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Abstract 

In  th i s  paper, we derive the  necessary,condition, 
mp b n, for  s tabi l izabi l i ty  by constant gain feedback 
of the generic degree n, p x n.aystem. This follows 
from another of our main resul ts ,  which asaer ts  tha t  
generic stabil izabfl i ty i s  equivalent t o  generic solv- 
a b i l i t y  of a deadbeat control problem, provided 
mp C n. Taken together, these conclusions enahle us t o  
make some sharp statements concerning mioimum order 
stabilization. The techniques a re  primarily drawn f r m  
decision algebra a d  class ica l  algebraic geometry and 
have addit ional  consequences f a r  problew of srabil iz-  
a b i l i t y  and pole-assigmhility. lMong these. a re  the  
decidabiliey '(by a Sturm tes t )  of the equivalence of 
generic pole-assignability and generic s t ab i l i zab i l i t y ,  
the s&-algebrafc namre of the minimum otder, q, oE 
a s tabi l iz ing compensator, and the nonexistence 'of 
f o d a e  involving ra t ional  operatioas and extraction. 
of square roofs f o r  p'bl+assigning gains when they 
exist, answering i n  t%e negative a question raised by 
Anderson., Bose, and July. 

1. introduction 

One of the major open problems i n ' dgebra ic  sy s t em 
theory is t o  compute, fo r  a given p x m system G(s) of 
2Hi?!illan, d e g r e e  a, the ninbm order q of a coupensacor 
Ic<s) which (internally) k tabi l i=es  G(s) .  Aside from 
its c lass ica l  wportance and appeal, i t  is f a i r l y  
uideiely' appreciated ckat a clean solution of th i s  prob- 
leu could poteatial ly 3e  applied t o  model reference 
adaptive control, pa8:icularly i n  the  development of 
n w  "parmeter adjusrmat" equations. ~n t h i s  paper, 
We give a survey of our r d t s  t 7 1 yielding neces- 
sary cosditions f o r  the $eneric s t ab i l i zab i l i t y  by 
constant gain feedback of aystems with m;o, and p 
fixed. Some new resulcs are also gived, including the 
llse of these conditions t o  dete-e minimal orders of 
compensators f o r  cerrain iow-d3&nsional eases, and a 
new proof -'based on the c l a s s i ca l  algebraic geometry 
.of projec t ive  curves - of the high gain argume~t i  ve 
used .in [ 7 1. Since our proofs fill a l s o  re ly  on the 
*araki-Seidmberg Theorem? we begin with a discussion 
of: the qual i ta t ive  behavior'of q i n  t h i s  context: 

Fb m, n,.and p and denote by U the s e t  of sys- 
q .  

tems f o r  which q is the  minimum order .of a s tabi l iz ing 
coopensacor. Then, one solution oE t h i s  pprbLem would 
e n t a i l  the expl ic i t  description of. Uq which, by anal- 

ogy with the'Bouth-Humitz cr i ter ion,  one might eipect 
t o  be given by inequali t ies,  i n  the "parameters" of the 
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system. Since t h i s  l a t t e r  concept is potenti?lly a- 
thorny one, we parameterize a system in.terns of any 
one of its minimal realizations (F,G,H). That is, tor. 
m, n, and p fixed a s  usual, s e r  - gSp = {(r,G,B) : (F.G,H) is minimal 1 - N 
Thus, c-, is an open, dense subset of IR , ,. 

2 N = n t n[m+p),which is the disioiat union of the sub- 
se t s  Q which one wishes to describe. 

9' 
osiw the quantif ier  eltmfnation theory of TarsBL- 

Seidenberg I17 1, Bnderson, eea1_ Ill, [Z], $roved that 
membership i n  U, could be decided by a f i n i t e  sewence " 
of Sturm te s t s  in analogy with the  buth-Uuwitz con- 
ditioho. This result i$ equivalent t o  a quall tat ive - 
g-tric statement about the.subset U e , follow- 

0 ,P . 
irig from the reinterpretation of Tarski's Theorem i n  
logic as an assert-ion i n  r e a l  algebraic gecsletry which 
we now br ief ly  describe. A semial%ebra;lc subset of 

IR" is a. subsee d e ~ i n e d ' b ~  one o r  -re pOlynomSil1 
equations (e.g., f ix]  = 0), inequations (f ( x )  # O), or 
inequali t ies (f (x) >, O), possibly t a k a  in conivnction - 

n 
ox disjunction. Thus. lm,p is an open senialgebraic 

N subset of JR . The quant i f ier  e l i m i ~ t i o n  theorem 
asserGs that  the imase of a semialgebraic Get 

N 
X c B" under a projection p : IR - is  s d l g e -  
hraic. Tarski's maorem also  implies chat the dosure, 
boundary, and in t e r io r  of semialgebraic serf are semi- 
&gebraic. With this i n  mind, one can give s qualita- - ., 
cive descriptian o f t h e  function q : %,p .* mUIO3 
and its level  s e t s  U According to Andersonef-  

q' 
[I], ~121, Uo i a  &algebraic. B mdificatio* of 

the i r  argument, due to Ghosh [ 3.1.; aserts  tha t  
UOW .. . VU - is.semialgehraic . fo r  a11 j. From these 

1 
results., one observes 

Proposition 1.1 The function q is an.upper seaicon- 
tinuous semialgebraic function. That is, q ar mmt 

r i se s  under limits and the se t s  U are semialgebraic- - 4. c,p is therefore the increasing unton of the 

open s e t s  V = U W...VU and, it is also of in teres t  
.9 0 9' 

t o  .compute the  minimal value of q such t h a t  V is 
,., 9 

dense i n  ; i.e., the minimal q for uhich t h e  
. .P 

gqneric p x m sys te io f  order n can be s tabi i ized by a 
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compe;isatsr of order 4q. Thlhus, nadula an a r b i t r a r i l y  
&I1 qL'rturbatiOn, any s).srm is s t ab i l i z ab l e  by a 
cjmpensa:or of order 4q.  

Our f i r s t  resu l t  (Theorem 2.2) a s se r t s  tha t  mp 2 n 
is hecessaey f o r  gsneric s t a b i l i z a b i l i t y  by a 0th order 
co;dpensa.tor. Presunably, simLlar conditions hold for  
q 2 0, and we would l i k e  t o  show how such conditions 
can be used to determine minimal orders  f a r  stabiiiz: 
fog. the  generic system. F i r s t ,  combining t h i s  with 
r.esults I 3 1 on pole-assignability, one eas i ly  deduces 

prop,nsit.ion 1.2 If min(m,p) = 1 and n C 2 max(a,p), 
&en q = 1 i s  Ehe minimum order f o r  s t ab i l i z a t i on  of 
the generic system. 

Note t ha t  mp b n is also a necessary condition fo r  
pole-assignability by constant ga in  output feedback, 
rais inp. tne ques t i onas  t 6  whether - f o r  fixed m, n, 
pel p -- generic s t a b i l i z a b i l i t y  and generic pole- 
assignabil i ty a re  eqiivalent. !Chis has been shoM f o r  
min(m.p) = 1 and q a rb i t r a ry  i n  the t he s i s  1 91 and, 
ps ue wr i t e ,  we know oE no counter.-example. Moreover, 
p o r e m  2.2 i s  i t s e l f  derived from an equivalence 
.(Theorem 2.1) f o r  constant gain output feedback be- 
twaen generic s t a b i l i z a b i l i t y  and generic so lvabi l i ty  
.of the deadbeat control  problem. From t h i s  equivalence, 
ue a re  ab le  t o  give an independent proof (5 3) of reA 
stilts (n=4) due to Willems-Hessel'ink [ l a ]  and Molander 
(unpublishzd), i l l u s t r a t i n g  again t h i s  equivalence: 

proposition 1.3 I f  m=p=2. and 0-4 o r  5, q-1 is the 
minimuat order required f o r  s t a b i l i z a t i o n  of thegeneric 
system .and, a fo r t i o r i ,  f o r  generic pole assignabil i ty.  

We remark tbt f o r  fixed m, n, and p the  question 
of the equivalence of these two proper t ies  can be 
answered i n  the  context of decision aLgebra (see [ 7 1 ) .  

Our proofs a l so  use qu%te heavily bas icproper t ies  
o i  tk set oE."nondegenerate systems," introduced in 
: j I. 1 6 1 .  In sec t ion  4, vr conclude by giving nn 
~ w i i c s t  ConStNction of a nondegenerate system when 
;p - n. Eroa which the  desired proper t ies  bold fo r  the 
gezeric system. 

2. A Xecessary Cordicion f s r  Generic Scabi l izabf l i ty  

- I n  t h i s  section, ve s h a l l  sketch, d u l o  a tech- 
azza l i ry  discussed i n  s % c t i o ~ -  4,  proofs of tVO of tite 
==in r e s u l t s  of [ 7 1 : - 
i~tfred 2.1 If mp < m, the  followtng statements a r e  
e~di-ralent : 

(Z) a, n, and p are sucb t h a t  t h e  generic [F,G,B) is 
s tab i l lzable :  
( i i )  m, n, a"d p a r e  .such that f o r  (F,G,E) the output 
fesdback "deadbeat control" problem is solvable. 

Iheorem 2.2 mp 2 n . i s  necessary f o r  generic s t ab i l i z -  
a b i l i t y  by constant 'gain output feedback. 

Prooi of Theoreq 2.1: We begin'by noting t ha t  (as ex- 
pected) £br m, n, and p f ixed,  generic s t a b i l i z a b i l i t y  
in d i s c r e t e  and in continuous time are equivalent 
propert ies;  s l i gh t l y  more general ly,  

Lemma 2 . 3  [ 7 1 The following s t a t e m a t s  a r e  equivalent: 
(j.) m, n, and p a r e  such chat Eor all  (F,F.E) -- a- 

CeDt those contained i n  aorooer  a leebra ic  s e t  -- ~. . . - 
there Lists a s t ab i l i z ing  gain K (with respect t o  the  
lef t-half plane); 
( i i )  m ,  n ,  and p a re  such t ha t  f o r  a l l  (F,G,H) -- ex- 
cept perhaps those i n  a proper a lgebra ic  s e t  - fo r  
a l l  r e a l  p and a l l  E > 0 ,  there  e x i s t s  a gain K such 
tha t  the  eigenvalues of F + GKH a t e  contained in an 
--disc ceatered about p. 

Our stracegy is now to consider th?-behavior o f  a 
family of gains K as i n  Le- 2.3 ( i i )  i n  the ''high 

gain l i m i t "  a s  E -> 0. E ~ p l i c i t l y ,  for  O = (S,G,H) 
consider the  function 

x, 8 lRmp+ wn 

defined v i a  Xa(K) =' (pl.. . .,p$ uhere 

sn +plsn-I + ... + p = der (s1 - F -  GKH). n 

In sec t ion  4, we give a new proof of the f a c t  
([ 6 1 )  t h a t  provided mp 4 p there ex is t s  an open dense 

N 
s e t  W c B , N = n2 + n(m+p), of t r i p l e s  rr -- the set 
Of nondegenerate systems -- such tha t  image (Xu) is 

euclidean closed for a E W. 

Lemma 2.4 I f  mp n, the following statements a r e  
equivalent: 

( i )  m. n, and p ate such tha t  the generic (F,G.H) is 
stabll.izable; 
( t i )  m, n,  and p ere such.,Chat.for a l l  r e a l  P and t h e  
generic (F,G,H3, thefe exLsts a gain K such t h a t  the  

closed loop char.cteristic polynomial is ~ s - p ) ~ .  

Pegof: I f  ( i )  holds, f o r  each r there e x i s t s  an opeil - 
dense subset Us c W such that ,  t o r  (F.G,B) E Ur, 

(pl,. . . .&) E image (Xa) where the roots  of 

n n-1 + 

s + PIS . . . + pn l i e  i n  a 11-disc centered 

about 0. By t h e  Baire Category TheQrem, U =$l~ris a 
W dense subset of W and therefore of IR . Moreover, f o r  

O E U there  e x i s t s  K such tha t  XJK) - (s-0)' s i n c e  

image X is closed. Ww consider the  r ea l  a lgebra ic  
set  

O 

and t h e  project ion <(F.G,H,K) i (<&€I). By the  

Tarski-Seidenberg T h e o m ,  P1(~v) is s+algebrafc. 

sin=; u c pl<vQ) is dense; pl(vP) mait be defined by 

inequal i t ies  

fl(F..G,to > 0,  ..., fk(F,G,H) > O 

IS open and dense. from which it favows chat pl(vP) : 
Since (F,G,H) E pL(~P)  ' i f ,  and onlJ if.. there  e x i s t s  a 

K such t h a t  de t ( s1  - F 7 G$H) = (6-p)"; t h e  lemma is 
proved. Q.S.D. 

 his proves meorem 2.1, except- for. the sharpar  
asser t ion  that the opendense s e t  in '(ilk may be  taken 
t o  be W. See . the  discussion i n  sect ion 4. 

W e  s h a l l  now prove ~ h e o r i m  2.2. Note t h a t  i t  
'suffices t o  consider the  case mp 6 n. Cmsider t h e  
a lgebra ic  set of n x n nilpotent  matrices 

N - {N r N~ = 0 for  snna k3 

and the  polynomial mapping 
2. 

@ , N x lxnm.x ~ ~ ~ - x  lRmp - lR u u m x . f l  

deEined v i a  

cp(N,G,K,K) = (X - -,G,E). 

Taking p = 0 i n  our preceding lemmata. we note  t ha t ,  
for  m p S  n , to  say t ha t  t h e  generic system is 
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s t ab i l i zab le  is t o  say that.thu image of @ contains an ~ h u s ,  i t  suff ices  to Cind one nmoegenerate system fa, 
2 open, densa s e t  therefore dim. h! + mp > n . ~ a ~ i e v c r ,  which che deadbeat concral problem is no! solvable. 

According to [ 5 1, dne- has a frequency domain ori? 
dim N.= n2 - n (see U3J. a lso 1 71) and therefore '  -1 
np 3 n. proving Theorem 2 . 1 .  t e ~ i o n  for nondegeneracy:. i f  T ( s )  = E(sl - 2') G, 

Q.E.D- denate by ti(s) .the ith-column oE 
- 

3,  Example (a = ? = 2, n = 5 ) .  

.As i n  the introduction,' ~wa'consider the semialge- 
b r a i c  s e t s  

Ci = ! (F ,C,H)  minimam order of a 
scsbllizinc cornpensator is il 

Im 
where we bave £ised.the perameter%m = p = 2, and thus, ci(s) is a vector i n  aP . . For any linearly in- 
n =.$. 15 dependent set  ? = . . ,@ 1 of linear unctionals,  

-4 P 
X = c2,* -(UI U U,) form the determinant 

then we c l a f a  P(s) = det[+i(tjls))l. 

Theorem 3.1 q = 1 is the.einimum order required to 
s t a b i l i z e  the  generic 2 x 2 system of degree 4. Ex- 
p l i c i r l y ,  X is a closed semialgebraic set of dimension 
a t  mosr 30, and thus U1 U.S0 is open and dense. fitore- 

over, h t t a  j i a. 1 

h r k :  For n-5, Proposition 1:3 follows from pole - 
asripabil%t$ r e s u l t s  L 3 1 ,  and 'tkorer( 1.2. Note tha t  

- 
Cbg. 3.1: E4 decompossd into the 1 w e l . s e t s  of q. 

2.2 

?-of. F i r s t  note t h a t t h e  open semialgebraic s e t  - 
U, U C,, is dense, by the Brasch-Pearson Theorem 31'. - 
Indeed. X c Y where P is rhe algebraic s e t  of t r i p l e s  
-d.slrh c o n t r a l l a b i l i t ~  and o>servability indices i n  the 
ses i(5,0), (3,l); of .particions of 4.. Thac Y ha6 co- 
di2sssion a t l e a r t  2 folloh's Erom the dimension formu- 
lae  i n  1 4 1 .  That li, is non-empty follovs €ram an un- 

- .  
published modificarion by Xolander of the  techniques 
in 1181. We sketch our proof given i n  [ 7 1. viz.. we 
claim nons0lvability.ot the corresponding deadbeat 
control  problem 

Lemma 3 . 2 .  I E  m = p - 2 ,  'n = 4, then the  s e t  

. . 

-4 ha* .a non-empty open complement i n  12,2. 
By Theorem 2 ~ 1  and L e m a  3.2, Molander's resul t  

w i l l  f o l l w .  Again, we recell  some basic f ac t s  (cf.54) 
abnit the  s e t  W of nondegsnerace systems: 

lemma 3.3 (1 5 1) T(s) is nondegenerate i f ,  and only 
i f ,  Qcs) P 0 fo r  a l l  P. 

As an example (see [ 7 I ) 

is nondegenerate. Wrewer ,  a stxaigbtlozward calcu- 
l a t ion  I 7 I shows that  there ex i s t  w K placing the 
poles of thfs T(s) a t  0. Q.B.D. 

I. Nondegenerate Systems 

Suppose mp C n. In the previow sections, we haw 
made use of the foUaving properties of nondegenerate 
systems: ., 
(ND1) The subset N of of nondegenerate systems is 

.P 
i$ open and dense; 

(ND2) I€ a € W, image (Xd is euolidean closed; 

(NO31 Fbr PC=) = sn + plsn-I + ... + P ~ .  the subser 

Vp-  [(F.G,H) : 3 K such chat de t (s1  - F - GICH) = PO)) 

is a euclideail closed semialgebraic subset of W. 

We remark tha t  every scalar input-scalar oucput 
system is nondegenerate and, of course.(ND2) and (ND3) 
a re  well-known properties i n  the c lass ica l  mot-locus' 
theory. For max(m.p) > 1. there exis t ,  however, min i - .  
ma1 t r ip l e s  fo r  which (WD2) and (ND3) f a i l  t o  hold. 
For (ND3),this is quite analogous to the fac t  that  
{x 6 E: 3y sueh that xy - 11 is not closed i n  Ill, 
while its intersection with U = IB - {03 is closed in 
W. m p a r t i c u l a r ,  nondegeneracy is a mlt ivar iable  
Concept enablingone to' generalize several nice tachni- 
cal f ac t s  concerning root-loci. In  order to verify 
these properties,we proceed formaUg, a t  f i r s t  ass- 
ing only the  f ac t  that  the s e t  D of degenerate systems 
over a is a proper algebraic set. 

Thus, a s sme  that  D i s  defined as  the tocus of 
functions fi(F.G,B), where each f i  is a racronal - 

N 
- 

(1) i f  np C o, k' is open and dense fa and function on t having. no poier on In (0. Be elaim 
m,p 

(ii) f o r  an+ aonic ~ol3noniaL ~ ( $ 1  of denree n. the that chen the s e t  of r ea l  nondegenerete systems is open . . . . . - .  . 
s e t  - - 

and dense In  ((8). For ,if D I l  jn (IR) contained V - ~(F,c,H) : 3 K such that de t (s1  - F - GKH) - p(s)3 9 .P . m:P 
an open se t  O,,then each £ wonld vanish on an open 

is closed in U. J 
subset u c crX u*. A power series aayunent: 



1141 and which, of cqlrse, has application La real  flOj P i  Griffichs and 3. Harris, Principles of A l e -  
pole-ecssignment questions. Our techniques suggested braic Geometry,. John-Wiley and Sons, N.Y.1978. 
tha t  use of (5.1) together w i t h  Galois theory as  i n  
I11l would prove 

Conjecture 5.1 .  or mp = n, there is no universal for- 
m d a  for pose-a.ssighing gains invdlvinz only rat ional  
operations and extractions of .  roots, except in t h e  
cases 

(1) min(ro,p) = 1,. when theie exis t  l inear  formulae 
(2) m = p' = 2 ;  when there exis ts  a quadratic formula. 

That i s ,  we conjecture the Galois group is  insolvable, 
except i n  t h e  aforementioned cases. T b i s . 1 ~  i n  marked 
con t ra s t  t o  the sitiiation fo r  s t a t e  feedback, where 
r a t iona l  formulae exist.Alsothe conjecture would, if 
true,  answer fn the negative the corresponding ques- 
t i on  -- raised i n  1 1 1  - fo r  output feedback. In 
f a c r ,  tlie case m = p = 2 already contains e n q h  in- 
formation t o  s e t t l e  th i s  sp.ecia1 case. Nore genarally, 
I n  [ 71 i t  was proved char only i n  case (1) would there 
e x i s t  ratiorial fomulaa and on17 i n  case (2) .wulil 
t he re  exls t  f o m l a a  involving only rat ional  opera- 
t i ons  and square roots. More recently, the conjecture 
wasaffirmed i n  the case m = 2, p = 3 (see [ I )  Were 
the  Galois gro.up was shown t o  be , the  f u l l  symet r i c  
group S5. 
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( i .e . ,  Osjood's,Lcm?) then implies thar: 
Suppose that G=(s) is degenerate. I f  U is a de- 

a proper subset of t?. We now give a new, construc- 
tive proof of the resul t  ( [  5 1,L 6 1). jeceion 4 : 5 ~ ~ + ~ - ~ + ~ 1 p  (B) +CZ.P-l aod che curve - +(G(sj)in El€''-'. Since O(G(s)) i s  nondegenerate, 
nieoren 4.1 ( if  D i s  an-alsebraic subset of In . (0; 

"rP 
( i i )  'here e x i s t s  a minimum tripLe o(G(s)) h 9 ( ~ l ( s ) ) n .  .A@(G~-"(S)) 2 o (4.1) 

(F,G,H) a a:. 
( i i i )  n e  space of rea l  nondegenezate s p -  However, the vanishing :of (4.1) is p r c c i s e ~ y '  the condi- - ' t ion f a r  degeneracy derived in. 1 5 1 ,  contrary t o  

terns is open and dense i n  (IR) hypothesis. Q.E.D. 

Turning to (ND2) and (h?r3), think of a gain X, qua 
Proof: Assuming (i), assert ion (ii) implies D is  a -. - graph(l0 as. a p-plane i n  lRp O lRm; i.e., a s  8 point i n  
peeper algebraic subsec of (5). By the remarks the compact manifold Grass(p,ntp). According t o  16 , 

,P Remarks p. 1031 fo r  U = (F,G,II) E W, Xu extends t o  a 
above, ( i )  and (ii) imply ( i i i )  whicb is, of courst, . continuous nap 
(KD1) .  For the proof ,. we use the Hernann-Martin repre- 
sentatfon 1 of the transfer function T(9) as a h. 8 Grass(p,m+P+p) -t P IP" 
holomarphic curve 

where p = (pl.. . ..pn) = =Xu(K) i s  regarded as a point 
. T  t KIP I' -r Grass(m,m+B) n . .  

[pl ...., p,.11 in real. projective space lRIP .. %re- 
of degree nl 'By definit ion,  T is nondegewrate jus t  i n  

1 over. Xo s a t i s f i e s  case G(tl€' ) l i e s  i n  some Sehuberc hypersurface o(V), 
= ~ P ~ . . . . . P ~ , ~ I  

where V is a v-vlatie in tn*. . . 
2 In  Ease m - p = 1, Gr&s(rp,m+B) l tl?' n S and 

the Hermaan-Hartin curve is the  transfer function- 

T .  2 - 2  
.while U(V). is simply a .point. Thus, t o  say T is 
aegenerate is t o  say T(s) 5 0.- 

Proof(i): Consider the algebraic-subset 

x = I(F,G,H),V) 2 T(S) c o(v)l - . . 

of c,p Grass(p,m+p). I f  P is p r o j e c t i q  on the 1 
f iEK factor, then by the  Fundameotal Theorem of Elim- 
izzcion Theory:(.=] D - pl(X) is an algebraic sirbset - 
of gvP.  his proves ( i ) .  

Lema 4.2 I f  m = 1, there ex i s t s  a minimal (F.G,U) B D. 

Prooi; Cansider the  twisted curve of degree p - 
G : [s,tl -r [ t p , s ~ P - l ~ ~ . . s ~ P ]  E t IPP 

G has(MaYi1lan) degree p and lies i n  no hpperp1.ane;i.e. 

altP + ... + a  sP I o - a  = O. Q.B.D. 
p+r i 

l e m a  4.3 If up - n,there ex i s t s  a minimal (F.G.K) U D. - 
Sroof:(J. Rarris) Denote the derivative of G(s) by - 
cl(s). Thus, for the twisted curve of deBree r 

~ ' ( 8 )  , + ~r i s s (Z , r+ l )  

which is easily seen t o  have degree 2r. For k < r, we 

deqoce b;  sf the *kth associated curven of G(s) 
k 

(see [ J.1; i.e., fo r  fixed s, .G (s) is the osc l lae- 

ing k-plane to G(s) i n  aler. Taking r n @+p-1 and 
k=m, one has 

Gn : tIP1 4 Grass(m,mtp). 

if, and only i f .  V - grdph(~)  for  some K. Since 
Cras~(g,m+p) is compact, and Xu continuous, image (XJ 

ll lRn is euclidean closed, proving (NJ 2). Wa now 

prove (ND3). 

Proposition 4,3 For nondegenerate (F ,G,~) ,  (ND3) holds. 

Proaf-. Consider t h e  algebraic function 

X : W X Grass(p,m+p) -t mn lR 

defined via X(F,G.E,V) X(F,G,E)(V). For any ~ E ~ R B ~ ,  

Z = x-'(~) is a closed, algebraic subset of. WR, x 

Grass(p,ut+p). ~pp ly ing  the pmJec t im pl, ~ ~ ( 7 . )  .is 

semialgebraic by the Tarski-seidenberg Theorem. &re- 
over, pl(Z) is closed i n  W, since Grass(a,nttp) i s  ' 

canpaGt. But pl(Zp) = Vp. 
'Q-E.D. 

5. , Concluding Remarks 

In t h i s  paper, nece66ary c o n d i e i o ~ ,  i n  tern of 
n, n, and p, were derived for  s t ab i l i aab i l i t y  of the 
generic system by constant gain output. feedback. These 
conditions also yielded character iza t I .m of Khe mSni- 
mum order of s tabi l iz ing ccPapensatorsinlow dhensions. 
The'techniques' of proof, however, appear t o  be oQ inde- 
pendent interest .  O n  the one'hand; oae of the  fngredi- 
en t s  -- the  Tarski-Seidenberg Theorem - also  leads t o  
assert ions concemingtha determi~t ion.by S tum tests. 
of the minicum order of e stab.$lizing compsnsator and 
of the conjecture tha t  generic scabi l izabi l i ty  and 
generic pole ass ignabgiry  migbt he equivalent proper- 
t i e s  of m, n, and p. Oilr second inp;cedienL, an appli- 
cation of c lass ica l  algebraic geomeFrx, had already 
bee4 used i n  one form in I-5 1 to sr"dy cha problem oE 
pole asslgnnent by output feedback.. Speci€ically, i f  
mp - n, one knows [ S l ~ c h a t  for nondesenerace systems 
and any m i c  p(sf there a r e  

I f  G is the twisted curve of degree mtp, then its mth CO~PI@X gains which place.p(s), which agiee wlth the 
associated curve has degree mp (see [lol). calculations dZS2 = ? and dZs3 - 5 made i n  [la] and 




