
Stability of matrix polynomialst 

BRIAN D. 0. ANDERSON$ and ROBERT R. BITMEADt: 

The paper wonsiders the following question : Given a square, noq-singular polynomial 
mstrix C(e), how do w& neheck, without evaluating the d e t a d t ,  whether all the 
eeros of det C(8) sre in the open left-half plane P ' 

The approach used to answer thisqueetion is to derive from C(3 B rational transfer 
funotian matrix which is losslesri positive real (1.p.r.) if and only if det C(s) is 
Hurwita. The 1.p.r. property is -ily checked using the mafficients of the rational 
function only. The eonatruction of the 1.p.r. funotion requires solution of a poly- 
nomid matrix equation, and the later part of the paper diieussea both Bxistsnce 
questions and solution procedures ; if no wlution exists to the matrix equation then 
det C(s) i s  non-Hurwitz. 

The connection is also illustrsted batmen the 1.p.r. stability test and &at of 
Shieh and Sacheti (1976). Pmspacts for development of the theory are discussed. 

1. Introdnetion 
In many situations of linear systems theory it is often necessary to examine 

the location of the zeros of the determinant of a matrix polynomial. For 
instance, given a rational transfer function matrix H(s), i t  is often of intemt 
to know whether i t  represents a stable system. If H(s) is represented by a 
minimal matrix fraction description (M.F.D.) A-l(s)B(s) (where A(s) and 
B(8) i r e  relatively left prime polynomial matrices with det A(s)+O), then 
R(s) represents a stable system if and only if det A(s) has all its zeros in the 
open left-half plane Re [s] < 0. 

One method of localizing the roots of det A(s) is to evaluate the scalar 
polynomial det A(s) and then to apply a scalar stability test to it. However, 
as more sophisticated matrix methods become available, i t  is both reasonable 
and instructive to attempt to find a direct stability test which does not involve 
the computation of det A(s). It is our intention-to examine such an approaah 
in this paper. 

Consideration of the scalar polynomial stability results indicates several 
likely direotions of approach to the matrix case. Recall that, given a scalar 
polynomial p(s) =aosm -I- a,swl + . . . +a, with a, > 0, p(s) has zeros only in the 
left-half plane : 

(i) if and only if the elements constituting the first column of Routh's 
array are all positive (Routh 1877) ; 

(ii) if and only if the rational function 
even part of p(s) 

w(s) = or odd part of 24s) 
odd part of p(s) even part of p(s) 

is a reactance function, i.e. represents the driving point impedance or 
admittance of an LC network (Guillemin 1957) ; 
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(iii) if and only if, for w(s) as above (the alternative chosen which yields 
w(co) =O) 

m 

I jw(jw) =degree p(s) 
- m 

0 

where I z(s) is the Cauchy index of x(s) over (a, b) and is defined as 
h 

the number of jumps of z(s) from - co to + oo less the number from 
+ co to - co as s varies from a to b - jumps at  a and b neglected 
(Gantmacher 1959). 

Recent developments in the theory of rational and polynomial matricea 
have produced a matrix Routh array (Shieh 1975, Shieh and Sacheti 1976) 
applicable to the testing of stability of a restricted class of matrices, a simple 
test for a rational matrix to represent the driving point impedance of an LC 
multiport network (R. Bitmead and B. D. 0. Anderson, under review; 
Bitmead and Anderson 1977) and a matrix Cauchy index applicable to 
real symmetric or hermitian rational matrices (Bitmead and Anderson 
1977). is already known in the scalar case, the Cauchy index approach 
to the matrix stability question yields simply the other results (Gantmacher 
1959) and we shall show that the matrix Cauchy index methods provide the 
link between our LC impedance matrix test for stability and the less general 
matrix Routh array test of Shieh and Sacheti (1976) which, in fact, represents 
a restricted LC test. 

In this paper, we extend this viewpoint to the matrix case. More speci- 
fically, we show how the stability of a prescribed matrix polynomial can bc 
examined by testing a rational matrix for the lossless positive real (1.p.r.) 
property, or equivalently another rational matrix for the losslass bounded 
real (1.b.r.) property (defined later). The construction of the 1.p.r. or 1.b.r. 
matrices from the prescribed matrix polynomial is not as straightforward as 
in the scalar case. We also connect these ideas with the Routh array of 
Shieh, which in fact represents a scheme for testing for a property that implles 
Lp.r., but is a t  the same time more restrictive. 

The plan of the paper is as follows. We review in 3 2 the statements of 
the 1.p.r. and 1.b.r. properties for a rational transfer function matrix represented 
a s  a polynomial matrix fraction. The testing for these properties is done by 
simple calculations with the coefficients of the polynomials in the matrix 
fraction. Section 3 attempts to derive from a prescribed matrix polynomial 
a rational transfer function matrix which is 1.p.r. if and only if the determinant 
of the matrix polynomial is Hurwitz. To do this, it proves necessary to 
introduce a dual matrix polynomial whose presence in the scalar problem is 
disguised since scalar polynomials are self-dual. Section 4 considers the 
computational aspects of the derivation of the dual polynomial and narrows 
down the difficulty to the solution of a certain polynomial matrix equation. 
However, it is then noted that other authors have investigated similar equa- 
tions and their results may be modified to determine whether a solution exists 
and then to calculate it. We show that if no solution exists to the equation 
then the prescribed polynomial matrix has a non-Hurwitz determinant. In 
5 5 we illustrate the connection between the stability test of Shieh and Sacheti 
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(1976) and our 1.p.r. test. We show that the testa are equivalent, except that 
that of Shieh and Sacheti (1976) is applicable to only a subset of those poly- 
nomial m&trices dealt with by our test. We also mention prospects for 
further development of the theory. 

2. Lossless positive real and lossless bounded real rational matrices 
A real rational matrix Z(s) which represents the driving point impedance 

(or admittance) of an LC multipart network is termed 1.p.r. The properties 
of 1.p.r. rational matrices will play a crucial role in the derivation of a direct 
stability test. Therefore we now summarize the matrix 1.p.r. property as 
approached from a Cauchy index viewpoint. We note the definition and 
basic properties of the matrix Cauchy index as a preliminary. 

Defining the Cauchy index of a rational hermitian matrix Z(s) over the 

real interval (a, b), I Z(s), as the number of eigenvalues of Z(s) which juhp 
,z 

from - co to +'a less the number which jump from .+ co to - co as the 
independent variable s traverses the real axis from a to b (jumps at  a and 
b are not counted) we have : 

L m m  1 (Bitmead and Andemon 1977) 
Let Z(s) be an hermitian matrix of rational functions of s over the complex 

field with Iim Z(s) finite and with a left matrix fraction description (m.f.d.) 
s-m 

A-l(s)B(s). Then the matrig A, whose i- j block entry kj is given by 

is an hermitian matrix, and 
m 
I Z(s) = signature A - m 

The matrix A above is actually a generalized bezoutian .(Anderson and 
Jurgr 1976) matrix associated with Z(s). Entries of A are easily constructed 
from the coefficients of A( . ) and B( . ). 

Another method for the evaluation of the matrix Cauchy index is via a 
matrix S t m  sequence. Let Z(s) b e a  rational hermitian and now non- 
singular matrix with left m.f.d. A,-l(s)A2(s). A left Sturm sequence associ- 
ated with Z(s) is the sequence of polynomial matrices {A&), A&); ..., Am@)} 
obtained from 

A I ( ~ )  =As(8)Q2(8)- A,($) 1 
A,-I(~) = A,(s)Q,(s) J 

where A,(s) is non-singular and Qi(6) is polynomial. As shown by Bitmead 
and Anderson (1977), i t  is always possible to choose the A&) 80 that 
deg det A,+,(s) <deg det A&) and A,-,-l(s)A,(s) is hermitian if Z(s) is also. 
We now have : 
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Lemma 2 (Bitmead and Anderson 1977) 
Let Z(s) be a rational hermitian non-singular matrix with left m.f.d. 

A,-l(s)A,(s). Let {A,, A,, ..., A,} be an associated left Sturm sequence. 
Then 

b m-1 

I Z(s) = C Aab(A<-'Ai+J 
n i-1 

(2.41 

where A,bY(s) for hermitian Y(s) equals haK the signature of Y(b) leas half 
the signature of Y(a). 

Aminor variant on the lemma, whose details will not coneeIm us, allows 
extension to singular Z(s). 

Having briefly described the matrix Cauchy index we turn now to its 
application with 1.p.r. matrices. A real rational matrix Z(s) is termed 1.p.r. 
if and only if Z(s) + Z'( - s) = 0 and all poles of entries of Z(s) are either pure 
imaginary or at  infinity, are simple, and have the associated residue matrix 
non-negative definite hemitian (Anderson and Vongpanitlerd 1973, Newcomb 
1966). Or, alternatively (Anderson and Vongpanitlerd 1973, Newcomb 1966), 

Z(s)+Z(-s)=O (2.6) 

and.  
. . .  Z(s) f Z'(s*) > 0 in Re [s] > 0 (2.6) 

In  terms of the Cauchy index we have the following theorem and important 
corollary. 

Theorem 1 (Bitmead and Anderson 1977) 
. The real rational matrix Z(s) is 1.p.r. if and only if Z(s) +Zf(- s) = 0, entries 

of Z(s) may have a pole a t  a, and that pole is simple with non-negative definite 
symmetric residue matrix Z,, and 

- 
T W(o) = 8[Z(s)] - rank 2, 
- m 

(2.7) 

ivhere W(w)= jZ(jw) is an hermitian rational matrix and S[ ] is the McMiUan 
degree (Anderson and Vongpanitlerd 1973, Newcomb 1966). 

This theorem has the following wmputationally important wrollary when 
the result of Lemma 1 is applied to Theorem 1. (A minor result of (Bitmead 
and Anderson (to be published) and Anderson and Jury (1976) is used to 
eliminate the condition that Z(s) be finite at  w.) 

Corollary 1 (Bitmead and Anderson, to be published) 
The T x r real rational matrix Z(s), with left matrix fraction decomposition 

A-l(s)B(s) is 1.p.r. if and only if Z(s)fZ'(-s)=O and, with A defined as the 
matrix whose i -  j block element is A,, where 

and x =diag [IT, -I,, I,, -I,, ... 1, ZA is non-negative definite Sgmmetric. 
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This lagt corollary presents a simple way of testing the 1.p.r. property 
given a left m.f.d., since the entries of A can be found easily from the co- 
efficients of the polynomials of the m.f.d. As a left m.f.d. arises naturally 
in the following work, this test is crucial. 

Allied to 1.p.r. rational matrices are lossless bounded real (1.b.r.) rational 
matrices. A real rational matrix S(s) is termed 1.b.r. if (Anderson and 
Vongpanitlerd 1973, Newcomb 1966) : 

S(s) has no poles in Re [s]  2 0 (2.9) 

and 
s(s)s( -s)  = I  (2.10) 

It is shown in (Newcomb 1966) tha t the  real rational matrix 

is 1.b.r. if and only if the real rational matrix Z(s) is 1.p.r. With this in mind 
and using some of the elementary properties of the generalized bhoutian 
matrix (Bitmead and Anderson, to be published ; Anderson and Jury 19761, 
we may construct the 1.b.r. analogue of Corollary 1 : 

Corollar?/ 2 
The real rational matrix S(s) with left m.f.d. C-l(s)D(s) is lossless bounded 

real if and only if S(s)S1(-s)=I  and, with A defined as the matrix whose 
i - j block element is A,, where 

and Z = diag [I,, -I,, I,, -I,, ...I, ZA is non-negative definite symmetrio. 

In the light of the definition of the l.b.r. property, and noting that, given 
a m.f.d. of a rational function Z(s) = A-l(s)B(s) where A and B are relatively 
left prime, the poles of Z(s) occur a t  zeros of det A(s),  we have the following 
theorem : 

Theorem 2 
If the real rational matrix Z(s)= A-l(s)B(s), where A(s) and B(s) are 

relatively left prime polynomial matrices, if 1.p.r. then the polynomial matrix 
C(s) = A(s) + B(s) is Hurwitz, i.e. all zeros of det C(s) are in the open left haIf 
plane. 

Ps.oof 
I f  Z(s) = A-l(s)B(s) is 1.p.r. then 

S(s) = [I + Z(s)]-l[I -Z(s)]  

= [ A  (a)  + B(s)]-=[A@) - B(s)I 

is 1.b.r. Since {A@) ,  B(s))  relatively left prime implies the same of the pair 
{ A  + B, A - B), and S(s) has no poles in Re [a] > 0, A(s) + B(s) is Hur6tz. 



240 B. D. 0. Anderson and R. R. Bitmead 

From a heuristic viewpoint the result is also evident, since we know that 
an r x r 1.p.r. Z(s) represents the impedance of a r-port network of lossless 
elements and should r unit shunt impedances be connected across the network 
ports the resultant network is no longer lossless but is stable (see Fig. 1). 
The resultant rational impedance matrix W(s)  = (I + ,%)-I,% = [A(s) + B(s)]-IB(s) 
has no poles in Re [s]  2 0. Since {A, B )  relatively left prime implies { A  + B, 
B )  relatively left prime, the Hurwitz nature of A(s)+ B(s) is clear. 

Figure' 1. Loading of lossless network to produce sbble network. 

3. The stability problem--the dual polynomial matrix 
One method of attempting to exploit the result of Theorem 2 in developing 

a matrix stability test is to ask : Given the polynomial matrix C(s), how do 
we decide whether there exists a demmposition C(s) = A(s) f B(s), with Z(s) = 
A-l(s)B(s) 1.p.r. if C(s) is Hunvitz ? Recall that the scalar answer to this 
question is that the polynomial c(s) is Hurwitz if and only if the rational 
function u(s) given by the even part of c divided by the odd part (or perhaps 
vice versa) is sealar 1.p.r.-the 1.p.r. test corresponding to that of Corollary 2 
is then just the Hermite stability test (Jury 1974). Unfortunately, the same 
decomposition is in general unsatisfactory for matrix polgmials.  Such a 
decomposition almost never permits Z(s)+Z1(-s)=O, so there is no chance 
of obtaining Z(s) 1.p.r. One situation where Z(s) +Z' ( - s )  = 0 occurs is when 
A"(s)B(s) is symmetric with A odd and B even, which always holds in the 
scalar cme, but obviously will not hold in general. 

With the direction of development of the 1.p.r. property unclear, we 
approach the stability question on a different tack. We first introduce the 
notion of a dual polynomial matrix D(s) to our given polynomial matrix C(s). 
.. 
Definition 

The dual polynomial matrix to a given non-singular polynomial matrix 
C(s) is that matrix D(s) such that 

and 
c(~)a(  -s)=D'( -s)D(s) 

det C(s) = det D(s) 

Observe that all scalar polynomials are necessarily self-dual. Similar 
dual polynomials have appeared in Levinson filtering (Kailath 1974)-in the 
scalar case these polynomials reduce to the Szego polynomials where the 
duality is simply characterized. 
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We shall leave until later the discussion of the existence and computation 
of the dual polynomial matrix as its kaJculation may. become quite involved ; 
in this section we shall stress its s ie icance  to the stability problem. 

Theorem 3 
Given a polynomial matrix C(s) with dual polynomial matrix D(s), i.e. 

such that (3.1) and (3.2) hold, then det C(s) is Hurwitz if and only if S(s) = 
0-l(s)D'(-s)  represents a minimal left m.f.d. of a lossless bounded real 
rational matrix. 

P& 
Suppose det C(s) is Hurwitz ; then clearly S(s) has all poles in Re [s]  < 0 

and 
S(s)S'(-s) = C-lD'(-s)D(s)C'-l(-s)=l (3.3) 

Hence S(s) is 1.b.r. Burthemore, since det C(s) is Hurwitz and det C=det D, 
det C and det D'(-s)=det C'(-s)  have no common factors--one having 
zeros in Re [s] < 0, the other in Re [s ]> h a n d  {C(s), D J ( - s ) )  form a rela- 
tively left prime pair. 

Suppose S(s)=C-l(s)D(s) is a minimal left m.f.d. of an 1.b.r. rational 
matrix ; then all the poles of S(s) occur a t  the zeros of det C(s) and con- 
sequently the 1.b.r. property ensures det C is Hurwitz. 

We note that, since the lossless bounded real property is easily checked 
by straightforward investigations of a finite dimensional real matrix formed 
from the coefficients of C and D as per Corollary 2, and the relative prime- 
ness also checked from the same matrix (Anderson and Jury 1976), once the 
dual polynomial rnatrix D(8) is obtain&, the stability test for the polynomid 
matrgx C(s) is straightfomoa~d. 

We now turn to the significant problem of determjning the dual polynomial. 

4. Computational aspects of the duat polynomial 
In  this section we approach the problems of existence and computation of 

the dual polynomial D(s) to a given non-singular polynomial matrix C(s). 
We shall show that, although the 1.b.r. test involves simple calculations on a 
real matrix, and the construction of the dual polynomial requires only rational 
calculations, the derivation of the dual is not necessarily straightforward and 
may even prove more difficult than the calculation of det C(s). However, the 
solution of certain equations arising in the derivation appears to be a matter 
of current interest and, should simple methods be developed for the solution 
of these equations, the 1.b.r. approach to matrix stability may prove easier 
in general. 

Suppose we have the polynomial matrix X(s),  which represenh the solution 
of the polynomial matrix equation 

I=X.C+C.X where B. denotes B'(-s)  ". (4.1) 

(The existence and construction of solution of this equati.on are discussed 
below.) Now (4.1) is equivalent to 

. . .  

c;1 C-1 = C.-I x* + XC-' (4.2) 
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Now let us write a minimal left m.f.d. P-lG of the rational function XC-l. 
That is, we fmd relatively left prime polynomial matrices F ,  G such that 
XC-I = F-1G. This is a standard construction of linear systems theory and 
may be performed with operations upon a matrix of real constants formed 
from the coefficienb of X and C (Wolovich 1974). Notice, that, since (4.1) 
implies that C and X are relatively right prime, XC-l=P-lG with F ,  G 
relatively left prime implies that without loss of generality det C=det F.  
In other words 

0;' C-l= G.F,-l+ P I G  (4.8) 

and T = E%;l C-IF, i s  a unimodular polynomial matrix such that T = T. 
with T(s) non-negative definite hermitian on the Re [s] = 0 axis. 

Under these conditions on T, there exists (Yakubovich 1970, Youla 1961) 
a factorization T = UU, with U(s) a unimodular polynomial matrix. Writing 
V= U-l, V is also polynomial and unimodular and we have 

T = BC,-l C-IF. = '17-1 V.-1 (4.4) 
or 

CC. = ( VF).( VF) (4.5) 
with 

det C=det VP. (4.6) 

Therefore we have constructed the dual polynomial matrix D(s)(= V(s)F(s)) 
to the given polynomial matrix C(s). 

There are three separate steps in the above procedure : solving (4 l), finding 
the left m.f.d. F-1G given the right m.f.d. XC-1, and factoring the unimodular 
T = T. as UU.. We comment on these steps in reverse order. As noted 
above, the existence of U given T with the properties stated is not in dispute ; 
Davis (1963) illustrates a simple, algorithmic method for the factorization of 
the unimodular polynomial matrix T which generates the real coefficient 
matrices of U in succession via operations on real matrices. A similar method 
may also be used to general V =  U-I from U. 

Passing from the right m.f.d. to the left m.f.d. is a standard problem 
(Wolovich 1974). 

As for (4.1), results are available in the literature for the case when C is 
strictly regular, i.e. the coefficient of the highest-order term in C(8) is non- 
singular. In  Barnett (1971) and Gohberg and Lerer (1976), one fiids that 
(4.1) has a solution X, unique if X is required to have degree less than that 
of C, if and only if IC(s)l and lC.(s)l are relatively prime. (Of course, if 
IC(s)l is Hurwitz, the relative primeness holds.) Equation (4.1) may be re- 
arranged as an equation Ax= b, with A a known matrix, b a known vector, 
and x a vector to be found, whose entries constitute a rearrangement of the 
entries of X. The matrix A is a generalized Sylvester matrix. Because of 
its shift invariant structure, the evaluation of x as A-lb can proceed by much 
faster algorithms than normal. 

The authors have checked that this existence result carries over to the 
case when C is not strictly regular, see the Appendix ; X is uniquely specified 
if one requires XC-I t~ be strictly proper. Again a linear equation Ax = b 
will yield the entries of X, and again A will have some shift structure which 
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wiU speed up the evaluation of s. An alternative possible computational 
scheme is also described in the Appendix. 

If (4.1) is not solvable, IC(s)l and IC,(s)l must have a non-trivial greatest 
common divisor, and thus iC(s)l cannot be Hurwitz. 

As an example, consider the linear case with non-sing* leading element. 
Let C ( s ) = s I - A  be the polynomial matrix in quastion. We seek a Lual 
polynomial of the form D(s)=sI- B so that 

CC. = D.D 
det C=det D 

Since the solution X(s)  of (4.1) must have XC-1 strictly proper, we see 
that X(s)  must be a coastant matrix X .  Then (4.1) yields simply I =  - 
X A - A ' X ,  a standard Lyapunov equation. The right m.f.d. X(sI-A)" 
has a left m.f.d. (81- B)-'Y if and only if s X -  B X = s Y  - Y A  or B=XAXhl.  
This defines the dual polynomial. 

Checking stability with the aid of C(s) and D(s), if D(s) has to be computed, 
may be pointless in view of the fact that X has to be found, with X positive 
definite if and only if C(s) is stable. Neverthelass, i t  is instructive to see 
what happens. 

Since (sI - B) is the dual of (sI - A), by Theorem 3 we only need to check 
the relative primeness of these two matrices and whether the rational matrix 
S(s) = (sI - A)"(-sl- B') is 1.b.r. Both these aims may be realized using 
the bdzoutian matrix A, which has rank equal to the McMilhn degree of 
S(s), which, in turn equals deg det (81-A) if and only if the two polpornid 
matrices are relatively left prime. The bkoutian is given by 

Thus, ZA= - ( A t +  B ) =  -Ai-XAX-1 must have full rank and be non- 
negative definite symmetric. From the calculations above we see that 
Zh=X- l  and the result for stability then becomes identical to that of 
Lyapunov's theorem, i.e. the polynomial matrix ( s I - A )  has a Hurwitz 
determinant if and only if there exists a positive definite symmetric matrix 
X satisfying X A +  A f X =  - I .  

We note now that, although this particulw example does not involve 
rational operations with polynomials, we do in fact have to solve a Lyapunov 
equation. 

We would have hoped to be able to present a simple derivation of a 
stability criterion for the matrix polynomial s21+Als+A,,  a t  least with 
A,= A,'. (Stability follows if A,> 0, A,+ A,'>O.) The fact that a deriva- 
tion is not simjdy obtainable using the dual polynomial concept suggests that 
our formulation is not yet optimum. 

5. Complements, remarks and conclusions 
We first show that the existing sufficient stability criterion of Shieh and 

Sacheti (1976), which is valid for a restricted class of polynomial matrices, 
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is actually an 1.p.r. test utilizing a matrix Routh array, which is the equivalent 
to a Cauchy index calculation using a Sturm sequence. 

In Shieh and Sacheti (1976) i t  is stated that, given a polynomial matrix 
B(s)=Is"+B,sn-l+ ... +B1,  we form a matrix Routh array, C$5 according to 
the rules : 

n c,,,.=B,+,,, j = 1 , 2 , 3 ,  ..., 2 1:: (n  even) 

where I = 

j = 1 , 2 , 3 ,  ..., 1 - Gas$ =Bn+z-a+ 2 
( n  odd) 

Cu=I 

Ct,5=Ci-a,j+l-Hi-z&-l,j+l, j = 1 , 2 ,  ..., i = 3 , 4 ,  ... 

Ht = C'~,l(C6+l,l)-1, i = 1, 2, . . ., 98 

det ( C M , ~ )  # 0 

Then a sufficient condition for stahilityof det B(s) is that all the 'matrix 
quotients" H ,  he red symmetric positive definite matrices. 

Notice that this result is restricted in two ways ; first, if B(s) has a singular 
leading coefficient or indeed has any of the Cil singular then the ~ o u t h  array 
breaks down, and, second, since the first column of the matrix Routh al&ritLun 
above represents the t e r m  of the continued fiaction expansion of the rational 
function formedby E(s)O-l(s), where E(s) is the even part of B and O(s) is the 
odd part, and these terms are required symmetric, the test is also restricted 
to those B(s) such that E(s)O-'(s) is symmetric. This test is thus restricted 
to a fairly narrow class of matrix polynomials. 

The test can be seen in a &erent Iight. Suppose that the polynomial 
matrix B(s) does obey the requirements, then. Z(s) = E(s)O-l(s) satisfies Z(s) + 
Z'( - 8)  = 0 and is expressible as Z(s) = H,s + [ H s  + [H,s f ...I-'1-I in continued 
fraction form, with Hi posiii~e definite symmetric. That this rational func- 
tion is realizable as the driving point impedance of an LC network, and is 
hence l.p.r., is a t  once evident when a Caller synthesis (Anderson and 
Vongpanitlerd 1973) is attempted (see Fig. 2 ) .  

-Figure 2. Nultipoist Cauer synthesis. 
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Consequently, we have s h w n  that the stability test of Shieh and Sacheti 
(1976) represents an 1.p.r. test on the restricted class of,polynomial matrices 
B(s) such that Z(s) = EO-l= -Z1( - s )  = - Z(-8). That the continued fr'ac- 
tion resdtt above represents an 1.p.r. test may also be established by noticing 
that {Ep) k the sequence of quotient polynomials, Qd(s), from a Sturmian 
division of polynomial matrices E and 0. Lemma 2 and Theorem 1 then 
combine to complete the proof. We use t-he fact that the Mcnillan degree 
of EO-' equals the sum of the ranks of the H ,  (this is easily checked). 

Several other points should be made. First, we might ask whether a 
Li&nard-Chi$art (Gantmacher 1969) type of simplification of the stability 
test might evolve. Looked at  using the Hermite matrix in the scalar case, i t  
transpiresthat this simplification depends on approximately half the entries 
of the Hermite matrix being zero. ' $ice the Herinitematrix is nothing but 
a special BBzout matrix, one would imagine that for a simplification to exist 
in the matrix $olynomial stability problem, the B6zout matrix would have to 
have many zer'o, entries. This is not generally the case. Thus a Libnarc- 
Chipart simplification does seem unlikely. 

Gener&z&ticius of scalar polynomial results which might have more chance 
of being achieved could include tests for the stability of complex matrix 
polynomials, andteats .for the zeros of the determinant of a matrix poly- 
nomiaI to all be negative real. 

The hos t  p~essing problem, however, would seem to be one of evolving 
rapid me.ans for performing the computations outlined in 5 4. And, should 
these be developed, as appears likely using a generalized Sylvester matrix 
having a high degree of structure, then our method of 1.p.r. testing should 
provide not only a method for testing stability of the polynomial matrices 
using only the real matrices of the coefficients but also a fair degree of wm- 
putational flexibility which should allow the use of well-conditioned standard 
linear algebra packages. 

Appendix 
The egmtion A X +  Y B i I  

We ahall ~ t a b l i s h  the following result. 

The~rem 
Let A(s) and B(s) be prescribed n x n polynomial matrices with I A(s)l 

and IB(s)l coprime. Then there exist polynomial matrices X(s),  Y(s) satis- 
. . 

fying' . . 

A X + Y B = I  (1) 

and if X, Y are constrained to be such that XB-I and A-'Y are strictly 
proper, then X, Y are unique. 

We shall present two quite distinct proofs, both of which contain a con- 
structive procedure. 

First proof 
By right multiplication by a unimodular matrix U, we can obtain AU as 

row proper. Likewise, for a unimodular V, we can obtain VB column 
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proper. Since AX + Y B  = (AU)(U-1X) + ( Y  V-l)(VB),  there is no loss of 
generality in simply assuming A and B are row and column proper. Now 
let 

A"@) =H;(sI - Fl)-lG1, B-'(s) =.H,'(sI- F,)-'G, 

define state variable realizations of A-1, B-1 such that any strictly 
proper transfer function matrices A-'(s)L(s) and M(s)B-l(s) have the form 
H,'(sI - F1)-lM and N'(sI - F,)-lG,, respectively, and conversely. Such 
realizations can always be found (Wolovich 1974). Let P solve 

Because I A(s)l and IB(s)l are coprime, Fl and F, have no eigenvalues in 
common and thus P exists ; it follows that 

A-'(s)B1(s) =H,'(sI - Fl)-lGIH,'(sI - F,)-lG, 

= H;(sI -TI)-l[P(sI- F,) - (sI - Fl)P](sI - F,)-lff, 

= H;(sI - Fl)-lPG, -H,'P(sI - F,)"Q, 

= AW1(s)X(s) + P(s)B-l(s) 

forsome X ,  Y. Equation (1) is immediate. 

8- poof 
Without loss of generalits, we can assume that A has upper triangular 

Hermite form (Gantmacher 1959, Wolovich 1974) and B has lower triangular 
Hermite form. For if this is not the case for A say, we may find a uni- 
modular U such that sAU has this form, and then replace A by AU and X by 
U-11. 

The (n, n) term of (1)  then becomes a,,xnn+ b,,,gan= 1 and with a,,, b,, 
relatively prime--as they must be with I A 1 and I B I coprime-xnn and y,,,, 
can be obtained. The (n- 1, n) term then gives 

and relative primeness of an-,, and b,,, allows computation of xn,,, and 
y,,-l,,. One proceeds looking successively at terms (n-  2, n) ,  (n- 3, n) .. . 
identifying thereby the entries of the last column of X and Y .  Then one 
examines the terms in positions (n, n- I), (n- 1, n -  I), (n-2, n- I), ... and 
so on. In this way, all entries of X and Y are obtained. The polynomial 
equations encountered at each stage are all solvable precisely because each 
diagonal entry of A is coprime with each haganal entry of B. 

It is possible at each stage when x ~ ,  and yi, are determined to take these 
quantities to have least degree. This will ensure the proper character of 
A-1Y and XB-1. 

To recover the result required for 8 4, take A = B.=C.. Thus C J +  
YO= I .  Immediately C.Y. + X.0 = I ,  and uniqueneb gives Y = X.. 
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