -A ; 

(c) The solution of 

subject to I ( 0 ,  A )  = 0 ,  I '(0, A )  = -jAV(O, A )  = -jA, is 

Proofs involve straightforward manipulation and are omitted. Several comments 
are in order. The most important equations are (4.20) and (4.21); (4.20) says that 
with an open-circuit at x  = 0, V ( x )  = 4 ( x ,  A )  is accompanied by I ( x )  = j$(x, A), with 
$ readily computable from 4 ,  while (4.21) is an orthogonality result paralleling that 
for d ( x ,  A ) .  Next, though equations (4.17) and (4.18) are mainly of use to prove 
(4.20), equations (4.17) are linked to a frequency domain statement of the first-order 
coupled equations (4.7) linking B,, i,, ii, and I,. 
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The frequency domain version of (4.7) under the boundary conditions (4.12) and 
(4.13), with I(x, A )  identified as jtj(x, A ) ,  becomes 

+'(x,  A)= -jA[i$(x, A)I-s(x)+(x,A), 

j$'(x, A)=-jA+(x,A)+js(x)$(x, A ) ;  

i.e., we recover (4.17). 

5. Equality of the spectra 

In this section, we shall show (as claimed in Section 3.1) that the spectrum of 
the Sturm-Liouville equation for the transmission line normalized voltage (under 
conditions of sinusoidal time-variation and open-circuit at x = 0 )  and the spectrum 
of the random process generated according to the earlier described arrangement 
and depicted in Fig. 1 differ by a constant multiple. Both spectra are linked to the 
voltage at x = 0 which results from an impulsive current input at x = 0. 

5.1. Transmission line equations with impulsive current input at x = 0 ,  t  = 0 

Suppose that a distributed current input i,(x, t )  (the units are ampsimeter) is 
applied to the line, being confined to O s x  s e .  The telegraph equations have the 
u equation unaltered, while the i  equation is 

Letting e + 0 with 1," i,(x, t )  dx = I ( t ) ,  i.e., concentrating the current input to a single 
point, yields 

When we introduce the normalization, there results after straightforward calcula- 
tions 

C,(x, t )  =-i,(x, t )-s(x)C(x,  t ) ,  

i,(x, t )  = -zI,(x, t ) + s ( x ) i ( x ,  ~ ) + J Z O ( O ) S ( X ) S ( ~ ) ,  

when I ( t )  is an impulse. Also, we have 

f ix ,  = Z I , , + ( ~ ~ - ~ ~ ) C -  J Z O ( O ) ~ ( X ) S ( ' ) ( ~ )  
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5.2. Input impedance of transmission line and its relation to a Sturm-Liouville 
spectrum 

The voltage at x = 0 in response to a current impulse is the input impedance (in 
the time domain) of the line. For an infinite length line, or for 0 s  t <2L, this 
impulse response, call it z ( t ) ,  is computable as 

where V(x,  t )  is found as the solution of (5.2) with boundary conditions 

Equivalently, 6(x,  t )  is the solution of the homogeneous equation associated with 
(5.2), viz. 

with boundary conditions 

We claim that the solution of (5.5) with boundary conditions (5.6) is 

where +(x, A) is the solution of (4.10a), subject to d(O, A )  = 1, b ' (0 ,  A ) =  -s(O), and 
p(A) is the associated spectrum of (4.10a). It is trivial to verify that (5.5) is satisfied, 
that V,(O, t )  = -s(O)U(O, t )  and that ii,(x, 0 )  = 0 for x a 0  on using the evenness with 
respect to A of d ( x ,  A )  and oddness of p ( A ) .  Lastly, observe that 

on using the orthogonality property of the eigenfunctions described in Section 2. 
By taking x = 0 in (4.17), we obtain 

+m 

~ ( t )  =zo(o) [ cos ~t dp(h).  (5.8) 

Remark. This calculation could have been done for a finite line; the calculations 
must include consideration of boundary conditions at x = L. 
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5.3. Input impedance of a line and its relation to a random process spectrum 

Consider the set up of Fig. 1. It is a well-known result (Nyquist's theorem) [9], 
that with the voltage generator a white noise source, the autocorrelation function 
of the voltage observed at x = 0 is, to within a scaling constant, given by r(ltl), 
where r ( . )  is as defined above. If $(A) is the associated spectrum, we have 

+m 

z(ltl)=L{ 271 cosAtd$(A). (5.9) 

Comparing (5.8) and (5.91, we observe equality of the spectra (differential equation 
and random process) to within a scaling constant. 

6. Transmission line calcuIations and the prediction formula 

Suppose that a random process w(t) is observed as shown in Fig. 1. If w(t) has 
known spectrum, the line is constructible, this being an inverse problem of the sort 
discussed at the end of the last section and in [3 ,4 ,  111. (In fact, if w(t) has a 
covariance G(t)+K(t) known only for it1 Gc, we can construct a line of length $c 
modelling this covariance, since as shown in [4], if a line input impedance is specified 
over [0, c] in the time domain this determines the line over [0, ic]). We now consider 
the effect of carrying out the calculations outlined in Section 3, in which from v(t), 
It1 s a ,  the (normalized) voltage and current G(x, O), i(x, 0) are computed for x < a  
and then by 'extending' these quantities for x > a  with assumed values of zero, the 
terminal voltage is again computed. We shall relate the calculation to the Krein 
prediction formula. 

6.1. Calculations of stored quantities 

Suppose that 6(0, t) = e'"' is observed for it1 s a .  We claim that 

6(x,O)=q5(x,A), O s x s a ,  (6. la )  

i(x, 0) = j$(x, A), O G X  < a  (6.lb) 

where $(x, A )  is as defined in (2.6). 
To verify this claim, recall (see Fig. 2 with c = a )  that no matter what values 

G(O, t) and i(0, t) take for itl>a, 6(x, 0) and i(x, 0) for O s x  s a  are uniquely 
determined by knowledge of G(0, t) and i(O, t) for It1 G a. Therefore, we may assume 
values for 6(0, t), i(0, t) in It1 > a  which are helpful in doing the calculations. The 
values which turn out to be helpful are 6(O, t) = e'"' and i(0, r) = 0. 

Then, in view of the discussion of Section 4, we see that 
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where q5 and J/ are as defined earlier, and (6.2) are correct values in the triangle 
depicted in Fig. 2, with c =a .  Eq. (6.1) is immediate. 

6.2. Calculation of terminal quantities, given stored quantities 

We now consider the task of computing C(0, t ) ,  it1 s b given that 

j$(x, A ) ,  O s x  <a,  r(x, o)  = {b 
a<x<b,  

and also given that i (0 ,  t )  = 0 ,  It1 S b. We claim that the pair 

and 

+m 

+ j  L $(x. u )  cos ~ t { / : $ ( y ,  u)$(Y, A )  dy} dp(u )  (6.5) 

satisfy the transmission line equations (4.7), and give rise to C(x, 0) ,  i (x ,  0)  as in 
(6.3) and to i (0 ,  t )  - 0. 

Assuming for the moment the truth of this claim, it follows, considering Fig. 2 
with c = b, that G ( x ,  t )  and i (x ,  t )  are the uniquesolution within the triangle consistent 
with the prescribed values of G(x, 0) ,  i (x ,  0)  and i (0 ,  t )  and therefore G(0, t )  for 
It1 = b is 

This is the Krein formula of Section 2. Note that (6.4) and (6.5) may not represent 
the correct values of G(x, t )  and i (x ,  t )  for all x and t. But if they represent correct 
values for 0 s x  s 6 and t = 0 and if they represent i(0, t )  = 0 for it1 < b, they represent 
correct values in the triangle of Fig. 2 with c = 6, and this is all we need. 
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To verify the claim, we consider first the satisfaction of (4.7). Form iix(x, t )+  
s(x)ii(x, t). Recalling (4.17a), this quantity evaluates as 

which on inspection of (6.5) is easily seen to he -i,(x, t). So (4.7a) is satisfied. The 
checking of (4.7b) proceeds the same way. 

As for the boundary conditions, that i(O, t) = 0 follows by recalling that $(O, A) = 0 
for all A. Next, (6.4) yields 

+m 

f i ( x . o ) = L  ~ ( X . U ) [ ~ ( Y , ~ ) ~ ( Y . * ) ~ Y  ~ P ( u )  

(We use the orthogonality property of ( 2 3 ,  viz. that if," d(x, u)4(y, u )  dp(u) = 

S(x - y ) . )  In a similar way, using this time the orthogonality property for the $(x, u )  
of (4.21), we verify the boundary condition i(x, 0). 

6.3. Linkage with the prediction problem 

What the theory of partial differential equations tells us is that there exists a 
linear transformation 

computable as the cascade YC2X, of two transformations 

(computed with i(0, t) = 0) and 

(computed by assuming B(x, 0) = 0, x > a  and 7(x, 0) = 0, x > a ) .  
What Sections 6.1 and 6.2 have done is to compute the result of this transforma- 

tion when ii(0, t) = ei", lt1.a. Comparison with Krein's formula shows that this 
transformation gives the same result as Krein's formula. 
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The mapping X1 constructs from elA', It1 < a the pair @(x, A), $(x, A) for x s a .  
The mapping % constructs the estimate as in (6.6) from this pair. Thus in (6.6) 
the kernel associated with St2 is explicitly displayed, while that associated with XI 
has not been displayed here. It can, however, be found elsewhere, e.g., in [3]. 

In view of the isomorphism between the value at time t of a stationary random 
process w ( . )  and the function elA' (t fixed, A variable) described in Section 2, and 
the fact that Krein has established that his formula defines the projection of elAb 
onto elA', i t l sa ,  it follows that the prediction of C(0, b) in terms of C(0, t), / t l s a  
when C(0, t)  is a sample function of a random process of spectrum p ( A ) ,  is achieved 
by the transformation X =XzYll. 

7. Prediction without Krein or Sturm-Liouville 

The preceding sections have taken the viewpoint that a prediction formula is 
known, and have sought to give a physical interpretation of it. In this section, we 
argue the physical interpretation of the prediction formula from first principles, 
making no appeal to Krein's ideas. 

7.1. Prediction given spatial whiteness 

We recall the set up of Fig. 1, with R assumed to equal zu(L). In the next sections, 
we shall argue that for x # y, [B(x, t) i(x, t)] is uncorrelated with [6(y, t) i(y, I)] for 
any y # x, i.e, at any fixed instant of time [C t] is spatially a white process. Based 
on this fact, which at present is an assumption, we shall now explain why the 
prediction procedure works, the procedure being to construct from C(0, t), i t l ~ a  
the quantities C(x, 0), t(x, 0), O s x  < a  and then to compute i (0 ,  b) by taking 
5(x, 0) = 0, ;(X, 0) = 0 for b a x  >a .  Reserving i(0,  b) for the quantity obtained by 
this procedure, let z(t) denote E[C(O, t)/B(O, T), T s a]. 

The defining property for the prediction is 

Since when i ( 0 , ~ )  = 0, C(0, T), T =S a is obtainable from C(x, 0), i(x, 0) for 0 s x  s a 
by linear operations, and vice versa, an equivalent defining property is 

Suppose C(0, t) for jtl s b were known, while also i(0, t )  = 0. Then we could 
compute B(x, 0), i(x, 0) for O s x  s b (agreeing with the values computed over 
O<x s a )  by linear operations, and conversely. Suppose these linear operations 
are used on z(t), it1 s b  to compute quantities which we shall denote by B,(x, O), 
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i, (x, 0) for 0 sx s b. Eq. (7.2) may therefore be replaced by the equivalent equation 

Clearly z (t) must agree on it1 < a with '(0, t) and consequently CZ (x, O), i, (x, 0) must 
agree with 6(x, 0), i(x, 0) on /ti s a .  So (7.2) is equivalent to 

Applying the assumption of spatial whiteness, yet to be proved, 

for O < x < a , a < y  <b. 
Because z(t), it1 < b, has to lie in the space spanned by '(0, t), it1 < a or equivalently 

'(X, 0), i(x, O), O<X < a ,  and because G(y, 0), i,(y, 0) are obtained from z(t) by 
linear operations, it follows that &(y, 0), iz(y, 0) for a < y =S b are obtainable from 
'(x, 0), i(x, O), 0 <x S a  by linear operations. In light of (7.3), this means that 

Turning this round, we conclude that the estimate z(t) for a <It] s b can he obtained 
by setting E(x, 0) = 0, f(x, 0) = 0 for a <x < b and computing &(o, t). 

It is evident that the prediction procedure is not far different in concept from 
more standard procedures [5,10]. The constructions of the stored voltage and 
current at t = 0  corresponds to the construction of innovations data from the 
measurement, and then the construction of the prediction corresponds to prediction 
using the known part of the innovations. It is interesting to observe that a (scalar) 
record of the innovations of time length 2a is provided by a (2-vector) record of 
spatial length a, with spatial whiteness corresponding to time whiteness. We shall 
indicate elsewhere the precise relations between the innovations and this spatial 
record. 

7.2. Spatial whiteness in the finite-dimensional case 

To get a feel for the spatial whiteness result, consider the arrangement of Fig. 3. 
A transmission line can he thought of as a limiting form of the finite network 
depicted. Take as the state variable 

With u(t) an arbitrary voltage input, the state variable equation is 

x =Fx+Gu (7.6) 
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Fig. 3 

where 

If u is white noise with E[u( t )u(s ) ]  = R S ( t - s ) ,  then the steady state covariance 
matrix ~ [ x ( t ) x ~ ( t ) ]  = P is given by 

It is easily checked that 

(If E [ u ( t ) u ( s ) l =  2kTRS(t -s), corresponding to Johnson resistor noise, then (7.9) 
with scaling says that the average stored energy of each reactive component is S ~ T .  
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This is the equipartition principle.) The significance of (7.9) for our purposes is 
that it shows E[x,(t)x,(t)] = 0 for i Z j ,  corresponding to spatial whiteness. 

7.3. Spatial whiteness in piecewise constant lines 

In [8] signals in lossless nonuniform acoustic lines are considered. (Abstractly, 
these behave like lossless nonuniform electrical transmission lines.) For simplicity 
the acoustic lines are assumed to comprise juxtaposed sections of constant charac- 
teristic impedance and identical length. An extensive theory is described, covering 
such topics as the inverse problem, and prediction. A spatial whiteness property 
is also established. To the extent that an arbitrary line can be regarded as a limiting 
form of the type of line considered in [8], the spatial whiteness claim appears 
reasonable. 

7.4. Spatial whiteness on the transmission line 

In this section we formulate an infinite-dimensional version of the result of the 
previous section. Consider the set up of Fig. 1 hut where the generator is determinis- 
tic, generating an impulse S(t). Let the resulted normalized voltage and current at 
x, t be denoted by h,(x, t) and h,(x, t). When the generator is white noise with 
covariance S(t), and a steady state has been reached, one obtains 

. A  rather lengthy calculation using the partial differential equations satisfied by hi 
and hi shows that this quantity is zero for x # y. 

7.5. Another approach 

The approach of Gelfand and Levitan [3] to the inverse Sturm-Liouville problem 
involves the construction of various kernels satisfying covariance factorization types 
of identity. The various kernels we have had occasion to use can also be linked 
into these identities, and the identities themselves can he viewed with physical 
insight via the transmission line model. In this way one can recover the spatial 
whiteness and link the stored voltage and current at t = 0 to the innovations of the 
observed random process. We shall set out these calculations elsewhere. 

8. Conclusions 

The main conclusion is that a number of ideas for future research are opened 
up. We list the following avenues along which we are currently working: 
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(1) Prediction when covariances are not of the form G(t)+K(t) with smooth 
K(t). The case when the delta function is absent can perhaps he handled by 
modelling the covariance using a line and lumped reactive elements. The case when 
the delta function is replaced by a sum of delta functions with different arguments 
can perhaps he handled by working with lines with discontinuities in characteristic 
impedance. 

(2) Use of a line as a whitening filter [5]. 
(3) Use of a line as a Kalman filter, and even as a smoother [S]. 
(4) Eliminating many of the smoothness assumptions (this is linked with point 1). 
(5) Clarifying the meaning of the calculations using covariance factorization 

ideas, and particularly, identifying stored voltage and current as a spatial representa- 
tion of the innovations process. 

(6)  The vector process case. There are several relevant issues here. First, if the 
covariance is not symmetric (as opposed to self adjoint), the line will have to he a 
multiport structure with some sort of nonreciprocity. Second, if a multiport line is 
given, it is not clear how a distance scaling operation could be set up to achieve 
unit velocity of propagation on all channels. On the other hand, given a covariance, 
it seems reasonable to assert that from it, a multiport line could he found with unit 
velocity of propagation on all channels. 

(7) Time-varying lines and their connections with non-stationary processes. The 
work of [I] may be helpful in this regard. 

(8) Discrete versions. Two discretizations are possible. If we break the line up 
into a set of pieces of the same electrical length and discretize in time, we can draw 
some parallels with Levinson filtering as applied in speech processing 181 or seismic 
data processing [2]. The other form of discretization is to replace the line by a 
lumped inductor-capacitor ladder network. 
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