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Stability of matrix polynomialst
BRIAN D. 0. ANDERSONt and ROBERT R. BITMEAD{

The paper considers the following question : Given & square, non-singular polynomial
matrix (), how do we check, withoub evaluating the det.ermim.nt, whether all the
zeros of det ((s) are in the open left-half p]n,ne P

The approach used to answer this question is to derive from €{(s) a rational transfer
funetion matrix which is lossless positive real (l por) if and only i det Cfs) is
Hurwitz. The lp.r. property is essily checked uging the coefficients of the rationsl
fanetion only. The constraction of the Lp.r. function requires solution of a poly-
nomial matrix equation, and the later part of the paper discusses both existence
quest-mns and solution proeedures ; if no solution exists to the matrix equatmn then
det J{5) is non-Hurwitz.

The connection is also illusirated between the lp.r. stability test ‘and that of
Shieh and Sacheti (1976). Prospects for development of the theory are discussed.

1. Introduction ] .

" In many situations of linear systems theory it is often necessary to examine
the location of the zeros of the determinant of a matrix polynomial. For
instance, given a rational transfer function matrix H{s), it is often of interest
to know whether it represents a stable system. If H{s) is represented by a
minimal! matrix fraction deseription (M.F.D.) A-{s)B(s) (where A(s} and

_ B(s) are relatively left prime polynomial matrices with det 4A(s)#0), then
H(s) represents a stable system if and only if det A(s) has all its zeros in the
open left-half plane Re {s]<0.

One method of localizing the roots of det A(s) ie to evaluate the scalar

. polynomial det 4(s) and then to apply a scalar stabiliby test to it. However,

as more sophisticated matrix methods become available, it is both reasonable

and instructive to attempt to find a direct stability test which does not involve
the computation of det 4(s). It is our intention ‘bo examine such an a.ppro&ch
in this paper.

Consideration of the scalar polynomial sta.bﬂmy results indicates several
likely directions of approach to the matrix case. Recall that, given a scalar
polynomial p(s)= aos“+a,,s"“1+ .+a, with a,> 0, p(s) has zeros only in the
- left-half plane :

(i) i and only if the elements constituting the first column of Routh’s
array are all positive (Routh 1877) ;

(ii) if and only if the rational function
wls) _even part of pis) or odd part of p(s)

odd part of p{s) even part of p(s)
is a reactance function, i.e. represents the driving point impedanee or
admitiance of an LC network (Guillemin 1957} ;
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(iif) if and only if, for w(s) as above (the al‘bernatlve chosen which yields
w(eo}=0)
o

T jw(jw)=degree p(s)

. . ,
. where T #(s) is the Cauchy index of z(s) over (g, b) and is defined as
13

the number of jumps of z(s) from — oo to + oo less the number from
4+ t0 —co a8 s varies from @ to b — jumps at a and b neglected
{Ganftmacher 1959).

Recent developments in the theory of rational and polynomial matrices
have produced a matrix Routh array (Shieh 1975, Shiech and Sacheti 1976)
applicable to the testing of stability of a restricted class of matrices, a simple
test for a rational matrix to represent the driving point impedance of an LC
multiport network (R. Bitmead and B. D. 0. Anderson, under review ;
Bitmead and Anderson 1977) and a matrix Cauchy index applicable to
real symmetric or hermitian rational matrices (Bitmead and Anderson
1977). As is already known in the scalar case, the Cauchy index approach
to the matrix stability question yields simply the other results (Gantmacher
1959) and we shall show that the matrix Cauchy index methods provide the
link between our LC impedance matrix test for stability and the less general
matrix Routh array test of Shieh and Sacheti (1 97 6) which, in fact, represents
a restricted LO test.

In this paper, we extend this viewpoint to the matrix case.. More speci-
fically, we show how the stability of a prescribed matrix polynomial can be
examined by testing & rational matrix for the lossless positive real (lLp.r.)
property, or equivalently another rational matrix for the lossless bounded
real (Lb.r.) property (defined later). The construction of the Lp.r. or Lb.r.
matrices from the prescribed matrix polynomial is not as straightforward as
in the scalar case. We also connect these ideas with the Routh array of
Shieh, which in fact represents a scheme for testing for a property that zmphes
I, P, but is at the same time more restrictive.

The plan of the paper is as follows. We review in § 2 the statements of
the Lp.r. and Lb.x. properties for a rational transfer function matrix represented
as a polynomial matrix fraction. The testing for these properties is done by
simple calculations with the coefficients of the polynomials in the matrix
fraction. Section 3 attempts to derive from a prescribed matrix polynomial
a rational transfér function matrix which is Lp.r, if and only if the determinant
of the matrix polynomial is Hurwitz. To do this, it proves necessary io
introduce a dual matrix polynomial whose presence in the scalar problem is
disguised since scalar polynomials are self-dual. Section 4 considers the
computational aspects of the derivation of the dual polynomial and narrows
down the difficulty to the solution of a cerfain polynomial matrix equation.
However, it is then noted that other authors have investigated similar equa-
tions and their results may be modified to determine whether a solution exists
and then to calculate it. We show that if no solution exists to the equation
then the prescribed polynomial matrix has a non-Hurwitz determinant. In

. § & we illustrate the connection between the stability test of Shieh and Sacheti
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(1976) and our Lp.r. test. We show that the tests are equivalent, except that
that of Shieh and Sacheti (1978) is applicable to only a subset of those poly-
nomial matrices dealt with by our test. We also mention prospects for
further development of the theory.

" 2. -Lossless positive real and lossless boumded real rational matrices

A real rational matrix Z(s) which represents the driving point impedance
{or admittance) of an LC multiport network is termed Lp.r. The properties
of L.p.r. rational matrices will play a crucial role in the derivation of a direct
stability test. Therefore we now summarize the matrix Lp.r, property as
approached from a Cauchy index viewpoint. We note the definition &nd
basic properties of the matrix Cauchy index as a preliminary. .

Defining the Cauchy index of a rational hermitian matrix Z(s) over the

real interval (a, b), I Z(s), as the number of eigenvalues of Z(s) which jump

from —co to 400 less the number which Jump from +o0 to —oo as the
independent variable § traverses the real axis from @ to b (jumps at o and
b are not counted) we have :

Lemma 1 (Bitmead and Anderson 1977)

Let Z(s) be an hermitian matrix of rational functions of s over the complex -
field with lim Z(s) finife and with a left matrix fraction description (m.f.d.)

0

A~Ys)B(s). Then the matrix A, whose i—j block entry A, is given by
. 1 '
iyl

is an hermifian matrix, and

5 LA B )~ Ba)4%y)] @1

® .
T Z(s)=signature A , (2.2)
-

The matrix A above is actually a generalized bézoutian (Anderson and
Jury 1976) matrix associated with Z(s). Entries of A are easily constructed
from the coefficients of A(-) and B(-).

Another method for the evaluation of the matrix Cauchy index is via a
matrix Sturm sequence. Let Z(s) be a rational hermitian and now non-
singular matrix with left m.f.d. 4,7%(s)d,(s). A left Sturm sequence associ-
ated with Z(s) is the sequenoe of polynomla.l matrices {4,(s), 44(s), ..., di(8)}
obtained from

Ay(s)= Ay(s)Qy(s)— Agls)
Apfs)= Aa(é)Qs(s) = 4,4(9) 7 (2.3)

Apqle)=4 () uls)

where -4;(s) is non-singular and Q(s) is polynomial. As shown by Bitmead
and Anderson (1977), it is always possible to choose the A4/ds) so that
deg det 4;,,(s) <deg det A,(s) and A4, ,~s)4,(s) is hermitian if Z(s) is also.
We now have : :
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Lemma 2 (Bitmead and Anderson 1977)
Let Z(s) be a rational hermitian non-singular matrlx with left m.f.d.

o) dy(s). Let {4, A, ..., 4,} be an associsted left Sturm sequence.
Then o ‘
m—1
I Z{s) = Z AMAAy0) (2.4)

where Aabl’(s)'for hermitian Y (s) equals half the signature of Y(b) less half
the signature of ¥(a).

A minor variant on the lemma, whose details Wlll not concern us, allows
extension fo singular Z(s).

Having briefly deseribed the matrix Cauchy mdex we turn now to ifs
application with 1p.r. matrices. A rea! rational maizrix Z(s) is termed l.p.r.
if and only if Z(s)+ Z'(—s)=0 and all poles of entries of Z(s) are either pure
imaginary or at infinity, are simple, and have the associated residue matrix
- non-negative definite hermitian (Anderson and Vongpanitlerd 1973, Newcomb
1966). Or, &lternatwely (Anderson and Vongpanitlerd 1973, Newecomb 1966),

)+ Z(—5)=0 (2.5)
and . ‘ ' _ ‘
Z(s}+Z(s*)=0 in Re[s]>0 (2.6)

In terms of the Canchy index we have the followmg theorem and 1mportant '
corollary.

Theorem 1 (Bitmead and Anderson 1977)

The real rational matrix Z(s) is Lp.r. if and only if Z(s) + Z’(—8)=0, entries
" of Z{s) may have a pole at o0 and that pole is simple with non-negative definite
symmetric residue matrix Z_, and

;E W (w)=8[2(s)] - rank Z, (2.7)

where W{(w)=jZ(jw) is an hermitian rational matrix and 8[ ] is the Mcl\/mla,n
degree {(Anderson and Vongpanitlerd 1973, Newcomb 1966).

This theorem has the following computationally important corollary when
the result of Lemma 1 is applied to Theorem 1. (A minor result of (Bitmead
and Anderson (to be published) and Anderson and Jury (1976) is used to
eliminate the condition that Z(s) be finite at o0.)

Corollary 1 (Bitmead and Anderson, to be published)

The # x r real rational matrix Z(s), with left matrix fraction decomposition
A~Ys)B(s) is Lp.r. if and only if Z(s})+Z'(—5) =0 and, with A defined as the
matrix whose ¢— j block element is A, where

T Y Ayt = —
i 7 &L—

and S =diag [I,, —I,, I, —1I,, ...], SA is non-negative definite symmetric.

” (A@)B'(~y)+ B@)4'(—y)] - (2.8}
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This last corollary presents a simple way of testing the Lp.r. property
given a left m.f.d, since the entries of A can be found easily from the co-
efficients of the polynomials of the m.f.d. As a left m.f.d. arises naturally
in the following work, this test is crneial.

- Allied to Lp.r. rational matrices are lossless bounded real (Lb.r.) rational
matrices. A real rational matrix S(s) is termed Lb.r. if (Anderson and
Vongpanitlerd 1973, Newcomb 1966) :

S(s) has no poles in Re [s]> 0 | (2.9)
and
8(s)8'(—s)=1 (2.10)
I+ is shown in (Newcomb 1966) that the real rational matrix
S(8) = [T+ Z(s)I [T — Z(s)]

is Lb.r. if and only if the real rational matrix Z(s) is Lp.xr. With this in mind
and using some of the elementary properties of the gemeralized bézoutian
matrix (Bitmead and Anderson, to be published ; Anderson and Jury 1976),
we may construct the Lb.r. analogue of Corollary 1 :

Coroliary 2

The real rational matrix S(s) with left m.f.d. C-1(s).Ds) is lossless bounded
real if and only if S(s)S’( —s)=1I and, with A defined as the matrix ‘whose
z— 4§ block element is Ay, where

): 2 Bty =—

and E=diag [I,, —I,, I,, —1,, ...], ZA is non-negative definite symme‘bric.

- 00" (—3) - D@D (9] 2y

In the light of the definition of the 1.b.r. property, and noting that, given
& m.f.d. of a rational function Z(s) = A—Ys)B(s) where 4 and B are relatively
left prime, the poles of Z{s) occur at zeros of det A{s), we have the followmg
theorem :

Theorem 2

If the real rational matrix Z(s)=A-{s)B(s), where A(s} and B(s) are
relatively left pmne polynomial matrices, if Lp.r. then the polynomial matrix
C(s) = 4(s)+ B(s) is Hurwitz, i.e. all zeros of det C(s) are in the open left half
plane.

Proof
It Z(s)=A-Ys)B(s) is L.p.r. then
B(s)= +Z(s)] ' [L - Z(s)]
=[4(s)+ B(s)]"[A(s)— B(s)]

is Lbr. BSinece {A(s), B(s)} relatively left prime implies the same of the pair
{4+B, 4~ B} and S(s) has no poles in Re [¢]>0, A(s)+.B(s) is Hurwitz.
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¥rom a heuristic viewpoint the result is also evidens, since we know that
an rxr Lpr. Z{s) represents the impedance of a r-port network of lossless
elements and should  unit shunt impedances be connected across the network
ports the resultant network is mo longer-lossless but is stable {see Fig. 1).
The regultant rational impedance matrix W(s}= (I + Z)1Z =[4(s) + B{8)1-1B(s)
has no poles in Re [s]>0. Sinee {4, B} relatively left prime implies {4 + B,
B} relatively left prime, the Hurwitz nature of A(s)+ B(s) is clear.

Z(s)

Figuré 1. Loading of lossless network to produce stable network.

3. The stability problem—the dual polynemijal maftrix
One method of attempting to exploit the result of Theorem 2 in developing

a matrix stabiliby test is fo ask : Given the polynomial matrix C{s), how do
we decide whether there exists a decomposition C{s)= 4 (s)+ B(s), with Z(s)=
A“I(S)B(s} Lp.r. if C(s) is Hurwitz ? Reecall that the scalar answer to this
question is that the polynomial c¢(s} is Hurwitz if and only if the rational
function w{s) given by the even part of ¢ divided by the odd part (or perhaps
vice versa) is scalar Lp.r—the Lp.r. test corresponding to that of Corollary 2
is then just the Hermite stability test (Jury 1974). Unfortunately, the same
decomposition is in general unmsatisfactory for matriz polynomials. Such a
decomposition almost never permits Z(s)+Z’(—s)=0, so there is no chance
of obtamlng Z(s) Lp.r. One situation where Z(s)+ Z'( —s)=0 occurs is when

A~Ys)B(s) is symmetric with 4 odd and B even, which always holds in the
scalar case, but obviously will not hold in general.

- With the direction of development of the Lp.r. property unclear, we
approach the stability question on a different tack. We first introduce the
notion of a dual polynomial matrix D(s) to our given polynomial matrix C(s).

beﬁnition _
The dual polynomial matrix to a given non-singular polynomial matrix
0(3) iz that matrix D{(s) such that

O8)C' (—8)=D'(—8)D(s) (3.1)
and
‘ det C'(s) =det D{s) {8.2)

Observe that all scalar polynomials are necessarily self-dual. Similar
dual polynomials have appeared in Levinson filtering (Kailath 1974)—in the
scalar case these polynomials reduce to the Szego polynomisls where the
duality is simply characterized. '
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We shall leave until later the discussion of the existence and computation
of the dual polynomial matrix as its calculation may become quite involved ;
in this section we shall gtress its s1gnﬁ1cance to the stablhty problem

Theorem 3

Given a polynomial matrix C(s) Wlth dual polynomla,l matrix D(s), i
such that (3.1) and (3.2) hold, then det Cfs) is Hurwitz if and only if S(s)—
C-1(s)D’(—s8) represents a minimal left m.f.d. of & Iossless bounded real
raticnai matrix. —

Proof

Suppose det O(s) is Hurwitz ; then clearly 8(s) has all ﬁoles.in Be[sl<0
and o

8(8)8'(~5)=CAD'(—~ ) D(s)0' -1 (—sy=I (3.3)

Hence 8(s) is Lb.r. Furthermore, since det C(s) is Hurwitz and det ¢ =det D,
det ¢ and det D'(—s)=det ("{—s} have no common factors—one having
zeros in Re [s]<0, the other in Re [s}>0—and {C(s), D’(~s}} form a rela-
tively left prime pair.

Suppose S{s)=CYs)D(s) is a minimal left m.f.d. of an Lb.r. rational -
matrix ; then all the poles of §(s) occur at the zeros of det £{s) and con-
sequently the 1b.r. property ensures det C is Hurwitz.

We note that, since the lossless hounded real property is easily checked
by straightforward investigations of a finite dimensional real matrix formed
from the coefficients of C and D as per Corollary 2, and the relative prime-
ness also checked from the same matrix (Anderson and Jury 1976), once the
dual polynamml matrix D{(s) is obtained, the stobility lest for the polynomial

a,tmx C(s) 48 straightforward.

We now turn to the szgmfmant problem of determining the dual polynomial.

4. Computational aspects of the dual polynomial

In this section we approach the problems of existence and computation of
the dual polynomial D(s) to a given non-singular polynomial mafrix C(s).
‘We shall show that, although the Lb.r, test involves simple caleulations on a
real maitrix, and the construction of the dual polynomial requires only rational
caleulations, the derivation of the dual is not necessarily straightforward and
may even prove more difficult than the calculation of det C(s). However, the
solution of certain equations arising in the derivation appears to be a matber
of current interest and, should simple methods be developed for the solution
of these equations, the Lb.r. approach to ma.tnx stability may prove eagier
in general,

Suppose we have the polynomial matrix X(s), which represents the solution
of the polynomial matrix equation

I1=X.,04+0.X where B, denotes B'(—s) " 4.1}

(The existence and construction of solution of thls equ&tlon are discussed
below.) Now (4.1) is equivalent to

00_1 C-l = C‘t“-]' .Xax + -XG_1 . (4-2)
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Now let us write a minimal left mfd. F-@ of the rational function XC-1.
That is, we find relatively left prime polynomial matrices F, @ such that
XC1=F-1¢. This is a standard construction of linear systems theory and
may be performed with operations upon a matrix of real constants formed
from the coefficients of X and ¢ (Wolovich 1974). Notice, that, since (4.1)
implies that C' and X are relatively right prime, XC-'=F-1@ with F, G
relatively left prime 1mphes that without loss of generality det C=det F.
In other words

01 CLl=@,F, 2+ FG _ (4.3) |

and 7'=FC,1(C1F, is a unimodular polynomial matrix such that T=1T.
with T'(s} non-negative definite hermitian on the Re [s]=0 axis,

Under these conditions on 7T, there exists (Yakubovich 1870, Youla 1961}
a factorization T'= UU, with U(s) 2 unimodular polynomial matrix. ~Writing
V=U-1, V is also polynomial and unimodular and we have

T=PFCt01F,= V-1V, (4.4)
or
CO=(VF)(VF) (4.5)
with . '
det C=det VF. . (4.6)

Therefore we have constructed the dual polynomial matrix D{s){ = V(s)F(s}))
to the given polynomial matrix C(s).

There are three separate steps in the above procedure solving (4.1), fmdmg
the left m.f.d. F-1@ given the right m.f.d. XC-, and factoring the unimedular
T=T.as UU,. We comment on these steps in reverse order. As noted
above, the existence of I/ given T with the properties stated is not in dispute ;
Davis (1963) illustrates a simple, algorithmic method for the factorization of
the unimodular polynomial matrix .7' which generates the real coefficient
matrices of U in succession via operations on real matrices. ~ A similar method
may also be used to general ¥=U"* from U.

Passing from the right m.fd. to the left mf.d. is & standard problem
{Wolovich 1874),
~ As for (4.1), results are avaﬂa.ble in the literature for the case when O is
strictly regular, i.e. the coefficient of the highest-order term in (s} is non-.
singelar., In Barnett (1971) and Gohherg and Lerer (1976), one finds that
(4.1) has a solution X, unique if X is required to have degree less than that
of C, if and only if |C(s})| and |C' (s)| are relatively prime. (Of course, if
|C(s)] is Hurwitz, the relative primeness. holds.) Equation (4.1) may be re-
arranged as an equation Az=b, with 4 a known matrix, b & known vector,
-and « a vector to be found, whose entries constitute a rearrangement of the
enfiries of X, The matrix 4 is a generalized Sylvester matrix. Because of
its shift invariant structure, the eva,lua,tlon of @ as A~ can proceed by much
faster algorithms than norma.l

The authors have checked that this existence result carries over to the
case when O is not strictly regular, see the Appendix ; X is uniquely specified
if one requires XC~* o be strictly proper. Again a linear equation Az=b
will yield the enfries of X, and again 4 will have some shift structure which
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will speed up the evalvnation of #. An alternative possible computational
scheme is also described in the Appendix. .

If (4.1) is not solvable, |C(s)| and |C\(s) [ must have 8 non-trivial grea,test
common divisor, and thus |C'(s)] cannot be Hurwitz.

As an example, consider the linear case with non-singular leading element.
Let C(s)=2I— A4 be the polynomial matrix in ques’mon We seek a dual
»polynomla,l of the form D(s)==sl— B so that

CC,=D,D
det C=det D

Smce the solution X(s) of {4.1) must have X strictly proper we see
that X(s) must be a constant matrix X. Then (4.1) yields simply [=~
XA—A'X, a standard Lyapunov equation. The right m.f.d. X(sf—A4)*
has a left m.f.d. (s~ By1Y if and only if sX — BX=sY - Y4 or B=XAX-1.
This defines the dual polynomial.

Checking stabzhty with the aid of C(s) and D(s), it D(s} has to be computed,
may be pointless in view of the fact that X has to be found, with X positive
definite if and only if C(s) is stable. Nevertheless, it is mstructwe to see
what happens.

Since (sI — B) is the dual of (s — A}, by Theorem 3 we only need to check
the relative primeness of these two matrices and whether the rational matrix
B(s)=(sI— Ay —sI—B'}) is Lbr. Both these aims may be realized using
the bézoutian mafrix A, which has rank equal to the McMillan degree of
. S(s), which, in turn equals deg det {sI — A) if and only if the two polynomial
matrices are relatively left prime. The bézoutisn is given by

B Ayt e (el ~ A)(~yl - ')~ (=4l - B}yl - B)]

= (A'+B)

Thus, ZA=—(4'+B)= —4'— X 4X-1 must have full rank and be non-
negative definite symmetric. From the calculations above we see that
ZA=2X-1 and the result for stability then becomes identical to that of
Lyapunov’s theorem, i.e. the polynomial mafrix (s/—A) has a Hurwitz
determinant if and only if there exists a positive -definite symmetric matrix
X satisfying XA+ 4'X=~1.

We note now that, although this partioular example does not involve

rational operations with polynomials, we do in fact have to solve a Lyapunov
equation.
. We would have hoped to be able to present a sxmp}e derivation of a
stability oriterion for the matrix polynomial s?I+ 4,8+ 4, at least with
A;=A4,. (Stability follows if A,>0, A3+ Ay>0.) The fact that a deriva-
t.ion is not simply obtainable using the dual polynomial concept suggests that
our formuldtion is not yet optimum.

5. Complements, remarlcs and conclasions

-We first show that the existing sufficient sta.blhty criterion of Shieh and
Sacheti (1876), which is valid for a restricted class of polynomial matrices,
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is actually an 1.p.r. test utilizing a matrix Routh array, which is the equivalent
to a Cauchy index calculation using a Sturm sequexce,

- In Shieh and Sacheti (1976) it is stated that, given a polynomlal matrix
B(s)=Is*+ B s"*+.,, + B;, we form a matrix Ronth array, 4 according to
the rules :

Cyi=Bpiaap §=1,2.3,..,1 12?'+1 (n even)
where I=
n+1
Cys=Bpigap F=1238,..,1 9 (r odd)
C’luzI

Gi,J'=0i—2,:i+1—H-i—20£——1.J’+1! J=12 .., i=3,4,..
Hi=C1(Cona)™ =12, ..., 2
det (Cy,1)#0

Then a sufficient condition for stability of det B(s) is that all the * matrix
quotients * H, be real symmetric positive definite matrices.

Notice that this result is restricted in two ways ; first, if B(s) has a singular
leading coefficient or indeed has any of the C,, singular then the Routh array
breaks down, and, second, since the first column of the matrix Routh algorithm
above represents the terms of the continued fraction expansion of the rational
function formed by H(s)0~*(s), where E(s) is the even part of B and O(s) is the
odd part, and these terms are required symmetrie, the test is also restricted
to those B(s) such that BE(s)0'(s) is symmetric. This test is thus restrieted
1o a fairly narrow class of matrix polynomials. '

The test can be seen in a different Hght. Suppose that the polynomial
maitrix B(s) does obey the requirements, then Z(s) = E(s)0~(s) satisfies Z(s)+
Z'(—8}=0 and is expressible as Z(s) = Hys+ [Hys+ [Hys +...]*1 in continued
fraction form, with H, positive definite symmetric. That this rational funec-
tion is realizable as the driving point impedance of an LG network, and is
hence Lp.r, is at once evident when a Cauer synthesis (Anderson.and
Vongpanitlerd 1973) is attempted (see Fig. 2).

H, ' Ha Hg -
| T ) T )

Z2(s)

Figure 2. Multiport Caner synthesis.
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Consequently, we have shown that the stability test of Shieh and SBacheti
(1976) represents an Lp.r. test on the restricted elass of polynomial matrices
B(s) such that Z(s)=EO'= ~2Z'(—s)= —Z(—s). That the continued frac-
tion result.above represents an Lp.r. test may also be established by noticing
that {Hs} is the sequence of quotient polynomials, @(s), from a Sturmian
division of polynomial matrices ¥ and 0. Lemma 2 and Theorem 1 then
combine to complete the proof. We use the fact that the McMillan degree
of EQ-1 eguals the sum of the ranks of the H, (this is easily checked).

Several other points should be made. First, we might ask whether a
Liénard-Chipart (Gantmacher 1959) type of simplification of the stability
test might évolve. Looked at using the Hermite matrix in the scalar case, it
transpires that this simplification depends on approximately half the entries
of the Hermite matriz being zero. ~Since the Herinite matrix is nothing but
a special Bézout matrix, one would imagine that for a simplification to exist
in the matrix polynomial stabﬂlty problem, the Bézout matrix would have to
have many zero entries. This is not generally the case. Thus a Liénard--
Chipart simplification does seem unlikely.

Genemhzatmns of scalar polynomial results which might have more chance
of being achievéd could include tests for the stability of complex matrix
polynomials, and tests for the zeros of the determinant of a matrix poly-
nomial to all be nega.twe real,

The most pressing problem, however, would seem to be one of evolving
rapid means for performing the computations outlined in §4. And, should
these be developed, as appears likely using a generalized Sylvester matrix
having a high degree of structure, then our method of lLp.r. testing should
provide not only a method for testing stability of the polynomial matrices
using only the real matrices of the coefficients but also a fair degree of com-
putational flexibility which should allow the use of well-conditioned stand&rd
linear a,lgebra, packages,

Appendix
The equation AX+YB=1I
: W’e shall establish the following resuls.

Tbeorm
Let A(s) and B{s) be prescribed % xn polynomial matrices with |A4(s)]
and |B(s)| coprlme Then there exist polynomial matrices X(s), Y{s} satis-
fying : '
AX+YB=1I" . 1)
and if X, ¥ are constrained to be such that XB-! and A4-'Y are sirictly
proper, then X, ¥ are unique.

We shall present two quite distinet proofs, both of which contain a con-
structive procedure.

First proof

"By right multzphcat;on by a unimodular matrix U, we can obtain AU as
row proper. Likewise, for a unimodular V, we ean obtain VB column

con. . ) S 2F
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proper. Sinee AX+ YB=(4U)U-1X)4+(YV-1)(VB), there is no loss of
generality in simply assuming 4 and B are row and column proper. Now
let

A-Ys)=H, (s] ~ F))*Gy, BYs)=H, (sl - F;)'G,

" define state variable realizations of A=, B! such that any strictly
proper transfer function matrices A—*(s)L{s) and B3(s)B—*(s) have the form
H(sI — F)*M and N'(sI— F,) '@, respectively, and conversely. Such
realizations can always be found (Wolovich 1974). Let P solve

PP, F,P=—GH,

Because |A(s)| and |B(s)| are coprime, ¥, and #, have no cigenvalues in
common and thus P exists; it follows that

A7) B s)=H /(6] ~ Py 6, H, (s — F) 6,

C 0 =B{(eI-F) [Pl Fy)— (sl - Fy)P)el - F)6,
=H(s] - PG, —H, P(el - F )G,
= AYX()+ T ()BHs)

for some X, ¥. Equation (1) is immediate.

Second proof

Without loss of generality, we can assume that A has upper tﬂangular
Hermite form {Gantmacher 1959, Wolovich 1974) and B has lower triangular
Hermite form. For if this is not the case for A say, we may find a wuni-
modular U such thet /AU has this form, and then replace 4 by AU and X by
U-x.

The (n, n) term of (1) then becomes @, +b,,Yn, =1 ahd with s O
relatively prime—as they must be with |4| and |B| coprime—z,,, and y,,
ean be obbained. The (n-1, n) term then gives .

an-—l w-—lwnml,'n + yﬂ.-—l, 'nbwr; =—- an,—l 2%nn .

and relative pnmeness of @, 1, 1 and bm allows eomputation of =z, ; , and
Yn-1,nr One proceeds lookmg successively at terms (n—2,n), (n—3, n) ..
-identifying thereby the entries of the last column of X and ¥, Then one
“examines the terms in positions (n,n—1), (r—1,n—1),{n—2,n—1), ... and
.80 on. In this way, all entries of X and ¥ are obtained. The polynomial
" equsations encountered ab each stage are all golvable precisely because each
diagonal entry of A is coprime with each diagonal entry of B.
) It is possible at each stage when z;; and y,; are determined to take these
guantities to have least degree. ThlS will ensure the proper characfer of
A7Y and X B, _
To recover the result required for §4, take 4=B.=C, Thus C.X+

YC0=I. Immediately C.Y.+X.0'=1I, and unigqueness gives ¥ =X,.
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