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Partially Singular Linear-Quadratic Control Problems 

BRIAN I). 0. ANDERSON 

Abstract-Necessary and suflicient conditions are given for the 
nonnegativity of a partially singular quadratic functional associated 
with a linear system. The conditions parallel known conditions for 
the totally singular problem, and a known sdc iency  condition for 
the partially singular problem can be derived from them. 

Consider the following linear optimal oontrol problem. Minimize 

subject to  

Here, the state vector z is n-dimensional, and the control vector zl 
is m-dimensional. The rnat1,ices A, B, C, Q, and R are time varying 
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and continuously differentiable with B and C finite; further, (2)  is 
completely controllable over [&,TI for all .rc(to,tjl. The matrices SJ  
and D are constant, with D of s rows and rank s. We take Q, R, and 
S f  symmetric, and, in order that the minimum not be - m, R >_ 0. 
Finally we assume u ( . )  is piecewise continuous on [tmtjl. The three 
cases R = 0, R # 0 but I R I  = 0, and R > 0 are distinguished by the 
terms totally singular, partially singular, and nonsingular, respec- 
tively. Our concern here is with the partially singular problem, and 
our aim is to present necessary and sufficient conditions for J[u(.)I 
to  be nonnegative for all u ( .  ) (so tbat the minimum for (1)  and (2)  
becomes zero). 

Many insights into the three classes of problems are given (as well 
as many references to original sources of results concerning the 
problems) in the survey paper [ l ]  of Jacobson. Among the results, 
we note tbat necessary and su5eient conditions are available for 
both the totally singular and nonsingular problems, and a differ- 
ential farm of the sufficiency conditions extends immediately to the 
~ar t iauv  sineular uroblem. The necessary and sufficient conditions " - -  
we present for the partially singular problem parallel those already 
known for the totally singular and nonsingular problems. The tech- 
nique establishing these conditions relies on conversion of the par- 
tially singular problem to a totally singular problem. 

Suppose that the control 4.) in (1)  and (2)  can be written as 

for some pieeewise continuous 2i(.). Make the following additional 
definitions: 

Then it is clear that J[u ( . ) ]  in (1)  is the same as P[zi( . ) l  given by 

and the problem of minimiaing J ( u )  subject to (2) with the addztional 
constraint that (3) holds is equivalent to the problem of minimizing 
i [s ( . ) ]  subject to 

;1 = K* + Bzi *( to)  = 0 D%(tJ) = 0. (6) 

Now the various assumptions far the original problem associated 
with (1)  and (2) all imply the corresponding assumptions' for the 
new problem assaciatedwith (5) and (6). Adn~issible controls zi(.) for 
the new problem define a subset of the admissible controls for the 
original problem. Therefore, any necessaly condition for the new 
problem is a fortzo~i a. necessary condition for the original problem, 
and it is therefore irrelevant to the derivation of such a necessary 

- 

- 1  = &,A 
- 

-m,, = 5,,B 

and 

Then a necessary condition for the nonnegativity of J[u( . ) l  is that 
there exist a real symmetric (m+n)X @+n) f ( t )  far each t E (&,tj) 
such that, with obvious partitioning of P(. )  

A 

is monotone increasing in t (10) 

We comment that, as for the totally singular case, the interval (h,tj) 
can be replaced by (&,tf] when the final-time constraint in (2)  is 
sbsbsent. The variation in argument is trivial. 

The sufficiency conditions differ only marginally from the necessity 
conditions, and are given in Theorem 2. Note that Theorem 2 cannot 
be obtained by applying known sufficiency results for the nannega- 
tivity of i [u ( . ) l .  While necessary conditions for nonnegativity of 
J [ B ( . ) ]  are, a fortiori, necessary conditions for nonnegativity of 
J[u(.) l ,  sufficient conditions for nonnegativity of J[zi(.)I are not 
sufficient conditions for nonnegativity of J ( u )  because not all 
admissible controls u ( . )  for the original problem can be associated 
with admissible controls d( . )  via. (4). Rather the reverse is true; 
sufficient conditions for nonnegativity of J [ u ( . ) ]  are, a fortiori, 
sufficient conditions for the nonnegativity of 7[zi(.)]. 

Theorem 2: With the above notation_ and assumptions, including 
the definitions of the matrices Rj, .Pij, and Z in Theorem 1, a 
sufficient condition for the nonnegativity of J [ u ( . ) ]  is that there 
exist a real symmetric (m+n)X(m+n);(t) for each t E Ito,tjl such 
that ( lo) ,  (ll), and (12) hold, with pll(tJ-) in (11) replaced by 
" 

Pn(tj). 
Note that the gap between the necessity and suffieieney results 

involves only the question of the interval over which P(t)  has certain 
properties; in one case the interval is (to,t,). in the other, [to,til. 
This is as far the totally singular case, see [ I ] .  

Proof: The proof parallels tbat used for the totally singular 
case, [ I ,  see theorem 41. We have 

condition that the controls u(.) are restricted by (4). ~ e c e s s a r i  
The matrix is defined as follaws. Let IV be the mstrix with sub- 

conditions appear in [ I ,  see theorem 71 and will not be repeated here. 
matrices W,f already defined, andm the transition matrix associated Interpreting these conditions to allow for the special form of iI, etc., 

leads to the following result. with K, possessing the submatrices m,, and ZJ1 defined earlier. Then 

Theorem 1: With the aforementioned notation and assumptions, Pt1 is the ;tppropriate submatrix of 
- A- 

define matrices mu, IVll', Wzz, m,,, m,% and Z via P = PV + ~'F.P. (14) - 
Now because P is monotone increasing, each entry must be of 

1 Tire only nonimmediste oorres~ondenoa is that of tire two controllabiiity 
assumptions, but the eorresponde~~e does iauow ~ i t h  lines bounded variation, and because IV and % are dierentiahle, Fri must 
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have entries of bounded variation. This allows reformulation of 
J[u(.)l after integration by parts as 

Pi I 

(Q + P,,A + A'P,,) dt + (PnB + C') dt 
. [ (RIP,, + C) dt R dt 

-t )z'(tt)[S, - P~t(t,)lz(k). (15) 

(Note that u ( . )  is piecewise continuous. Therefore, so is z( . ) ,  making 
(15) well defined. j 

. 

Nonneaativitv of the term outside the integrai follows as in 111. - 
Nonnegativity o t  the term inside the integral follows from the 
monotonicity of PI and the following easily derived relation: 

(Q + P,,A + A'P,,) dt + dP,,, [ (B~P,,  + c )  dt R dt 

= ['..: 0 1 p ,  d$q[? 71. (16) 
m,, I P dpn 

If the matrix P of the sufficiency conditions of Theorem 2 is 
differentiable, it is evident from (16) that monotonicity of P implies 

A minor variation of the proof of Theorem 2 then yields the SUE- 
ciency theorem reviewed in [I], see also 141, to  the effect that J[u(.)1 
is nonnegative if for some Pil(t) defined for t E [to,tjl, (17) holds 
as well as 

Suppose that R(t) = 0 for all t, so that we have s. special case of 
the preceding results. Taking +,he necessity conditions, it follows 
using (16) on (to,t,) that PnB + C' = 0 almost everywhere on 

(to,lj). Arguments as in [31 establish equality everywhere, and the 
standard necessity conditions (see [I, theorem 71) are recovered. 
In a similar way, the almost identical sufficiency conditions can be 
obtained. 

I n  this paper, we have filled a gap in the various sets of necessary 
and s~ficient  conditions far singular linear-quadratic control 
problems. I t  is possible that our alternative derivation could be 
obtained via the limiting ;tpprosch of [3l, and this would then allow 
numerical comput,ation of, for example, the matrix P,,. Nevertheless, 
the method given in this paper would seem more efficient if the 
conditions alone are required, without numerical values of all the 
quantities involved. 

We have $so recently sighted unpublished work of Br Molinari in 
which a totally different approkch is used to prove the same main 
result as this paper. A key step is to demonstrate that the perform- 
ance index (I), withnonsero s(&), has an infimum over all admissible 
controls which must be q~iadraLic in z(tO). This demonstration works 
for the nonsingular, partially singular, and totally singular eases. 

Yet another approach could conceivably be adopted using Rob- 
bin's ideas [jl, which amount to replacement of a partially singular 
problem by a combination of nonsingular and totally singular prob- 
lems. However, the separation is not complete, and it would seem 
that a demonstration via this means could be very hard. 

The author wishes to acknowledge the direct assistance of J. B. 
Moore and the indirect assistance of B. S. Goh. 
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