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Partially Singular Linear-Quadratic Control Problems
BRIAN D. 0. ANDERSON

Abstract—Necessary and sufficient conditions are given for the
nonnegativity of a partially singular quadratic functional associated
with a linear system. The conditions parallel known conditions for
the totally singular preblem, and a known sufficiency condition for
the partially singular problem can be derived from them.,

INTRODUCTION

Consider the following linear optimal conirol problem. Minimize
ty

Ju(-y = f [3x'Qx + $uw'Bu + w'Cx] + 32'¢)S2E:) (1)
&

subject to
i = Az + Bu z{) = 0 Dz} = 0. {2)

Here, the state vector ¢ is n-dimensional, and the control vector u
is m-dimensional. The matrices A, B, €, €, and R are time varying
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and continuously differentiable with & and € finite; further, (2) is
completely controllable over [#,7] for all re(f,ts]. The matrices Sy
and D are constant, with D of s rows and rank s. We take €, R, and
Sy symmetrie, and, in order that the minimum not be — =, E > 0.
Finally we assume u(-) is piecewise continuous on [4,¢;]. The three
cases B = 0, B > Obut |R| = 0, and R > 0 are distinguished by the
terms totally singular, partially singular, and nonsingular, respec-
tively. Our concern here is with the partially singular problem, and
our aim is to present necessary and sufficient conditions for Jiwu(-)]
to be nonnegative for all u(-) (so that the minimum for (1) and (2)
becomes zero).

P ACKGROTHED

Many insights into the three classes of problems are given {as well
as many references to original sources of results concerning the
problems) in the survey paper {1] of Jacobson, Among the results,
we note that necessary and sufficient conditions are available for
both the totally singular and nonsingular problems, and a differ-
ential form of the sufficieney conditions extends immediately to the
partially singular problem. The necessary and sufficient conditions
we present for the partially singular problem parallel those already
known for the totally singular and nonsingular problems. The tech-
nique establishing these conditions relies on conversion of the par-
tially singular problem to a totally singular problem.

Dzar1vAaTION oF NEcEssITY CONDITIONS

Suppose that the control u(-}in (1) and (2) can be written as

t
u{t) = f w(r) dr . (3)
o

for some piecewise continuous %(-). Make the fo]lowing‘ additional
definitions:

RHERFERHEE 4

< 8 0] = _
-S;M[O 0] B=[p 0. @

Then it is clear that J[w{-)]) in (1) is the same as J[#(-)] given by

tr -

J@()] = f 3%'QE dt + 3= 1S2() (5}
fo

and the problem of minimizing J () subject to (2) with the additional

consiraint that (3) holds is equivalent to the problem of minimizing

Jla(-)] subject to

#= A% + Ba %) = 0 D#(s) = 0. (6)

Now the various assumptions for the original problem associated
with {1) and (2) all imply the corresponding assumptions? for the
new problem associated with (5) and (6). Admissible controls (- ) for
the new problem define a subset of the admissible controls for the
original problem. Therefore, any necessary condition for the new
problem is g fortior: a necessary condition for the original problem,
and it is therefore irrelevant to the derivation of such a necessary
condition that the controls u{.) are restricted by (4). Necessary
conditions appear in [1, see theorem 7] and will not be repeated here.
Interpreting these conditions to allow for the special form of 4, etc.,
leads to the following result.

Theorem 1; With the aforementioned notation and assumptions,
define matrices Wu, W', Wiy, @i, $1, and Z via

1 FThe only nonimmediate correspondence is that of the two centrollability
assumptions, but the correspondence does follow with several lines of algebra.
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—Wn=Q+ A'Wn+ Wud Wully) = 8
—Wa' = A'We + WuB + ¢ Wulty) = 0
~Wu = R + B'Wu + Wu'B Walts) =0 (7)
—&y = End Bulty) =1

—312 = &,B Eulty) =0 (8)

D1_1D2
7= [77"] ®

Then a necessary condition for the nonnegativity of J[w(-)] is that
there exist a real symmetric (m+n)X (m+n} P{E) for eacht E (hty)
such that, with obvious partitioning of £{-)

and

J% is monotone inereasing in ¢ (10}
ZPu(ty)Z < 0 a1

W + 612’1%11512 + Eu’ﬁm =0
W + &' Pun + Pu'®y + Bu'Py+ Pa=0. (12)

We comment that, as for the totally singular case, the interval (&)
can be replaced by (4,¢;] when the final-time constraint in (2) is
absent. The variation in argument is trivial.

DERrvaTION OF SUFFICIENCY CONDITIONS

The sufficiency eonditions differ only marginally from the necessity
conditions, and are given in Theorem 2. Note that Theorem 2 cannot
be obtained by applying known sufficiency results for the nonnega-
tivity of JF[#(-)]. While necessary conditions for nonnegativity of
Jra(-) are, a fortiori, necessary conditions for nonnegativity of
Juf-)], sufficient conditions for nonnegativity of J[#(-)] are not
sufficient conditions for nonnegativity of J(u) because not all
admissible controls %(-) for the original problem can be associated
with admissible controls %(-} via {(4). Rather the reverse is true;
sufficient conditions for nonnegativity of J[u{-)] are, a foriiors,
sufficient conditions for the nonnegativity of J{a(-)].

Theorem 2: With the above notation and assumptions, including
the definitions of the matrices W5, ®:;, and Z in Theorem 1, a
sufficient condition for the nonnegativiﬁy of J[u(-)] is that there
exist a real symmetric {m--n)X{m+n) Aﬁ(t) for each t € [l such
t}lat (10), (11), and (12) hold, with Py, ~) in (11) replaced by
Pultp).

Note that the gap between the necessity and suﬂzlciency results
involves only the gquestion of the interval over which Z{t) has certain
properties; in one case the interval is (fo,ir). in the other, [inls].
This is as for the totally singular case, see [1].

Proof: The proof parallels that used for the totelly singular
case, [1, see theorem 4]. We have

iy ~
Jlu(-)] = f [22°Qz + fw'Ru + w'Cz + ='Pu(dx + Bu — )] di

to

+ $3°(tr 38 tr)-

The matrix Py is defined as follows. Let W be the matrix with sub-
matrices Wi, already defined, and 2 the transition matrix associated
with A, possessing the submatrices &, and &, defined earlier, Then
Py; is the appropriate submatrix of

(13)

F =W+ oP%. (14)

Now because P is monotone increasing, each entry must be of
bounded variation, and because ¥ and ® ave differentiable, £; must
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have entries of bounded variation. This allows reformulation of
J[u(-)] after integration by parts as

Ly
Ju(-)] = f 3z’ w']
ta
Q -+ PuA. + A’P-n) df + dﬁu (PuB + (38 dt:l :c]
’ (B'Py+ CO)dt R dt U
A+ 32 @8y — Pult)]z ().
(Note that u(-) is piecewise continuous, Therefore, so is z(+ ), making
(15) well defined.)

Nonnegativity of the term outside the integral follows as in [1].
Nonnegativity of the term inside the integral follows from the

(15)

monotonicity of 1 and the following easily derived relation:

[(Q + Ppd + APy di + dPy  (PuB + C) dt:’
(B'Py + C)dt R ds

_ ®n’ 0 l:d-f?u df:ju] ®y; ‘P:z:l (16}
&' I HdPy dPn |0 I
DirFFERENTIAL FORM OF SUFFICIENCY CONDITIONS

Tf the matrix P of the sufficiency conditions of Theorem 2 is
differentiable, it is evident from (16) that monotonicity of F implies

l:iﬁ-n'i‘Q‘l‘ﬁnA 4 A'Pu PuB + C'] >0

= 1
B'Pu+C . R (a7

A minor variation of the proof of Theorem 2 then yields the suffi-
ciency theorem reviewed in [1], see also [4], to the effect that J[u(-)]
is nonnegative if for some Pn{#) defined for t & [f5,;], (17) holds
as well as ’

Z'[8s — Pults)Z = 0. (18)

REecovery ofF CowpiTioNs For ToTaLLy SINGULAR PROBLEM

Suppose that B{t) = 0 for all ¢, so that we have a special case of
the preceding results. Taking the necessity conditions, it follows
using (16) on (fo,f;) that PuBB + C' = 0 almost everywhere on
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(tos). Arguments as in [3] establish equality everywhere, and the
standard necessity conditions (see [1, theorem 7]) are recovered.
In & similar way, the almost identical sufficiency conditions can he
obtained.

CONCLUSION

In this paper, we have filled a gap in the various sets of necessary
and sufficient conditions for singular linear-quadratic control
problems. It is possible that our alternative derivation could be
obtained via the limiting approsch of [3], and this would then allow
numerieal computation of, for example, the matrix 7,;. Nevertheless,
the method given in this paper would seem more efficient if the
conditions alone are required, without numerical values of all the
guantities involved.

We have also recently sighted unpublished work of B. Molinari in
which a totally different approach is used to prove the same main_
result as this paper. A key step is to demonstrate that the perform-
ance index (1), with nonzero z{%), has an infimum over all admissible
controls which must be guadraiic m (). This demonstration works
for the nensingular, partially singular, and totally singular cases.

Yet another approach eould conceivably be adopted using Rob-
bin’s ideas [3], which amount to replacement of a partially singular
problem by a combination of nonsingular and totally singular prob-
lems. However, the separation is not complete, and it would seem
that a demonstration via this means could be very hard.
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