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Abstract

In this paper, we derive the necessary, condition,
mp # n, for stabilizability by comstant gaia feesdback
of the generic degree nm, p % m_system. This follows
from another of our main resulrs, which asgerts that
generic stebilizability is equivalent to generic solv-
abllity of 2 deadbeat control problem, provided
mp % n. Taken together, these conclusions esnable us to
make some sharp statemenks concerning minimym ordex
stabilization. The techniques are primarily drawm from
decision algebra and classical algebraic geometry and
have additional consequences for problems of stabiliz-
-ability and pole-asaignability. Among these' are the
decidabilicy "(by a Sturn test) of the equivalence of
_generic pole~assignability and generie stabilizability,
the semi-algebrafec gature of the minimum order, q, of
a stabilizing compensator, aud the nomexistence of
formulae involving rational operations and extraction,
of square roots for pole-assigning gains when they
exist, answering in the negative a question raised by
deer5on, Bose, and Jury.

1. Introduction

One of the major open problems in algebraic system
theoxy Is to compute, for a given p x m system G{g) of
McMillan degree n, the miniome order q of z covpensator
®{s) which (internally) stabilizes G{s)}. Aside from
its classical importance and appeal, it is faixly
widely appreclated that a clean soluticn of this prob-
lem could potentially bz applied to model reference
adapt:‘.ve control, particularly in the development of
new "parameter adjustment™ equatiena. In this paper,
-we give a survey of our results [ 7) ylelding necesw
sary ceaditions for the geunerie stabilizabiliry by
constant gain feedback of aystems with n, o, and p
fized. Some new resulcs are alse glven, ircluding the
use of these conditions to determine minimal orders of
‘compensators for cerrain low-didensional caseés, and a
new proof —= based on the classical algebraie geomatry
‘of projective curves — of the high galn arguments we
used in [ 7). Since our proofs wiil also rely on the
Tarski-Saidenberg Theorem, we begin with a diseussion
of the qualitative behavior of q in this context.

Fix m, n, aad p and denote by l.lcl the set of sys-

tems for which q is the ninisuw order -of a stabilizing
compensator. Ther, ane solution of this problem would
entail the explicit description of Uq vhich, by anal-

ogy with the Routh-Hurwitz eriterion, one might expect
to be given by inequalities in the "parameters" of the
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system. Since thig latter concept is potentially a
thorny one, we parameterlze a system in.terms of any
one of its minimal realizations (F,G.H). That is, for.
®m, n, and. p fixed -as usual, set’ :

—~

E: o = {{Fach) s (F,G’H) is miaimal}

Thus, ):::P is an open, dense subser of IBN,'

N.= 2% + n{mtp),which is the disjoint uniod of the sub-
sets B , which one wishes to describe.

Using the quancifier elimination theozry of Tarski~
Seidenberg [17], Andersom, et al [1], [2] proved that
membership ia U, could be decided by a fin:lte- saqence

of Sturm tests in analogy with the Routh-Hurwitz con-
diticns. This result is equivalent to a qualitative
geometric statement about the subset U [~ [: follow—

ifg from the reinterpretation of Tarski‘s Theorem in
logic 29 an assertion in real algebraic geometry which
wa now briefly deseribe. A semialgebraic subset of

rY is 4 subset defimad’ by ocne or more polynomizl

equations {e.g., E(xJ = 0), inéquations (£(x) $ 0), or
inequalities (f(x) > 0), posaibly taken in conjunction
or disjunction. Thus, Z
subset of ]RN.

ia an open semialgebraic
The quantif:l er elimination theorem

_asserts that the image of a semialgebrale set

K< RY under a projection p z rY » 5" 16 semialge~

braic. Tarski’s Theorem alsc implies that the closure,
boundaxy, and interior of semialgebraic sets are semi-
algebraie, With this in mind, bne can give a gualita-

- e
tive description of the function q i [:,p -» WU {0}
and its level sets Hq. According to Anderson et al.
{1},512}, U, is semlalgebraic. & modification of

their .argumenr., due to Ghosh [% ], aserts that
!JOU j‘ is semfalgebraic for 2ll j. From these

results, one ohserves
Proposition 1.1 The Eunction q is an.upper semicon~

tinuous semialgebraic functien. That is, ¢ at most
Tises under limits and the sets Uq are gemialgebraic.

-

Z: is thecrefore the increasing ynion of the
3

= U B...
to compul:e t.he n::humal value of g such that vq is

open sets v » and it is also of ingerest

dense ia Zm 5 i.e., the minimal q for which the
generic p x m system of oxder n can be sr.a'bilized by &
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compensator of order Sq. Thus, modulo an arbitrarily
spall perturbation, any system is stabilizable by a
chmpensazor of order Sq.

Our first result (Theorem 2.2) asserts thatmp Z n
s necassary for gemeric stabilizability By a Oth order
compensator. Presemably, simlilar conditions held for
¢ # 0, and we would Like to show how such conditions
can b2 used to determine minimal orders for stabiliz~
ing. the generic system. First, combiming this with
results {3} on pole-—assignabili::y, one easily deduces

proposition 1.2 If min{m,p} = 1 and n<2 max (&z,p),
then. ¢ = L is the minimum order for stabilization of
the generic system.

Nete that mp 2 n is also a necessary condition for
" pole—assignability by constant gain output feedback,
raising. the question as t6 whether — for fixed m, n,
and p —- generic stabilizability and generic pole—
assignability are equivalent. This has been shown for
ninfm,p} = 1 and q arbitrary in rthe thesis [ 9] and,
as we write, we knoy of no counter-example.’ Moreover,
Theorem 2.2 is itself derived from an equivalence
{Theorem 2,1} for conmstant gain output Eeedback be-
 rween generle stabilizability and generic solvability
of the deadbeat control problem. From this equivalence,
we are able to give an independent proof (§ 3) of re=
sults {o=4) due to Willems-Hesselink [18] and Molander
{unpublished}, illustrating again this squivalence:

‘Proposition 1.3 If m=p=2, ‘and n=4 or 5, g=l is the
-a@inimum order required for stabilization of the generic
systen and, a fortiori, for generic pole assignability,

. We remark thar for fixed m, m; and p the question
of the equivalence of these two properties can be
answerad in the cootext of decisior algebra (see { 7]3.

Our proofs also use guite heavily basic properties
of the set of "pondegenezate systems,” iatroduced in
{51, [6}. In section.4, we conclude by giving ar
explicil coustruction of a nondegenerate syStem when
3% = n, from which the desired properties hold for the
gsaetic svsten.

-
-

2., A Necessary Coadition for Generie Scabilizabilicy

-In this section, wa shall sketch, modulo 2 tech-
rizality discussed in section 4, proofs of two of the
z2in results of {7]):

)

sorem 2.1 1f mp € n, the following statements are
nalent.
(...} @, 1, and p are such that the generic (F,G,H) is
stabilizable;
{ii) m, 0, and p are such that for {F,G,H} the output
. feadback "deadbeat control" probleu is sclvable.

rﬁ' --g

Theoren 2.2 wp @ n 45 necessary for generic stabilize
ability by constant ‘gain output feedback.

Proof of Theorem 2.1: We begin'by noting that (as ex-
pected) for m, un, and p fixed, generic stabilizability
in diserste and in continuous time are equivalent
properties; slightly nore generally,

Llemma 2,3 [ 7] The following statemenks are equivaleat:
- (i} m, n, and p are such that for all (F,G,H) -~ ex-
cept those contained in a proper algebraic set —-
there exists a stabilizing pafa K (with respect to the
left-half planed;

{iiy m, a0, and p are such cthar for all (F,C,H) -- ex-
cept perhaps those in a proper algebraic set —- for
all real p and all € > O, thexe exists a gain K such
that the eigenvalues of ¥ + (KH ate contained in an
Z-dige eceatered abouk p.

Our strategy is mow to comsider the.behavior of a
family of gains Ks as In Lemma 2.3 (iit) in the "high

gain limit™ as € » 0. Explicitly, for ¢ = (F,G,H)
consider the funation :

Yo 1 RPs g
defined via X (K) ='(pl,...,pp) where

"+ plsn—l + ... +p =der (SI-F -~ GRH).

Ta section 4, we give a new proof of the fact
e thal: pravid.ed mp < p there exists an open dense

set ¥ < ]R s N= nz + n(m+p), of triples g -~ the set

of mondegenerate systems -~ such that image (X)) is
euclidean closed for o e .

Lemma 2.4 1If mp é n, the following statements are

equivalent:

(i} m, n, and p are such rhat the zeneric (F,G ,H) is
stabilizable; -

(1.1) m, un, and p are such that.for all real 0 and the
generic (F,G -1}, there exists & gain K such that the

elosed loop cha.raccensti,c polynomial is \s—-p) .

Proof: If (i) holds, for each v there exists an opea
dense subset U\: < W such that, for (F,G,H) € -Ur’

(pl,...,b ) € imsga (X,) where the roots of

st 4+ pls LETTIL S lie in a_l[r:-di.éc centered

By the Baire Categoery Theovem, U -ﬁ U is a
dense subset of W znd the:efare of IRN. Moreover, for
O £ U there exists K such that XU(K)

image X _ is closed.
sek

about 0.

» (5-p}? since
How consider the real algebraic

W e {(F,6,8,K) 't detlsl < F - CRH) = (s-p)"}

and the projesetion pl(F G,H,K) = (E‘ G, ,H}. By the
Tarski-Seidenberg Theorem, pl(VQJ is semialgebraic.
Singe U < pl(\.’q) is denge, pl(Vp) may. be defined by
inequalities - ‘

£ (F..G,H} > 0,_ ces, & (FQG?H) >0

from which it fdllows that pI_(vP) is ofen and deise,
Sinece {F,G,H) € pl(\f ) if, and only if,- there exists a
K such that det(sl ~ F - GEH) = {s-p)", the lemma is
proved, Q.E.D.

This proves Theorem 2.1, except-_t‘ot. the sharper
assertion that the open deunse ser in (ii) may be taken
to te W. Seethe discussion in section 4.

We shall now prove Theorex 2.2. Hote that it
‘suffices to consider the case mp < u. Consider the
algebraic set of n X n nilpotent matrices

M= (N u¥ =0 for some ki
and tha polynomial mapping
' 2.

$: Nx R%™x R % R™ > B x B™ x g

defined via
S(H,G,H,K) = (¥ ~ GKH,G,H).

Taking p = @ in our preceding lemmata, we note that,
for mp < n,to say that the generic system is
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stapilizable is to say that the image of ¢ contains an
open, dense set and therasfore dim N + mp > nz. However,

dim Nsn? ~n (gee {13], 2lso { 7]} and therefore
#p 2 n, proving Theorem 2,2 Q.E.D

g'E\:amgle(a=g=2 n=-—'|)

As din the mtraduction. we cous:.der the samialge-
braic sets

v, = {{(F,G,H) wninimem order of a
stzbilizinpg compensator is L}

2, and

where we have fixed the parameters'm = p =
n a4, IF

. th
x—&ﬂ—wlumy
then we claim

Theorem 3,1 q = 1 is the pinimum order required to

. stabilize the 3ene1:ic 2 x 2 system of degree 4. Ex-
plicitly, X is a closed semialgebralc set of dimension
at wost 30, and thus u1 U, 130 is open and dense. More-~

ovar, i.nt(ﬂl}: F B.

Remark: - For w=3, Proposicion 1.3 follows from pole
aas:.gua.lul:.hy‘ results [3} and Theerem l.2., Note that

}:, ; [decomposes as
a4

Fiz., 3.1: 22‘2 decomposed into the level sets of q.

Fronf. Firsc note that the open gsemialpebraic set
T, u Eo is dense, by the Brasch-Pearson Theorem [ 3].

Indeed, X © Y where ¥ is the algebraic set of triples
wich controllapility and cbservabilicy indices in the
sst {(5,0),{3,1)} of particions of 4. That Y has co-
dizsnsion at ‘least Z follows From the dimeusion formu-
lze ia [ 4], That v, is non-empty follows from an un—

published modification by Molander of the techmiques
in {18]. Ws sketch ouxr proof given in [ 7], viz., we
ciaim nonsalvabilicy.of the corresponding deadbeat
contrel problem

temma 3.2 Ifm=p=2, 7= 4, then the set

V= {(F,G,H) ¢ 3 X such that det(sI - F ~ GKE) = s°}

hag .2 non-empty open complement in Ef;’ .
E

By Theorem 2.1 und Lemma 3.2, Molander's result
will follow, Again, we recall some basic facts (cE.54)
about the set ¥ of nondegenerate systema.

(i) if mp € &, W is open and dense in 3 and

WP

(ii) for an¥ monic polynomial p(s) of degree n, the
saet
'V? = {(F,G,B) + 3 K such that det(sI - F ~ CKH) = p(s)}

is closzd in M.

Thes, it suffices to [{nd one nonaggentrate system For
which the deadbear control problem is nor solvable.
Accaording to [ 5 ), one has a frequency dﬂmain cr:_—

terion for nondegeneracy:. 1if T{s) = B{sI - P)" G,
denote by t j_(s) .the {thesslumn of

I{s)
T(a) =

thus, ti(s) is a vector in ¢p+m'
dependent set ¢ = {9_,. ..,@p}' of linear functionals,
form the determinant

Gy =

 For any linearly in-

det{@.(n.ts))l-

Lemea 3.3 (151} T(s) is nondegenerat:e if, and only
if, €{s) # 0 for all ¢.

As an example (see [ 7])

o=l -8 ]

T(s) = !s"-t-s—l

s 53

is nondegenerate. Moreover, a straightioxward caleu-
lagion [ 7] shows that there exist no K placing the
poles of this T(s} atr 0. Q.E.D

4. HNondegenerate Systenms

Suppose mp % w. In the previous sections, wa have

made use of the fonawmg properties of nondegenerate
systems:

(NDL} The subset W of Zm of nondegenerate systems is
is open and dense; :

(Wp2) 1If g €.¥, image (Xc) is euclidean closeds

(NDS) ¥or p(s) = s® + PyS ol

+ uo. + pu,'the subser

Vp= {(F.G.H) = 3 X such that det(sI - ¥ -~ GKi) = p(s)}.

is a euclidean closed semialge_braié subset of W.

We remark that every scalar input-scalar output
system is nondegenerate and, of course.(iD2) and (ND3)
ara wall-kaown properties in the classigal root-locus’
theory., For max(m,p) > 1, there exist, however, mini--
mal txiples for which (MD2) and (MD3) fail to hold.
For {NDJ), this is quite amnalogous to thae fact that
{x € R:3Jy such thar xy =~ 1} is not ¢losed 1n R,
vhile its intersectfon with W = R - {0} is closed in
W. In partieular, nond'egeueraey is a multivariable
concept enabling-one to generalize several pice techni-
¢al facts coacerning root~loci. In owder to verify
these properties, we pitcesd formally, at first assum—
ing only the fact that the set D of degenerate systems
aver [ is a proper algebraic set.

Thug, assume thar D is defiuned as the Jocus of
functions £ (F.G,B), where each E:l. is a rarional

fanction on T having no poies on E a,p)- Ve claim

that then the set of real nondegenerate systems is open

and dense in ® m).
o Em.p( )
an open set U,

For if D N i:‘l p(m) containad
£
then each f

. E1 53
subset UG R < ¥, A power series argument

world vanish on an open
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f14] and which, of course, has application co real
pole~assignment questions. Our techniques suggested
that use of (5.1) togetheér with Galois theory as ia
[11} would prove

Counjecture 5. 1 For mwp = n, there is mo umiversal for-
mula for pose-3551grung gains invelving only ratiomal
operations and extractions of _roots, axcept in the
cases
(1) mm(m,p) 1, when there exist liaear formulae
(2) = p =2, when there exists a quadratic formula.

That is, we conjecture the €alois group is insolvable,
exzept in the aforementioned cases. This-is in marked
contrast. to the sitwation for state feedback, where
rational formulae exist.Alscthe conjecture would, 1f
trug, answer in the negative the corresponding ques-
tion — raised in [ 1] ~~ for output feedback. In
fact, the case m = p = Z already contains encugh in-
formation to settle this special case. More generally,
in [ 7) it was proved that only in case (1) would there
exist rational formulas and only in case (2) would
there exist formulae involving only rational opera-
tions and square roots. UMore receatly, the conjecture
wag affirmed in the case m = 2, p = 3 {see { ]} where
the Galois group was shown to be'the full symmetric
group 55.
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(i.e., 05300d’s Lemwa) then implies thac
fj (F,G,H) E0 on q;h', contradietiog the fact that D is

a proper snbset of . We now give a naw, conskXue-
tive proof of the result ([ 5]),161).

(i} p is an algebraic subser of Z;

(ii} There exists a minimum triple
(F,G,H) ¢ b;-
{ii1) The space of real nondegenerate sys-

Theorem 4.1 'p (@)

tems is opem and dense in zn

mp(m.)

Proof: Assuming (i), assertion (ii) implies D is a

proper algebralc subset of E: (@©). By the remarks

]
atove, (i)} and (ii) dmply (iii) which is, of course,
{¥D1). For the proof, we use the Hermann-Martin Tepre~
sentation [ ] of the transfer function T(s) as a
. holomorphic curve

T.: CP s Grass{m,mip)
of degree n, "By definition, T is nondegeserate just in
case G(CW® 1) Lies in some Scl;.ubarc hypersurface o(V),
where V is a p-plane in 3P, .

In case m = p = 1, Grass(m,mip) o GIPI = 5 and
the Hermann-Martin curve is the transfer function

T.85¢
while O(V) . is simply a point.
degenerate is to say T(s) 2 0.

Broof{1}:

Thus, to say T is

Congider the algebraic-subsay
% = {(F,5,1),V) s T(s) c o}

NH . : )
£ .}-T-‘hP X Grgss(p,mip). If p; 1s projection ou the

firsce factor, then by the Fundamental Theorem of Elim—
fnzcion Theory! {15] D = pl(x) is anm algebraic subset

of 'f:,p' 'This p.roves (i)'.

Lemma 4.2 If m = 1, theve exists a minimwal (F,G,H} € D.

Prooi: Comsider the twisted curvae of degree p
s [s,e] » [P,seP7L L 6P) € gm?

G has{MeMillan) degree p and lies in no hyperplaneji.e.

P P o
alz + ... -l-apﬂ_s 2D

Legma 4.3 If mp = n,thexe exists a minimal (F,G,H) €D.

Q.E.D.

=>ai=0.

Broof:{J. Harris) Denote the derivative of G(3) by
Gl {s). Thus, for the twisted curve of depree ¥

6 s) « Crt - Grass(2,r+)

wiich is easily seen to have degree 2r. For k < 1, we
denote by G5(s) the "kEM associated curve” of G(s)
(sea [ }); i.e., for fixed s, -GR(SJ ig the gsc 1lag-

ing k-plane to G(s} in cr’ Taking r = g+p-1 and
kem, one has

ol EIE]' - Grass(m,utp) .,

If G is the twisted curve of degree mip, then its mth
associated curve has degree mp (see [1p]).

Suppose that Gm(S) is degenerate, If V Is a de-

generate p-plane foxr Gm(s), we consider the Linear pro-
+p— _

jeetion 9 . g™ B 1*@:]},’ (B)"_Q'.‘Il‘.p 1 and the cutve

8(6(s))in CPPL.  Since ®(G(s)} is nondegenerate,

(4.1)

However, the vanishing of (4.1) is precisely. the condi-

BG(s)) A GE(s) ). At(ePLis)) 2 O

tion for degenmeracy derived in [ 51, contrary o

hypothesis. Q.E.D.

Tuxning ko (NDZ) and (ND3), think of a gain K, qua

graph(K) as a p~plane in =® 9 ®’"; i.e., as a poiat in
the compact manifold Grass(p,m+p), According to [,
Remarks p. 103) for o = (F,G,H) € |, x extands to a
continucus map

Xg ! Grass{p,mip) + R »*

where p = (pl,...,;:n) ='X°.(K) is regarded as a point
[pl,...,ph,l] in real projective space R}Pn._ ‘Hoxe- -
over, XG satisfies

Xo(¥) =

if, aud only 1f, V > graph(X) for some K, Since
Grags(p,mtp) is compact, and X, continuous, image (X;)
0 w" is euclidean close.d proving (¥D 2) We now

prove (ND3).

[pl" .. ,Pn’.I]

Propogition 4.3 For nondegenerate (F,G,H), (ND3) holds.

Proof:  Consider the algebraic Iunction

X = “]R ® Grass(p,mip) - rE"

defmed via X(F,G,H V) = (P e, 1) (V). For any pEIR'.iP »
z2=% (p) is a closed, algebraic subset of W x
Grass{p,mtp). Applying the projaction py, pl(Z) is
semialgebraiec by the Tarski-Seidenberg Thestrem, Moye—
over, pl(Z) is closed in W, since Grass{p,wFp) is °

compagt. But Pl(z.p} = Vp- ‘Q.E.D.

5. Concluding Remarks

In this paper, necessary conditions, in terms of
m, 0, and p, were derived for stabilizability of the
gerieric system by constant gain output. feedback, These
conditions also yielded characterizations of the mini-
punt order of stabilizing compensators in low dimensions.
The techmigues of proof, however, appear to be of inde~
pendent intexest. On r.he one hand one of the ingredi-
ents —— the Tarski~Seidenberxg Thearem -« also leads to
asseryions concerming the determination,by Sturm tests,
of the minfmym order of a stabilizing compensator and
of the conjecture that goneric stabilizability and
generic pole assignability might be equivalent proper-
ties of m, v, and p. Oir second ingredient, an appli-
cation of classical algebraic geomepry, had already
been, used in one form in [3 ] to study rhe problem of
pole assignment by output feedback, Spenifically, if
mp = n, one knows [ 3 ) 'that for nondegenerate systems
and any monic p(8) there are

d T fp-1) .., (mp}!
m,p - at ... {mbp-1)!

(5.1)

complex gains which place- p(s), which agree with the
caleylations d, , = 2 and dy g = 5 made in f18] and
* 3
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