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Identifiability of MIMO Linear Dynamic 
Systems Operating in Closed Loop* 

T. S. NG,t G. C. GOODWINt and B. D. 0. ANDERSON? 

Necessary and sufficient ident19ability conditions for multi-input multi-output linear 
dynamic systems opevating in closed loop indicate that under certain conditions 
physically meaningful models for forwavd and reverse paths can be uniquely determined. 
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Summary-Identification of multi-input muiti-output [MIMO) Section 3 of the naner is concerned with the case -~~~ ~-- .  - -  ~-~~ r ~ ~ r ~ -  -- -----.---- ~~ - ~ - -  ~ - - -  ..~.. 
linear dynamic systems is considered for the c&e when the 
measurements are obtained during closed loop operation. Both where the disturbances in the feedback path are a 
noise free and noisv feedback situations are analvsed. For the full rank stochastic Process. Other authors,e.g.rlOl, .- - 
case where the distirbances in the feedback path i re  a full rank [ll], [14] and 1171 have also studied the case under 
stochastic process it is shown that, under certain mild conditions, 
physically meaningful models for the forward and reverse paths different conditions. Gustavsson et al. in 1141 show 
can be uniquely determined. Far the case where the feedback that the forward path model is strongly system 
path is noise free it is shown that the forward path model can be identifiable under the assumption that the forward 
uniquely determined provided the regulator satisfies certain path noise model is minimum phase, Phadke and minimal complexity requirements. 

Wu[ll] describe a procedure for obtaining forward 
L INTRODUCTION 

MOST commonly used identification procedures 
rely on the assumption, explicitly or implicitly, that 
the process input is independently generatedll]. 
However, this requirement conflicts with the fre- 
quently met practical requirement that the system 
cannot be operated in open loop. 

The feedback may occur naturally, as is fre- 
quently the case in sociological, biological and 
economic modelling problems. Alternatively, the 
feedback may be purposefully introduced to achieve 
some acceptable level of process operation. For 
example, the output may be required to meet 
normal production constraints. An extreme case is 
when the system is open loop unstable. 

The closed loop identifiability problem has been 
studied by a number of authors (see e.g. 121-[9]). A 
comprehensive survey of recent results on this 
problem is contained in the paper by Gustavsson et 

o al.[14]. It is known that unique identification is 
possible under a number of different conditions, e.g. 
when the feedback regulator is switched among a 
number of different settingsC51, the disturbances in 
the feedback path are persistently exciting1141 or 
the regulator satisfies certain complexity require- 
ments[6], [7]. The purpose of thecurrent paper is to 
further study the latter two conditions especially in 
the multi-input multi-output case. 
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and reverse path models by analysing a particular 
factorization of the joint input-output spectral 
density. Caines and Chan[lO] have used a similar 
formulation to test for 'feedback free' processes. In 
both [lo] and [ I l l ,  the stable minimum phase 
spectral factor is used but no proof is given that this 
yields physically meaningful models for the forward 
and reverse paths. It is shown in Section 3 of the 
current paper that the forward and reverse path 
models will, in general, depend on the particular 
factorization of the joint input-output spectral 
density. Moreover, the stable minimum phase 
spectral factor can only be guaranteed to yield 
physically meaningful models provided the noise in 
the forward and reverse paths are uncorrelated and 
there is a delay in both the forward and reverse 
paths. These conditions also give further insight into 
the results of VorchikC171 who bas shown that 
truncated maximum likelihood estimatesare con- 
sistent under a minimum phase assumption for the 
noise model. 

Section 4 of the paper is,concerned with the case 
where the feedback path is noise free. The multi- 
input multi-output case is considered and it is 
shown that the forward path model can be uniquely 
identified provided the maximum observability 
index for the forward path is less than or equal to the 
minimum observability index for the feedback path. 
This result reduces to the known results [6], 171, 
1141 for the single input single output case. 

2 MODELS FOR FEEDBACK SYSTEMS 

The class of feedback systems under con- 
sideration is depicted in Fig. 1 where 
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FIG 1 A closed loop system 

u, E Rm IS the process Input 
y, E Rr is the process output 
t,, E R" 1s the noise in the forward path 
t,, E Rm is the noise in the feedback path. 

G,(z), G2(z), G,(z) and G,(z) are rational 
transfer function matrices expressed in terms of the 
Z-transform variable, z. We assume that closure of 
the loop yields a properly defined system. This will 
be so if, for example, 

lim G,(z)G,(z)=O. 
z+m 

In our subsequent analysis we shall simplify the 
notation by omitting the argument z from G(z) 
whenever no possibility of ambiguity may arise. We 
also use the notation G*(z) for GT(z-I). 

We shall occasionally make a slight abuse of 
notation by writing equations of the form Y(z) 
= G(z)U(z) as y,= G(z)u,. The latter equation can 
he thought of as a difference equation provided z-' 
is interpreted as the unit delay operator, i.e. 

We assume that the white noise sequences it1,) 
and {t2J  have a joint Gaussian distribution with 
zero mean and covariance given by 

We assume that D is positive definite. 
If prior knowledge indicates that a model 

structure of the form shown in Fig. 1 is appropriate, 
then the identifiability question can be stated as: is it 
possible to extract physically meaningful estimates 
of the transfer functions GI to G, from measure- 
ments of y, and u,? The purpose of the current paper 

is to analyze this question under a number of 
different conditions. 

The structure depicted in Fig. 1 is not meant to 
preclude the possibility of considering situations in 
which for example, the plant noise is added at the 
plant input (after measurement of u,), or indeed at 
some internal point of the plant. For if additive 
input noise is derived by passing & through a filter 
G2(z), the arrangement is equivalent (in the sense 
that measurements of u,,y, will not be able to 
distinguish the situation) to that shown in Fig. 1, 
provided that we take G,(z)= G,(z)G2(z). 

In this sectlon we consider the case where thejoint 
process (y , ,  u,) is a full rank stochastic process. We 
assume that the process (y,,u,) is stationary and we 
denote thejoint spectral density by Q,,. From Fig. 1, 
Q,, is given by 

where D is defined in(2.2) and whereK(z) is given by 

(The inverses of I - GIG3 and I - G,G, exist when a 
system is properly defined after loop closure.) 

We now have the following result regarding the 
relationship betweenK and GI to G,. 

Lemma 3.1. There 1s a one to one correspondence 
between K, as defined in (3.2), and the quadruple 
(GI, G,, G,, G,). Furthermore, the values of GI to 
G, are un~quely expressible in terms ofK as follows 

Pyoof: We first note that the assumption that Q,, 
has full normal rank implies that K,, and K,, are 
nonsingular. For ifK,, is singular, (3.2) shows that 
G2 is singular and thus [:;,!I fails to have full 
normal rank.. Thus K is singular and so Q,, is 
singular. Likewise Q,, is singular if KZ2 is singular. 
In either case we have a contradiction. Therefore the 
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quantities on the right hand side of (3.3) to (3.6) are 
well defined. Then it is obvious that K is uniquely 
determined by G I  to G,. To prove the converse, we 
assume that there exists another set (H , ,  H,, H,, 
H,) giving rise to K .  Then from (3.2) we have: 

Now using the fact that (I - A B ) - ' A = A ( I  
-BA)- '  for rectangular matrices A and B, it 
follows that equations (3.7) to (3.10) have a unique 
solution 

GI  = H I  =K12K;2 (3.11) 

vvv 
Lemma 3.1 indicates that it is possible to uniquely 

recover G I  to G, from K. However, there is a 
fundamental and unavoidable nonuniqueness a s - ~  
sociated with the spectral factorization given in 
equation 3.1. Thus for a given @,, there will be many 
transfer functionmatrices G, to G, corresponding to 
the different spectral factorizations of@,,. Of course, 
unique values for G I  to G, can be determined by 
using a particular factorization of @,,. For example, 
the stable minimum phase spectral factor is used in 
1101, [ l l ] .  However, it is not obvious that this will 
necessarily lead to physically meaningful values for 
GI  to G,. The conditions under which the stable 
minimum phase spectral factor leads to physically 

, . meaningful values for G ,  to G, are studied in the 
following theorem. 

. . 

Theorem 3.1. Consider the process depicted in 
Fig. 1 under the following assumptions 

(a) the closed-loop system is asymptotically stable 
(b) G,  and G ,  are strictly proper, while G, and G, 

are proper, i.e. 

Let K ( z )  be specified by the requirements thatK(z) 
be stable, K ( z )  be nonsingular for lz/ > 1, K ( m ) = I  
and @,,(z)=K(z)LTKT(z~')  for some D>O. Thus 
K ( z )  is the unique minimum phase spectral factor of 
@,.(z), as shown in the Appendix. Define Gi by (3.3) 
through (3.6) withKij replaced by Kij  Let 

The open loop transfer functions are recoverable if 

where V ( z )  and W ( z )  are rational matrices with 

(i) A sufficient condition for recoverability of G ,  
to G, is that D be block diagonal, Dl,  = D:, =O. 

(ii) A necessary and sufficient condition for 
recoverability of G I  to G, is that the transformation 
fromK to K be block diagonal. 

Proof: ( i )  Let A-' ( z ) [ B ( z )  j C ( z ) ]  he any left 
prime polynomial matrix fraction decomposition of 
[G,  ( z )  j G,(Z)],  see [12],  and let E-'(z)[F(z) i L ( z ) ]  
be a left prime decomposition of [ G 3 ( z )  I G,(z)].  
Then 

and the closed loop is stable if and only if 

Let VA(z) ,  V'(Z) be polynomial matrices cor- 
responding to A ( z ) ,  E ( z )  as per Lemma 4 of the 
appendix. Then 

with 

= det VA det Vx detf A -B]  
-F E 

by (3.21) and Lemma 4 
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Because Bv (3.151. the first matrix 1s I. whlle the definition of . .  . 
VA, VE (see Lemma 3) and (3.26) and (3.29) ensure the 
second matrix is I. SoR(m)=I .  Thus K =R. 

Lemma 4 Implies that VAC has degreeln,. Simi- Define 

larly, V,Lhas degree 5 n,. 
Now apply Lemma 2 of the Appendlx to V(z)=C-'(z)V,(z)C(z) 

and to Then (3.24) and (3.27) yield (3.19). Also, because 

Y,(z) = v'(z)~(z)D,LT(z-')V;(z4). 

Then there exists a polynomial matrix C(z) degree 
n, and D, > O  such that 

YA(z)= VA(z)C(z)DICT(z~l)V~(z-l) 

=C(z)D,P(z- ')  (3.24) 

det C(z)#0 for /zl> 1 (3.25) 

lim z-"~C(z)=l  (3.26) 
z-m 

similarly there exists a polynomial matrix L of 
degree n, and D, > 0  such that 

Y&)= v'(z)L(z)D,C(Z-~)V;(Z-~) 

=L(z)D,F(zY1) (3.27) 

det L(z)#O for lz/> 1 (3.28) 

lim z-"'L(z)=I (3.29) 
I+_ 

Define 

we have, as required, 

with G, = G,K G ,  = G,, G, = C, W following sim- 
ilarly. 

(ii) This is immediate since (3.18) implies aud is 
Implied by (3.32). 

vvv 

The above theorem shows that, provided the 
noise sequences {tZt}. i =  1,2, in the forward and 
reverse paths are uncorrelated, then the correct 
values of GI and G, can be obtained by applying 
equations (3.11) and (3.13) to the stable minimum 
phase spectral factor of@,,. Furthermore, the values 
of G, and G, obtained from K will differ from the 
true values by, at most, right multiplication by a 
scaled para-unitary matrix. This latter ambiguity is 
of afundamental nature and occurs even in the open 
loop case. This ambiguity does not influence the 
input-output characteristics of either the forward or 
reverse path and therefore is of no practical 
importance. 

We shall show that ~ ( z )  is the unique minimum In many practical situations, it is reasonable to 
phase spectral factor ofQ,.(z) withK(m)=I,  i.e.,if assume that the disturbance in the forward alld =K with D,,=D,, D,,=D:, =0, DZ2=D2. Equa- reverse paths are uncorrelated. Furthermore, D 
tions (3.30), (3.22), (3.24), (3.27) show that block diagonal implies that the likelihood function 

splits into the product of two terms, one for the 
forward path and one for the feedback nath. Thus 

with D and D block diagonal. provided GI, G, have no parameters in common 

Equations (3.23) and (3.25) and (3.28) together with G, ,  G, (this will invariably be the case in 

with this definition of K(z) show that ~ ( z )  is practice) maximum likelihood type procedures can 

analytic in lzlz 1 and nonsingular in lz/ > 1. be applied to the data (u,, y,) as if it were open loop 

Equation (3.30) also yields data. Alternatively, standard procedures exist for 
estimatineK(z) for the ioint nrocess (v,.  u.) and then - . .  ,, .. ., 
equations (3.11) an6 (3.12) call be used to determine 

lim K (z) = lim G, and G,. The principle of invariance 1161 for 
I+rn maximum likelihood estimators ensures that these 

two approaches yield identical estimates. 

lim [(VAA)-'C I 
It should be noted that Theorem 3.1 does not 

require det (A) # 0, det (E) #Oil? lzlz 1. Thus thereis 
z-m 0 b E i  no restriction against open loop unstable systems. 
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There is no dil'ficulty identifLing open loop unstable 
systems provided the closed loop system is stable. 

If it is known that G, and G, areminimum phase, 
i.e. arestableandnonsingular in / z /  > 1, andif G, and . 
G, are stable, then the use ofthe spectral factorK will 
yield G, and C, identical with G,, G, except possibly 
for differing poles at z =O and a scalingconstant. For 
G ,  = ( V , A ) '  C will be stable and is nonsingular in 
z /  > I .  and from this fact, the claim follows. 

~ ~~ 

For thecase where the noise sequence {te), i =  1,2 
in the forward and feedback paths are correlated, 
then the models obtained for G, to G, from 
(3.11) to (3.14) will depend in general upon the 
particular factorization of a,, used. Among all 
possible stable spectral factors of a,, only one will 
yield appropriate values for G, to G,. In practice 
there is no way of knowing which factor should be 
used and use of the wrong factor will lead t o  
incorrect conclusions regarding the forward and 
feedback paths, except in the non-generic cases 
covered by part (ii) ofTheorem 3.1. 

We remark that many recent papers on closed 
loop identification have assumed that there is a 
delay in only one of G, or G, with D =I, whereas we 
have assumed that both G, and G, have at least one 
delay. However, if the delay is absent from either G, 
or G,, then this is equivalent to having correlated 
noise in the forward and feedback paths even 
though D = I. Thus the unique determination of G ,  
and G, from Q ( z )  will again be impossible, and we 
illustrate this below in Example 3.2. Of course the 
assumption of a delay in G ,  and G, is often 
physically reasonable since it is never possible to 
h&e instantaneous transmission of signals over a 
finite distance; nevertheless, a number of important 
practical situations have G, (co) #O. 

Example 3.1 
Consider a single-input single-output feedback 

system of the form- illustrated in Fig. 1 with the 
following values for the transfer functions G, to G, 
and for the covariance D 

The corresponding value of K is given by 

It can be seen that K ( z )  given above is a stable, 
hut non-minimum phase, spectral factor of Q,,. The 
minimum phase spectral factor of@,, turns out to be 

with Q,,=K(z)DK*(z) and 

The unique values of G, to G, corresponding to K 
are 

G,=1 (3.44) 

vvv 
Comparing equations (3.41) to (3.44) with equa- 

tions (3.34) to (3.37) shows that use of the minimum 
phase spectral factor when D is not block diagonal 
can give incorrect estimates for G, to G,. Of course, 
the model defined by G,, Gr, G,, G, and B is in the 
equivalence class of systen~s having the structure 
depicted in Fig. 1 and giving rise to the same value of 
Q,,. However the model would lead to incorrect 
conclusions regarding the forward and reverse path 
transfer functions. This could be important in 
practice. For example if one were interested in 
predicting the effect of changes in the feedback law, 
then it is important to have the correct forward path 
model. 

Example 3.2 
Suppose one takes D =I and 

Then one obtains the same spectrum as in Example 
3.1. Then use of a minimum phase spectral factor K 
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leads to different G,, G, 

VVV 

The above example illustrates the need for the 
assumption that there is a delay in both the forward 
and reverse paths even when D is block diagonal. 

4. CONDITIONS ON REGULATOR COMPLEXITY FOR 
IDENTIFIABILITY-NOISE-FREE CASE 

In this section, we assume that G,=O and G, is 
fully known. (Thisisincontrast to Sect1011 3 where G, 
was assumed nonsingular and G, was unknown.) As 
before, we are interested in estimating G, and G, 
from measurements on (u,, y,). 

The result in the previous section does not require 
knowledge of the structure of GI or G,. Here, 
however, we shall need to assume certain structural 
information regarding the pair [G, j G,]. In parti- 
cular, we shall assume knowledge of the observa- 
bility index of any minimal state-space model for 
[GI j G,]. It is well known [I], [2] that for a simple 
feedback transfer function G,, ambiguity may arise 
in identifying parameters in G, and G,. It has been 
shown for the single input single output case [6], 171 
that identifiability of GI and G, can be achieved by 
use of a sufficiently complex feedback transfer 
function G,. We extend this result to the multi-input, 
multi-output case in the remaining part of this 
section. 

Without loss of generality, we assume that G, and 
G, are represented by a left matrix fraction 
decomposition (MFD) 11271 of the form 

[G, i G,] = A ' [ B  j C] (4.1 

where A, B, C are polynomial matrices in z with A 
row proper 1121, A and [B i q relatively left prime 
and 

lim A-'B=O, lim A-'C=I. 
x+m 2-m 

We further assume that G, is represented by a right 
M F D  of the form 

G,=FE-' (4.2) 

where E is column proper and with the column 
degrees o f F  less than corresponding column degrees 
of E[12]. [The results to follow can he adjusted to 
cover the case of O#G,(co)i  co.] Lemma 4 of the 
Appendix applied to G: shows that, without loss of 
generality, E can be expressed in the form Eozt 
+..., ElwithEo=I. 

We assume that (AE - BF) and C are relatively left 
prime (i.e. we assume that the feedback does not 
introduce additional pole zero cancellations): We 
also assume that the closed loop system is stable i.e. 
det (AE -BF)+O in lzlz 1. 

For given G, there exists some flexibility in the 

choice of E and F to satisfy (4.2). However, thls 
flexibility does not influence the conclusions that we 
shall reach. 

The spectral density for the process (y,) is given 
by: 

@,=rnl T* (4.3) 

where 

T=E(AE-BF)-'C (4.4) 

Given @, we can readily compute @, with w, 
=zfE-'y,. This gives 

@,=SD,,S* 
with 

(4.5) 

s = z ~ E - '  T = Z ~ ( A E - B F ) ' C  (4.6) 

Using similar arguments to those used in the 
proof of Theorem (3.1) we can assume, without loss 
ofgenerality, that det C#Ofor lz/ > 1 and hence that 
S given in (4.6) is stable and minimum phase with 
lim,,, S =I and is uniquely determined by @,. (see 
Lemma 3 of the Appendix) 

We now represent S by a left irredicuble MFD of 
the form 

S=Q-'R (4.7) 

Since (AE -BF) and C have been assumed to he 
relatively left prime, then we know[l?-] that 

[QjR]=U[AE-BFiC] (4.8) 

for some unimodnlar matrix U. 
From equation (4.8) we have 

[Q!R]=[A'E-B'Fi C'] (4.9) 

where A'= UA, B'= UB, C'= UC. 
We now investigate the conditions under which 

equation (4.9) can be uniquely solved for A', B' and 
C', knowing Q,R,E and F. We remark that it is 
immaterial whether we obtain estimates for A', B', 
C' or A, B, C since (A')-'B'=(A)-'B=G, and 
(A')-lc '= (A)- 'C=G~.  

It is clear from (4.9) that C'=R. Also expressing 
A ~ ( ~ ) = A ~ ~ ~ + A ; ~ ~ - , . , + A ; ,  B'(Z)=B;Z~- '+ ... 
+B;, E(z)=E,z%E,z"'+. . .+E, and F(z)= 
F , z L 1  +. . P,. we have from (4.9) that A'E -B'F= 
Q and hence equating coefficients we have 
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where 

EoEl .... 
(k- 1) block rows 

s~(E,F)= 
I 
I (k) block rows 

F, .... Fc (4.15) 

The matrix Sk(E,F) is known as the Generalized 
Sylvester matrix[18] for the matrix polynomial pair 
(E,F). The following lemma gives elementary 
properties of the matrix N. 

Lemma4.1. Properties of the matrix N are 
(i) Rank Sh(E,F) is independent of the parti- 

cular realization used in equation (4.2.) 

(ii) Rank [Sh(E,F)] 5 (k- l ) r + p  (4.16) 

with equality iff k~v,,,(G,) 
where 
r is dimension of E (number of system outputs) 
pis McMillan degree of G, =FE-' 
v,,(G,) is the maximum observability index for any 

irreducible representation for G,. 

(iii) Rank [Sk(E,F)] = (k- l ) r+  km (4.17) 

provided k 5 v,,(G,) 
where 
v,,(G,) is the minimum observability index for any 

irreducible representation for G,. 
(iv) 

Proof 
(i), (ii) see [la], 1121 
(iii) Let r - ' Q  be a row proper left MFD 

corresponding to FE-'. Since T-'Q=FE-', we 
have 

QE-TF=O (4.19) 

Thus the columns of [!;TI are in the null space of 
[ET j FT]. Since E is r x r and nonsingular, the range 
space of [El has dimension r which must also be 
the dimension of the orthogonal complement of the 
null space of [ET j FT]. Now the domain of [ET j FT] 
has dimension (m+ r), and thus the dimension of the 
null space of [ET FT] must have dimension (m+ r) 
- r =  m. Moreover, r is (m x m) and nonsingular 
and thus the columns of [!;TI span the null space of 
[ET: FT]. Since T1C2=FE-' =G, and the smallest 
column degree in [$TI =the smallest row degree in 
[Q -r] = the least observability index for G, 
= v,, it is now clear that two arbitrary non-zero row 
polynomials a and P (a: 1 x r,P: 1 x m) 

with k t  v, satisfy 

Hence 

$TSh"(E,F)#O for y+O (4.24) 

with 

$'= GPl,P2,. . P k ,  ao, a,,,, ah] (4.25) 

Thus Sh+'(E,F) has full row rank for k<v, or 

Rank Sh(E,F)=r(k- l )+mk  for k s v ,  
(4.26) 

(iv) The proof of this result relies upon the 
structure of the matrix N when the column degrees 
of F are less than the corresponding column degrees 
of E. Since E is column proper, then the scalar 
matrix r c ,  with elements in B consisting of the 
coefficients of the highest degree of z in each column 
of E(z) will be nonsingular. It therefore follows that, 
if block rows of the form [E, . .  . EcO.. .O] are added 
to the top of Sk(E,F), then the rank increases by r 
since the columns of T, appear above zero columns 
in Sh(E,F). The same argument applies when 
[E,. . . E,0.. .O] is added to the top of 
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Thus 

=Rank [Sh(E,F)] + 2r (4.27) 

vvv 
We can now use the above lemma to establish 

necessary and sufficient conditions for identifiability 
of A', B'. 

Theorem4.1. Let 

v,,,(G)=maximum observahility index of any 
irreducible representation for G 1121. 

v,,(G)=minimum observability index of any irre- 
ducible representation for G [12]. 

Then 

(i) A necessary condition for identifiability is 

(ii) A sufficient condition for identifiability is 

Proof 
(i) If ~, , , (GI )>vmaX(G3) 

the11 k. the highest power of z in A,B where A-'B 
= G,, is greater than v,,,(G,). 

Hence from Lemma (4.1) part (ii) 

Rank [Sk(E,F)] = (k- l ) r + p  (4.28) 

But, 

Hence 

Rank [Sk(E,F)] i (k- l)r+mk (4.30) 

Using part (iv) of Lemma 4.1 we have 

However 

has (k+ l ) r  +mk rows, and it therefore follows from 
(4.31) and (4.10) that A'@), B'(z) cannot be uniquely 
determined. 

(ii) If vm,,(G1 )5v,,,(G3), then k5v,,,(G3) and 
hence from Lemma (4.1) parts (iii) and (iv) 

Rank - - , - - - - -  =(k+l ) r+km(4.32)  [ 0 " sh(E,F) I 
Hence equation (4.10) can be solved uniquely for A' 
and B'. 

vvv 
The above result can be extended to the case 

where 0 # G3 ( m )  i m. The essential modifications 
are to write 

F (z )=F ,z '+F ,~~_ ,+  ... F, 

and to replace (k - 1) by k on the right hand side of 
(4.16) and (4.17) and to replace 2r by r on the right 
hand side of (4.18). 

Our proof of the above theorem has been indirect 
in so far that we have argued via aclosed loop model 
from which the open loop model is subsequently 
determined. However, provided the feedback re- 
gulator is sufficiently complex, as measured by the 
observability indices, then the data (u,, y,)  can he 
analysed using maximum likelihood or prediction 
error methods as if it were open loop to yield a 
model for the forward path, cf. similar remarks in 
Section 3. 

For the single input single output case, we have 
v,,,(G3) = v,,(G3) and thus the conditions given in 
Theorem 4.1 reduce to the known 161, [7], [14] 
necessary and sufficient conditionsfor identifiability 
in the single input single output case. 

An important distinction between Theorem 3.1 
and Theorem 4.1 is that Theorem 3.1 does not 
denend upon knowledge of the system order 
whereas Theorem 4.1 applies only in the case where 
there is a definite upper bound on the complexity of 
the forward path model. 

5. CONCLUSION 

This paper has discussed conditions under which 
a multiple-input multiple-output linear dynamic 
system can be identified from closed loop measure- 
ments. The results are believed to be of considerable 
practical importance since many processes are 
either intrinsically closed loop or have undesirable 
operating characteristics in open loop. The con- 
ditions established in this paper can be applied 
either to test identifiability for some given system or 
as an aid in the design of a closed loop identification 
experiment in which the feedback may be chosen by 
the experimenter. 
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APPENDIX 

MATRIX SPECTRAL FACTORIZATION 

In this appendix, we recall several facts concerning matrix 
spectral factorization in the i-plane. The result sfor thes-planeare 
well documented[l5], but a little harder to find for the z-plane. 
We start with the following result, quoted by Popav[l9]: 

Lemma 1. (Popov) Let Y ( z ) = Y T ( r  I )  be real rational, such 
that zmY(z) is polynomial for some m, nonsingular almost 
everywhere and nonnegative for / z  = 1. Then there exists a real 
polynomial D,(z)with detD,(z)# 0 for z151  such that 

Y(z)=D;(z-')D,(z). 
vvv 

This allows usto prove the following result, used in thepraof of 
Theorem 3.1. 

Lemma 2. Let Y(z) be as above. Let n z m  but otherwise be 
arbitrary. Then there exists a polynomial M( r )  of degree n and 
D=DT>Osuch that 

det M(z)#O for z > 1  

lim z-"M(z)=I 
z-m 

Pro"/. Check that M ( z ) = i n D ~ i z ' ) [ D ~ ( O ) ] '  
and D =D;(O)D,(O) work. 

vvv 

We also have the following better known result 

Lemma 3. Let a(n)=QT(rC') be real rational, nonsingular 
almast everywhere and bounded and nonnegative for z 1. 
Then there exists a real rational K(z), analytic in lz/;l, 
nonsingular in lzl>1 and withK(m)=I andapasitive definite D 
such that 

Furthermare,K and D are unique 

Proof Let $ ( r ) = t I ( z - 4 )  where zi is a pole of Q(z) with 
z r  < 1. Then set Y(z )= i ( z )* (z l )Q(z ) .  Let M ( i )  and D be as 
in Lemma 2for some arbitrary n. Then take 

Suppose that K(z)DK~(z-')=IZ(~)~R~(Z-~) with f? and 6 
satisfying the same properties as K and D. Then S=K-'K 
is analytic and nonsingular in lz/>l .  Also, we have 
S=6[ST(z~')]'D',showingthatSisanalyticandnonsingular 
in 111 < 1 and that, since D '  = S T ( z ' ) D ' S ( i )  an li/ =I ,  S(z) is 
bounded on lzl= 1 and is thus analytic there. Hence S is analytic 
everywhere, with S ( m ) = I  by the conditions an K and K. By 
Liouville's theorem, S(r )=I .  

vvv 

For the proof of Theorem 3.1, we shall also require the 
following lemma concerning polynomial matrices. 

Lemma 4. Let A ( r )  be a square matrix polynomial. Then there 
exists a polynomial V,(z) and an integer n, such that 

V,,(z)A(z) = z"^I +lower order terms 

det V,(z)#O for I r > l .  

Proof. There exists[12] V,(z) with V,(z) unimodular, i.e. of 
constant determinant. polynomial, and such that V,(z)A(r) is 
row proper, i.e. there exists aset of indices ni such that 

am diag [i-"~, z-"I.. .] V,(z)A(z)=r 
z-m 

is finite and nonsingular. Set V2(z)=diag[z" " 1  f - " a . .  .] where 
n=max q and take V,( i )=T1 V,(r)V, (I) and n,=n to obtain 
the lemma. 




