A Simple Test for Zeros of a Complex Polynomial in a Sector

B. D. O. ANDERSON, N. K. BOSE, AND E. I. JURY

Abstract—A simple proof of a recent result for determining whether the zeros of a real polynomial lie within a sector is first given. Secondly, this result is used in a procedure given for confirming whether or not the zeros of an arbitrary complex polynomial lie in a similar sector.

INTRODUCTION

Recently [1], with a view towards application in problems of relative stability, a test was given for determining whether or not all the roots of a polynomial having real coefficients lie within the sector shown in Fig. 1. In this article, first, a simple proof of the same result is given using Kronecker product of matrices. Second, a procedure is given to determine whether all the roots of a polynomial having complex coefficients lie inside the sector of Fig. 1, making use of the foregoing result. This appears to be simpler than the procedure existing in the mathematical literature [2]. Moreover, there are scopes for applying the results of this article in engineering problems. It is known, for example, that in certain cases of nonlinear system analysis in which a multivalued nonlinear characteristic is present, the characteristic equation of the corresponding linearized system has complex coefficients [3]. Root locations of such polynomials in a sector could be of interest.

MAIN RESULTS

A simple proof of a theorem given in [1] is included.

Theorem 1: Given a polynomial $P(s)$ of degree n with real coefficients, a necessary and sufficient condition for the roots of $P(s)$ to lie inside the shaded region of Fig. 1 is that the eigenvalues of the matrix

$$A_1 = \begin{bmatrix}
A \cos \delta & -A \sin \delta \\
A \sin \delta & A \cos \delta
\end{bmatrix} \tag{1}
$$

have negative real part, where A is the companion matrix associated with $P(s)$. (The matrix A_1 is of order $2n$.)

Proof: It is well known [4], that if the eigenvalues of A (which happen to be the roots of $P(s)$) are λ_i for $i = 1, 2, \ldots, n$ then the eigenvalues of

$$A_1 = A \otimes \begin{bmatrix}
\cos \delta & -\sin \delta \\
\sin \delta & \cos \delta
\end{bmatrix}
$$

are $\lambda_i(\cos \delta \pm j \sin \delta), i = 1, 2, \ldots, n$, where "$\otimes$" denotes "Kronecker

Manuscript received January 31, 1974. This work was supported in part by the Australian Grants Committee and in part by National Science Foundation Grants GJ-35725 and GJ-35829, issued to the University of California, Berkeley.

B. D. O. Anderson is with the Department of Computer and Information Science, University of Massachusetts, Amherst, Mass., on leave from the Department of Electrical Engineering, University of Newcastle, N.S.W., Australia.

N. K. Bose is with the Department of Electrical Engineering and Computer Science and the Electronics Research Laboratory, University of California, Berkeley, Calif., on leave from the Department of Electrical Engineering, University of Pittsburgh, Pittsburgh, Pa., 15261.

E. I. Jury is with the Department of Electrical Engineering and Computer Science and the Electronics Research Laboratory, University of California, Berkeley, Calif. 94720.
product,” and vice-versa. Consequently, the eigenvalues of A lie in the given sector if and only if the eigenvalues of A_1 have negative real parts.

Next, consider a polynomial $Q(s)$ having complex coefficients and of degree n. It is simple to show that the $2n$ degree real polynomial

$$Q_1(s) = Q(s)Q^*(s),$$

(2)

(where $Q^*(s)$ is obtained from $Q(s)$ by replacing the coefficients by their complex conjugates) has roots within the shaded sector of Fig. 1 if and only if the $Q(s)$ also has its roots there. The validity of the fact that $Q_1(s)$ in (2) has real coefficients can be simply justified by noting that if $Q(s) = \sum_{k=0}^{n} b_k s^k$, then

$$Q_1(s) = \begin{bmatrix} q_1 & 1 \\ q_2 & s \\ \vdots & \vdots \\ q_{2n} & s^{2n} \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{2n} \end{bmatrix},$$

(3)

where the “bar” denotes “complex conjugate.” From (3)

$$Q_1(s) = \begin{bmatrix} q_1 & 1 \\ q_2 & s \\ \vdots & \vdots \\ q_{2n} & s^{2n} \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{2n} \end{bmatrix},$$

(4)

is evidently a polynomial of degree $2n$ with real coefficients. (If $Q(s)$ has a root at $s = re^{j\theta}$, where r and θ are the polar coordinates, then $Q^*(s)$ has a root at $s = re^{-j\theta}$ and vice-versa.) Suppose that the companion matrix associated with $Q_1(s)$ is B. Obviously, the elements of B are real. Then, using Theorem 1, Theorem 2 follows.

Theorem 2: An arbitrary polynomial $Q(s)$, of degree n, having complex coefficients has its roots within the shaded sector of Fig. 1 if and only if the eigenvalues of the matrix B_1 of order $4n,$

$$B_1 = \begin{bmatrix} B \cos \delta & -B \sin \delta \\ B \sin \delta & B \cos \delta \end{bmatrix}$$

(5)

have negative real parts, where B is the companion matrix associated with $Q_1(s)$ in (2). Elements of B and B_1 are real.

Conclusions

First, a simple proof of the result in [1] has been given. This has been used in the procedure given to obtain a necessary and sufficient condition for an arbitrary polynomial $Q(s)$, of degree n, having complex coefficients, to have its roots within the shaded sector of Fig. 1. The test for this condition involves determining of whether the eigenvalues of a matrix B_1 of order $4n$, have negative real parts. Of course, this can be implemented using standard procedures [5].

It may be noted that in Theorem 1, the condition for the eigenvalues of a matrix A to lie in a sector in terms of the eigenvalues of the matrix A_1 to lie in the left half plane, is also valid over the field of complex numbers. Therefore, to test for the eigenvalues of a complex matrix in a sector, one can, using the above artifice, apply the standard Lyapunov test [5] to the generated complex matrix.

Two other comments are relevant. From (2) it is readily seen that the polynomial $Q(s)$ with complex coefficients and of degree n has all zeroes within the unit circle, $|s| < 1$, if and only if the polynomial $Q_1(s)$ with real coefficients and of degree $2n$ has all zeroes in $|s| < 1$. This answers the question posed in [7] regarding finding a real version of the table test [2, p. 197], [9] for zero location of complex polynomials in a unit circle. Finally, it may be noted that the eigenvalues of an arbitrary $n \times n$ complex constant matrix, $A + JB$ (where A and B are real matrices) are in the sector shown in Fig. 1, if and only if the eigenvalues of the $2n \times 2n$ real matrix, $[\begin{bmatrix} A & B \\ -B & A \end{bmatrix}]$ are in the same sector, and $AB = BA$.

This follows from the observations:

$$\det \begin{bmatrix} \lambda I + A - JB \\ 0 \end{bmatrix} = \det (\lambda I - A)^2 + B^2$$

and (note that the eigenvalues of $A + JB$ are the complex conjugates of those of $A - jB$)

$$\det \begin{bmatrix} \lambda I - A \\ B \end{bmatrix} = \det (\lambda I - A)^2 + B^2$$

if and only if $AB = BA$ [8].

References

*It is to be recognized that the test on $Q_1(s)$ could also be handled by other means [6].