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Abstract— Gradient control laws can be used for effectively
achieving undirected formation shape, by assuming that inter-
agent distances between a certain set of joint agent pairs can
be accurately specified and measured. This paper examines the
formation behavior in a 3-D space context in the case that
the neighboring agent pairs have slightly differing views or
estimates about the desired interagent distances they are tasked
to maintain. It is shown, by using a tetrahedron formation
example, that the final formation shape will be slightly distorted
as compared to the desired one. Further, in general each
agent’s motion will be a combination of rotation and translation.
Specifically, a helical movement can be observed in the presence
of distance mismatch.

I. INTRODUCTION

Formation control for a group of autonomous mobile

agents has gained much attention due to its broad applica-

tions in many areas including both civil and military fields.

A key problem in this topic that receives particular interest

is how to maintain the geometrical shape of formations in

a distributed manner. The formation shape can be achieved

by controlling a certain set of interagent distances by using

relative position measurements, in which rigid graph theory

plays an important role in studying this problem [1], [2].

One popular approach to design the controls is from a

potential function perspective, and the controls take the form

of a gradient based law which can drive the formation to

an equilibrium. The stability analysis for rigid formation

problems using the gradient law has been studied extensively

both in formations modelled using undirected [3], [4] and

directed [5], [6] graphs. An important reference is [7], in

which Krick et al. have provided a complete study on using

the gradient law to achieve an undirected formation shape,

proving that the formation shape is locally asymptotically

stable if the underlying graph is infinitesimally rigid.

One of the main concerns when implementing any for-

mation shape control method in practice is the robustness

issue. Accuracy in measuring some key variables, i.e., the

interagent distances, is crucial for achieving the desired

formations. In many cases the sensors may produce mea-

surement errors, either due to bias or noise, which may

result in discrepancies between the estimates made by each
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of a pair of agents on the same distance between them.

Each agent then has a differing view as to the error in

achieving desired inter-agent distance. This problem is also

abstractly equivalent to that arising when some agent pairs

have differing views of the desired distances that they

are tasked to maintain (even though they may consistently

measure their actual separation). We use the word mismatch

to refer to the inconsistence of the errors between measured

distances and desired distances perceived by two joint agents,

whether due to measurement biases or differing views of the

desired distance. In a recent paper [8], the robustness issues

for controlling undirected formations using gradient control

laws with distance mismatch have been discussed in a 2-

D space context, which concludes that the rigid formation

motion will under a broad set of circumstances converge to

a periodic orbit. In this paper we will show that in the 3-D

case the distance mismatch will generally drive the agents

to move unboundedly. Specifically, the resulting distorted

formation will in general experience a motion which is a

combination of rotation and translation, and in particular,

a helical movement. The main aim in this paper is to

identify the agent motions and to explain why this is so

by considering the 3-D tetrahedron formation as a starting

example.

This paper is organized as follows. Section II presents the

problem description from a tetrahedron formation example

and then sets up some key equations of agent motions. In

Section III we focus on the properties and stability analysis

of the error system and z (relative position) dynamical

system (the definitions will be clear later). The main result

is provided in section IV, which shows some features of

agent motions in this 3-D mismatch problem. Finally, some

concluding remarks are presented in Section V.

II. PROBLEM DESCRIPTION AND MOTION EQUATIONS

We consider a tetrahedron formation in 3-D space, which

consists of four agents labeled as 1, 2, 3, 4. Let pi ∈
ℜ3, i ∈ {1, 2, 3, 4} denotes the position of agent i with

pi = [pix, piy, piz]
T . Each agent should maintain the target

distances to its three neighbors and each edge is jointly

maintained by its two associated agents. For the purpose

of writing down an oriented incidence matrix, suppose that

the edges are oriented from i to j just when i < j.

Then we can number the edges in the following order:

12, 23, 34, 13, 24, 14; see Fig. 1. By doing so, one can obtain

the following matrix, which is the transpose of the incidence
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matrix:

H =

















−1 1 0 0
0 −1 1 0
0 0 −1 1
−1 0 1 0
0 −1 0 1
−1 0 0 1

















(1)

For future reference, we shall also define a matrix H̄ =
H⊗I3, where the symbol ⊗ denotes the Kronecker product.

Let dkij
denote the desired distance between agents i and

j, but suppose that the joint agents associated with one edge

have different views about the desired distance. Without loss

of generality, suppose that when i < j, dkij
is the desired

distance as perceived by agent i, while the desired distance

perceived by agent j may be different. Thus when i < j, the

actual distances used by agents i and j in formulating their

controls are

d2ij = d2kij
, d2ji = d2kij

+ µkij
(2)

where µk denotes the distance mismatch corresponding to

edge k between its two associated agents. We suppose that all

the nominal distances dkij
satisfy the triangular inequalities

in each face of the tetrahedron. Furthermore, with small

values for µ, the mismatched distances should also satisfy the

triangular inequalities and the tetrahedron structure formed

by the four agents has positive volume.

We assume each agent’s motion is described by a simple

kinematic model in the form

ṗi = ui, i ∈ {1, 2, 3, 4} (3)

where ui is agent i’s control input. The controls are derived

by a gradient law from a potential function [7], which is

defined as

V (p1, p2, p3, p4) =
1

4

∑

1≤i<j≤4

[‖pi − pj‖
2 − d2ij ]

2 (4)

where ‖ · ‖ denotes the Euclidean norm. However, when an

agent is computing its motion it uses a differing value of

the desired distance to any neighbor vertex whose vertex is

smaller.

Let zkij
be the relative position vector associated with each

edge kij , which is defined as zkij
= pi− pj when i > j and

zkij
= pj − pi when i < j. Also define the error function in

the form of

ekij
(z) = ‖zkij

‖2 − d2kij
(5)

Then according to (2), (4) and (5), the equation of agent i’s

motion can be written as

ṗi = −
∑

j<i

zkij
(ekij

(z)− µkij
) +

∑

j>i

zkij
ekij

(z) (6)

In the following, we shall define some notations to

obtain a compact matrix form of the motion equa-

tions. Denote z = [zT
1
, zT

2
, zT

3
, zT

4
, zT

5
, zT

6
]T , and Z =

diag[z1, z2, z3, z4, z5, z6]. One has z = H̄p, and the

standard rigidity matrix R(z) is given as R(z) = ZT H̄ .

(The definition of rigidity matrix can be found in [2]). Also
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Fig. 1. Undirected tetrahedron formation.

define J and J̄ to be the matrices obtained from H and

H̄ by replacing all −1 entries by zeros, which means that

J̄ = J⊗ I3. With the definition of J̄ , we can define a 6×12
matrix S(z) by S(z) = ZT J̄ . With p = [pT

1
, pT

2
, pT

3
, pT

4
]T

and obvious definitions of 6-vectors e(z), µ formed from the

ekij
(z) and µkij

, one can write a compact form for the agent

motion equations:

ṗ=−RT (z)e(z)+ST (z)µ (7)

There are two further equations as a consequence of

(7) which also play a critical role. First, since z = H̄p,

multiplying both sides of (7) by H̄ yields the following

equation for the relative positions:

ż = −H̄RT (z)e(z) + H̄ST (z)µ (8)

Second, with the definition of ekij
in (5) and the equation

(8) for the relative positions z, it is straightforward to obtain

the differential equation for the vector e

ė = −2R(z)RT (z)e+ 2R(z)ST (z)µ (9)

In the sequel, we shall refer to (7) as the overall system,

(8) as the z system, and (9) as the error system.

III. ANALYSIS ON THE ERROR SYSTEM AND z SYSTEM

A. The Error system

One of the aims in this paper is to understand the behavior

of the overall system. To begin with, let us first study the

property of the error system (9). One nontrivial observation

of (9) is that, as for the two-dimensional case [8], the

error vector e satisfies a differential equation of the form

ė = g(e, µ), while z does not appear in the smooth function

g. In fact, each entry of R(z)RT (z) is either of the form

‖zk‖
2 for some k or of the form zTi zj for some i 6= j.

Further, the matrix R(z)ST (z) has entries which are either

zero or of the same form as those in the corresponding entries

of R(z)RT (z). By recalling (5), one knows ‖zk‖
2 = ek+d2k,

and further zTi zj can be expressed using the cosine law

as a linear combination of ‖zk‖
2. To see the latter point

clearly, define A = −2R(z)RT (z), B = 2R(z)ST (z), and

we write each entry of A in (10) on the next page. As an

example, consider the entries in the first row of A. One

has −zT
1
z2 = 1

2
(‖z4‖

2 − ‖z1‖
2 − ‖z2‖

2) on the triangular

face ∆123. Similarly, the same law applies to zT
1
z4, −zT

1
z5
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A =− 2R(z)RT (z)

=− 2

















2‖z1‖
2 −zT

1
z2 0 zT

1
z4 −zT

1
z5 zT

1
z6

−zT
1
z2 2‖z2‖

2 −zT
2
z3 zT

2
z4 zT

2
z5 0

0 −zT
2
z3 2‖z3‖

2 −zT
3
z4 zT

3
z5 zT

3
z6

zT
1
z4 zT

2
z4 −zT

3
z4 2‖z4‖

2 0 zT
4
z6

−zT
1
z5 zT

2
z5 zT

3
z5 0 2‖z5‖

2 zT
5
z6

zT
1
z6 0 zT

3
z6 zT

4
z6 zT

5
z6 2‖z6‖

2

















(10)

and zT
1
z6, on the triangular faces ∆123, ∆124 and ∆142,

respectively. In fact, for all the entries zTi zj for i 6= j in

matrices A and B, the vectors zi and zj are in the same

triangular face. Thus, all the inner-product entries in A and

also in B can be reexpressed in terms of the ‖zk‖
2 and in

turn in terms of ek. Finally, we conclude that the matrices

A and B depend smoothly on e and µ but not on z, and in

the sequel we will rewrite them as A(e) and B(e).
Based on the above analysis, it is evident that the error

system (9) can be rewritten without z in the form as

ė = g(e, µ) = A(e)e+B(e)µ (11)

Note that A(e) is a negative semi-definite symmetric matrix

for any e. We are now ready to show the following important

result for the error system.

Lemma 1: The unperturbed error system (11) (i.e. ė =
A(e)e) has an exponentially stable equilibrium at e = 0.

Proof: First note that at the equilibrium of e = 0, the

formation is rigid. In fact, in Section II we have supposed a

realizable tetrahedron formation with positive volume. This

leads to the infinitesimal rigidity of the framework, and thus

the rigidity matrix R(z) has a maximum rank of 6 at e =
0. Accordingly, the matrix A(0) defined in (10) is negative

definite for e = 0. Since A(e) depends continuously on e and

A(0) is negative definite, there will be a positive number ρ

sufficiently small so that A(e) is negative definite for all e

in the closed bounded set E = {e : ‖e‖2 ≤ ρ}.

The potential function, which is defined in (4) as a function

of pi, can also be expressed as a simple function of e. That

is, V = 1

4
‖e‖2. Its derivative along the unperturbed error

system, i.e. the system (11) with µ = 0, is evidently V̇ =
1

2
eTA(e)e. Since A(e) is negative semi-definite for all e, the

function V will be non-increasing. Hence, by assuming that

e(0) ∈ E , it follows that e(t) ∈ E for all t ≥ 0. Let λ(−A(s))
denote the smallest eigenvalue of −A(s) for s ∈ E . It is clear

that λ > 0. Further define

λ̄ = inf
s∈E

λ(−A(s)) (12)

One knows that λ̄ > 0 and 1

2
eTA(e)e ≤ − 1

2
λ̄‖e‖2, which

implies that V̇ ≤ −2λ̄V . Thus one can conclude that any

trajectory starting inside E must approach e = 0 as fast as

e−λ̄t and the statement in Lemma 1 is proved.

The next aim of this section is to show that the error

system (11) with small ‖µ‖ has an exponentially stable

equilibrium close to e = 0. This is due to the robust property

of exponential stability with respect to small parametric

perturbations and also the robust property of the infinitesimal

framework with respect to small perturbations on the edge

lengths. We summarize this result as a proposition.

Proposition 1: There exists a small υ > 0 and a set

B = {µ : ‖µ‖ < υ}, such that for small mismatch µ ∈ B
the perturbed system (11) will approach an exponentially

stable equilibrium which is close to e = 0. We denote this

equilibrium as ē(µ), or shortly as ē. Thus, with small µ, the

agents will form a slightly distorted formation which is close

to the desired one.

The proof for the above result is omitted on the grounds

of space limitation.

B. The z system

In the above we have shown the convergence of e(t) to

ē for µ ∈ B. Denote z̄ as the solution to the z system (8)

when e(t) is replaced by the equilibrium state ē. From (5)

one has ‖z̄k‖
2 = ēk + d2k, which indicates that the norm

of each 3-vector zk will converge to constant. Consequently,

by using the cosine law one can find that zTi zj for i 6= j

will also be constant at the equilibrium state ē. To see this

clearly, one can examine the entries in the matrices A(ē) and

B(ē) by using the same reasoning as stated in the beginning

of Section III.(A). Thus in the steady state we can write the

matrix A and B as A(ē) and B(ē) by replacing z in each

entry with z̄. These facts will be quite useful in the later

analysis and we restate them in the following proposition:

Proposition 2: Given the convergence of the error system

e(t) to the equilibrium state ē, zTk zk for all k and zTi zj for

i 6= j will also converge to some constants. Further, the

matrices A(e) and B(e) will converge exponentially fast to

A(ē) and B(ē), respectively.

We stress here that the convergence of zTk zk for all k and

zTi zj for i 6= j does not mean that each zk itself converges.

Also, in general the formation will not actually come to rest

when the error system converges to ē. We call the formation

motion at the equilibrium state e(t) = ē an equilibrium

motion.

In the following, we shall rewrite the z system, which was

originally stated in (8), in another compact form to facilitate
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the stability analysis. Define E = diag[e1, e2, ..., e6], Ē =
diag[ē1, ē2, ..., ē6], M = diag[µ1, µ2, ..., µ6] and observe that

Ze = (E ⊗ I3)z and likewise for Zē, Zµ. One has

ż = −H̄RT (z)e(z) + H̄ST (z)µ

= −H̄H̄TZe(z) + H̄J̄TZµ

= −(HHTE ⊗ I3)z + (HJTM ⊗ I3)z

=
(

(−HHTE +HJTM)⊗ I3
)

z

(13)

Define a matrix F as

F = −HHTE +HJTM (14)

One should also note that the vectors zi for i =
{1, 2, . . . , 6} are not linearly independent. In fact, the or-

dering of edges as 12, 23, 34, 13, 24, 14 means that

z4 = z1 + z2, z5 = z2 + z3, z6 = z1 + z2 + z3 (15)

Thus one can define a matrix K as

K =





−1 −1 0 1 0 0
0 −1 −1 0 1 0
−1 −1 −1 0 0 1



 (16)

such that (K⊗I3)z = 0. Notice that K has full row rank and

also KH = 0. Then the matrix F necessarily has three zero

eigenvalues for all M . We would like to examine a reduced-

order, self-contained z system. To this end, let us pick three

independent zi, say z1, z2, z3, and eliminate z4, z5, z6 from

(13). Furthermore, partition the matrix K in (16) as K =
[K1 I], and define the matrix T as

T =

(

I 03×3

K1 I

)

(17)

with its inverse

T−1 =

(

I 03×3

−K1 I

)

(18)

According to (15) and (16), it can be easily obtained that

(T ⊗ I3)z = [zT
1
, zT

2
, zT

3
, 01×3, 01×3, 01×3]

T and similarly

(T ⊗ I3)ż = [żT
1
, żT

2
, żT

3
, 01×3, 01×3, 01×3]

T . Thus, one has

(T ⊗ I3)ż = (T ⊗ I3)(F ⊗ I3)(T
−1 ⊗ I3)(T ⊗ I3)z

=
(

(TFT−1)⊗ I3
)

(T ⊗ I3)z

=

((

F1 F2

03×3 03×3

)

⊗ I3

)

(T ⊗ I3)z
(19)

where the matrix F1, which is the upper left 3 × 3 block

of TFT−1, is expressed in (20) on the next page for future

reference.

From (19) we have actually arrived at the self-contained

z system in the following form:

d

dt
(zT

1
, zT

2
, zT

3
)T = (F1 ⊗ I3)(z

T
1
, zT

2
, zT

3
)T (21)

In the above we have shown that three of the six eigenvalues

of F are zero. Since the matrix T is of full rank, the other

three eigenvalues of F coincide with those of F1. Now we

will focus on the eigenvalues of the matrix F1.

For ease of notation, we define a 3 × 3 matrix Z̄ =
[z̄1, z̄2, z̄3]. Also we can rewrite the system (21) at the steady

state in the following form (without the Kronecker product

term):
d

dt
(z̄1, z̄2, z̄3) = (z̄1, z̄2, z̄3)F

T
1
(ē) (22)

We shall display a key property of the eigenvalues of the

matrix F1 using a Lyapunov equation method. To this end,

define a Gram matrix P as

P = Z̄T Z̄ =





z̄T
1
z̄1 z̄T

1
z̄2 z̄T

1
z̄3

z̄T
2
z̄1 z̄T

2
z̄2 z̄T

2
z̄3

z̄T
3
z̄1 z̄T

3
z̄2 z̄T

3
z̄3



 (23)

According to the linear independence of the vectors

z̄1, z̄2, z̄3, one knows that the matrix P must be positive

definite. Furthermore, according to Proposition 2, each entry

in the matrix P is constant at the equilibrium motion. Thus

we can show that

d

dt
(Z̄T Z̄) = 0

= Z̄T ˙̄Z + ˙̄ZT Z̄

= Z̄T Z̄FT
1
+ F1Z̄

T Z̄

= PFT
1
+ F1P

(24)

Since P is symmetric and positive definite, equation (24)

essentially is a Lyapunov equation which immediately gives

the following important result concerning the property of the

eigenvalues of F1(ē).

Lemma 2: The eigenvalues of the matrix F1(ē) have zero

real parts.

Evidently, there are two possibilities for the eigenvalues

of F1(ē): either F1(ē) has two pure imaginary eigenvalues

±jω for some ω > 0 and one zero eigenvalue, or F1(ē)
has three zero eigenvalues. The first case is, as will be seen,

generic.

According to Lemma 2, one finds that not only does each

‖zk‖ assume a steady state value at the equilibrium motion,

but in general the motion of z is a sum of a constant value

and a rotation. The detailed nature of the motion will be

discussed in next section. To close this section, as a by-

product of Lemma 2, we record the following fact which

links the steady state error ē and the sum of the mismatch

values.

Proposition 3: In the steady state, the following equality

holds
6

∑

i=1

µi = 2

6
∑

i=1

ēi (25)

The above equality can be obtained directly by checking the

zero trace property of the matrix F1(ē).
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F1 =





−2e1 + µ1 − e4 − e6 e2 − e4 + e5 − e6 e5 − e6
e1 − µ1 − e4 + µ4 −2e2 + µ2 − e4 + µ4 − e5 e3 − e5
e4 − µ4 − e6 + µ6 e2 − µ2 + e4 − µ4 − e5 + µ5 − e6 + µ6 −2e3 + µ3 − e5 + µ5 − e6 + µ6



 (20)

IV. THE OVERALL SYSTEM AND THE HELICAL

MOVEMENT

Now we return to the overall system defined in (7). Firstly

we can observe the following fact concerning the agent

motion.

Proposition 4: The norm of each agent’s speed is constant

at the equilibrium motion when e(t) = ē.

Proof: To prove Proposition 4, we rewrite (6) by

replacing e and z as ē and z̄ at the equilibrium motion:

ṗi = −
∑

j<i

z̄kij
(ēkij

− µkij
) +

∑

j>i

z̄kij
ēkij (26)

One can easily check that ṗTi ṗi contains the terms depending

on µ, ē, z̄Tk z̄k for some k, z̄Ti z̄j for i 6= j and their linear

combinations and multiples. According to Propositions 1 and

2, these terms are all constant at the equilibrium motion e =
ē. These facts yield the conclusion that ṗTi ṗi is also constant

and thus Proposition 4 holds.

Now we are ready to present the main result of this paper.

Theorem 1: Assume that the z̄i moves with a rotational

component. Then the motion of each agent, and the motion

of the whole rigid formation, will display a helical movement

(i.e. a motion involving a rotation in a plane and a simul-

taneous translation in a direction orthogonal to that plane),

due to the presence of mismatched distances.

Proof: By considering (22) and (24), and according to

the spectrum of matrix F1(ē) revealed in Lemma 2, one can

write the solution to the z̄ system as

z̄i=ai cosωt+bi sinωt+ci (27)

where ai, bi, ci are 3-vectors with constant entries. Since in

the steady state ē is constant as is µ, then ṗi has the form of

some linear combinations of z̄i (this can be seen from (26)).

Thus one can rewrite the expression of ṗi in the following

form:

ṗi=αi cosωt+βi sinωt+δi (28)

Note that αi, βi, δi are 3-vectors with constant entries which
can be obtained by linear combinations of the vectors
ai, bi, ci (with weights depending on µ and ē). Further one
has

ṗ
T

i ṗi = (αi cosωt+ βi sinωt+ δi)
T (αi cosωt+ βi sinωt+ δi)

= α
T

i αicos
2
ωt+ β

T

i βisin
2
ωt

+ 2αT

i βi cosωt sinωt

+ 2αT

i δi cosωt+ 2βT

i δi sinωt

+ δ
T

i δi
(29)

Based on the fact that ṗi has constant norm as shown in

Proposition 4, the following must hold

αT
i δi = 0, αT

i βi = 0, βT
i δi = 0, αT

i αi = βT
i βi (30)

That is, the three vectors αi, βi, δi are orthogonal, and also αi

and βi have identical norm. Equation (30) indicates that the

axis about which the agent rotates is parallel to the direction

of the translational motion.

From (28) and the definition of zkij
, we can obtain another

expression for żkij
when i > j (the case of i < j is similar):

żkij
= ṗi − ṗj

= (αi − αj) cosωt+ (βi − βj) sinωt+ (δi − δj)
(31)

Since zkij
is bounded, one necessarily has

δi − δj = 0 (32)

That is, all the agents have the same translational velocity

(and a single translational direction).

Thus, from (28), (30) and (32), one can show that the 3-

D tetrahedron formation with mismatch measurements will

generally experience a helical movement for ω > 0.

The special case of ω = 0 is discussed in the following

subsection (and one can find that it essentially leads to a

translation-only movement). Some simulations then follow

to support the result.

A. Special case: translation-only movement

We turn our attention to the z system (22). Generally

speaking, at the equilibrium e(t) = ē, each z̄i will not be

constant though the norm of z̄i and the corresponding inner-

product terms do converge to constants. In this section we

consider a special case of ˙̄zi = 0 which leads to constant

z̄i in the steady state. This case essentially corresponds to

the special translation-only movement of the formation. The

following lemma establishes the nongenericity of this case

by stating a necessary and sufficient condition to ensure the

translation-only movement for the 3-D tetrahedron formation

in the presence of distance mismatch measurements.

Lemma 3: In order to obtain the translation-only move-

ment, the non-zero mismatch values should satisfy the fol-

lowing equalities (any three implying the fourth).

µ1 + µ2 = µ4

µ3 + µ4 = µ6

µ1 + µ5 = µ6

µ2 + µ3 = µ5

(33)
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Fig. 2. Helical movement in 3-D tetrahedron formation caused by distance
mismatch.
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Fig. 3. A translation-only movement in 3-D tetrahedron formation with
distance mismatch.

To prove the condition stated above, first notice the linear

independence property of the vectors z̄i, i ∈ {1, 2, 3}. Some

analysis will show that all the entries in F1(ē) should be

zero such that ˙̄zi = 0 can be ensured. The detailed proof

is omitted here due to the space limit and will be presented

elsewhere.

B. Simulations

In this subsection, we provide some simulations to show

the behaviors of 3-D formation motion with mismatches.

Suppose a group of four agents wants to form a tetrahedron

formation in 3-D space, with the desired distances specified

by d1 = d4 = d6 = 4, d2 = 5, d3 = 4.5, d5 = 5. However

there exist mismatch values in the perceived distances, which

are µ1 = µ4 = µ6 = 0, µ2 = 0.13, µ3 = 0.12, µ5 = 0.13.

Through simulation, a typical helical motion is observed for

all the agents, as shown in Fig.2.

We then consider another set of mismatch values. Suppose

that the mismatch values are µ1 = 0.05, µ2 = 0.05, µ3 =
0.1, µ4 = 0.1, µ5 = 0.15, µ6 = 0.2. One can check that these

values satisfy the conditions of Lemma 3. Then a translation-

only motion for the tetrahedron formation can be expected.

This is depicted in Fig.3.

V. CONCLUDING REMARKS

In this paper we have examined the motion behavior in a

3-D tetrahedron formation shape control problem in the pres-

ence of distance mismatch by using the gradient control law.

The main result shows that in general the formation trajectory

is a typical helix. Though we have used the tetrahedron

formation throughout this paper to show the analysis, we

remark here that such helical movement is not confined to a

tetrahedron formation. In fact, the key result for the structure

of the eigenvalues of the matrix F1(ē) as stated in Lemma

2 demonstrates that for rigidity-based, undirected formations

in 3-D space, the distance mismatch will generally cause

the formation to undergo a helical motion when the gradient

control law is employed.

There are some open issues which need to be addressed.

On the one hand, we have identified the condition for

ensuring translation-only movement but not yet for the

rotation-only movement, though simulations have shown the

possibility. Further, the angular velocity for the formation

motion also needs to be identified, so that with the help

of these formulas one can consider steering the formation

motion using intentionally introduced distance mismatches.

On the other hand, there is motivation for modifying this

almost standard gradient control law for formation control,

if such non-robust behavior is regarded as undesirable and

needs to be suppressed.
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