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Abstract—In previous work we proposed a method to
determine the bias in localization algorithms using 2 or 3
sensors, whose location have been already identified, for targets
in 2-dimensional space by mixing Taylor series and Jacobian
matrices. In this paper we extend the bias-correction method
to n-dimensional space with N sensors. To illustrate this
approach, we analyze the proposed method in three situations
using localization algorithms. Monte Carlo simulation results
demonstrate the proposed bias-correction method can correct
the bias very well in most situations.
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I. INTRODUCTION

Localization - determining the geographical localizations
of targets - is a fundamental problem in many different
application areas. Most existing localization algorithms cannot
obtain the position of a target exactly; further, many can
lead to biased estimates. In order to enhance the accuracy of
localization algorithms, many techniques have been presented
recently.

In almost all practical situations, measurement errors are
inevitable, and these lead to errors in estimating the true target
position. One common systematic contributor to localization
errors is bias, and it is generally considered desirable to
correct for it, if possible. Determination of bias has therefore
attracted interest. In [1], Gavish et al. proposed an approach to
analytically express the bias in localization algorithms based
on bearing measurements. To obtain the analytical expression
for the bias, they expand the first derivative of the maximum
likelihood cost function by Taylor series. Three expansions
of different orders were obtained separately. The final ana-
lytical expression for the bias involves the variance of the
measurement noise and the derivatives of the cost function.
In addition, though formulated for bearing algorithms, the
analytical expression for the bias appears generic, which
means it is independent of the localization algorithms or types
of measurement.

In [2], S. P. Drake and K. Doğançay presents an introduction
to tensor algebra with some application examples in estimation
theory. One of the tensor algebra application proposed in
the paper treats the bias in nonlinear systems with a noisy
observable. They expand the non-linear function which maps
measurements to target positions to second order in noisy case
using a Taylor series. The expected value of the second order
term is considered as the bias. However [2] mainly focus on
the application of tensor algebra, rather than bias analysis.

In our previous work [3, 4], we proposed a novel method
to correct the bias in localization algorithms. We first use
a Taylor series to expand the localization mapping g which
maps from the measurements to produce position estimates
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to second-order, and take the expected value of the second-
order term as the bias. In this stage the expression of the bias
involves the derivatives of the localization mapping which are
generally hard to calculate. However the inverse mapping of
g (call it f) which maps the target position to the noiseless
measurements can be written down easily according to the
geometric relationship between the target and sensors. There-
fore we introduce the Jacobian matrix of f to calculate the
derivatives of g in terms of the derivatives of f. Compared
with the approach presented in [1], the Monte Carlo simulation
results demonstrate a clearly better performance for our bias-
correction method. However, the analysis of the proposed
method is restricted in 2-dimensional space in [3, 4]. In this
paper we will extend the bias-correction method to three (n=3)
dimensional space with an arbitrary number of sensors.

The rest of the paper is organized as follows. In Section II
review of the localization problem and the bias in localization
are summarized. We analyze the proposed method in n-
dimensional space with N sensors in Section III. The results
of Monte Carlo simulations are provided in Section IV. Section
V summarizes the paper and comments on future work.

II. BRIEF REVIEW OF LOCALIZATION AND BIAS

In this section, a brief review of the localization problem
and the bias in localization will be presented. All the analysis
will be done in n-dimensional space (n = 2 or 3) with N ≥ n
sensors whose location has been already identified.

A. Brief Review of the Localization
In the noiseless case, the localization problem can be

formulated as follows. Suppose there is an emitter or target
whose coordinate vector is x = (x1, x2, ..., xi)

T where xi
denotes the ith-coordinate. Further a set of measurements
Θ = (θ1, θ2, ..., θN )T can be obtained from N (generally
N ≥ n) sensors where θi(i = 1, 2, ..., N) denotes the
measurement obtained from sensor i. Here the measurements
can be of any form, such as distance, angle of arrival or
bearing, etc. Now in the noiseless case we have

Θ = f(x) (1)

where f = (f1, f2, ..., fN )T denotes the mapping from the
target position to the measurements. The function f is assumed
(as is reasonable) to be obtained analytically according to the
geometry of the target and sensors.

However, in practice measurement errors are inevitable.
Therefore the mapping from the target position to the mea-
surements can be described by a nonlinear equation as follows
(where we use Θ̃ = (θ̃1, θ̃2, ..., θ̃N ) to denote the noisy
measurements):

Θ̃ = f(x) + δΘ (2)

where δΘ = (δθ1, δθ2, ..., δθN )T denotes the measurement
noise generally assumed to be zero-mean Gaussian with N×N
covariance matrix S = diag(σ2

θ1
, σ2

θ2
, ..., σ2

θN
). The covariance
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matrix will not be diagonal when the measurements are TDOA
[5].

Generally, when N ≥ n + 1 equation (2) will have no
solution in the noisy case. In order to obtain an approximate
position estimate, various methods have been proposed such
as maximum likelihood, least squares, etc [6, 7]. The main
idea of these approaches is similar: convert the localization
problem to an optimization problem as follows:

x̃ = argmin
x

Fcost-function(x, Θ̃) (3)

where x̃ denotes the inaccurate target position estimate. By
solving the above equation, which is often computationally
difficult, we obtain the estimated position.

B. Brief Review of the Bias in Localization
Bias is a term in estimation theory which is defined as the

difference between the expected value of a parameter estimate
and the true value of the parameter [8]. In this subsection, a
brief review of the bias in localization will be presented.

Assume g = (g1, g2, ..., gn) denotes the localization map-
ping from the measurements to the target position estimates.
In the noiseless case we have:

x = g(Θ) (4)

where x and Θ have the same meaning as above.
As mentioned in last subsection, in practice noise will

always exist in the measurements. Therefore in the noisy case
we have:

x̃ = g(Θ + δΘ) = g(Θ̃) (5)

where x̃, Θ̃ and δΘ have been defined above. In this paper we
assume δΘ is subject to an independent Gaussian distribution
with zero mean and known variance σ2.

Suppose that in estimating a target position, in practice
the measurement process is repeated M times. For each
measurement set we obtain a estimated position of the target,
giving M target position estimates. Generally we can average
M target position estimates to obtain a single position which
is then considered as the estimated position of the target. As
M → ∞, we would expect the estimate to go to :

E[x̃i] = E[gi(Θ̃)] (6)

Now note that if gi is nonlinear we have:

E[x̃i] = E[gi(Θ̃)] �= gi(E[Θ̃])
= gi(Θ) = xi

Therefore the bias appears in the estimation process.

Biasxi = E[x̃i]− xi i = 1, 2, ..., n (7)

If computable, the bias can be used to systematically correct
any single estimate from any single measurement set. From
the above analysis, we can see that once (a) the localization
mapping is nonlinear and (b) the measurements are noisy, bias
is to be expected. In practice, these two factors are mostly
present. The desirability of bias correction is the motivation,
and the means to do so is the contribution of this paper.

III. BIAS-CORRECTION METHOD

In this section, we will extend the bias-correction method
in localization algorithms proposed in [3, 4] to n-dimensional
space with N sensors. The analysis will be done in three
situations: N = n, N = n + 1 and N > n + 1. In principle,
we could consider N ≥ n + 1 as one composite case; for
simplicity, we consider in detail simply N = n+ 1.

A. N=n Situation
In this situation, the number of sensors equals to the number

of obtained measurements. At that time, in the noisy case, we
can obtain the position of the target by solving the following
equation1.

Θ̃ = f(x̃) (8)

where Θ̃ = Θ + δΘ and x̃ = x + δx. Here f can be easily
written down analytically from the geometry.

Assume the localization mapping g is well-defined for each
point and there are derivatives of any order of g. Because
N = n, g can be considered as the inverse mapping of f.
Thus

x̃ = g(Θ̃) (9)

To determine the bias consider xi = gi(θ̃). Because the
localization mapping g is well defined, we can expand the
function gi by a Taylor series. Truncating at second order:

xi + δxi = gi(θ̃1, θ̃2, ..., θ̃N )

= gi(θ1 + δθ1, θ2 + δθ2, ..., θN + δθN )

≈ gi(θ1, θ2, ..., θN ) +

N∑
j=1

∂gi
∂dj

δθj

+
1

2!

N∑
j=1

N∑
l=1

δθjδθl
∂2gi
∂θj∂θl

The approximate bias expression is immediate:

E(δxi) =
1

2!

N∑
j=1

σ2
j

∂2gi
∂θ2j

(10)

For range-measurement localization, it is not very difficult
to compute the derivatives of g. However, when considering
e.g. a scenario involving TDOA in R3, to obtain the analytical
expression of g becomes very challenging. In contrast, f can
be easily written down according to the geometric relationship
between the target and sensors. Therefore we consider how
to use f and its derivatives to calculate the derivatives of g
resulting in an easy calculation of the bias. Because f and g
are inverse mappings, the Jacobian identity holds:

⎡
⎢⎢⎢⎢⎣

∂f1
∂x1

... ∂f1
∂xn

. ... .

. ... .

. ... .
∂fN
∂x1

... ∂fN
∂xn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

∂g1
∂θ1

... ∂g1
∂θN

. ... .

. ... .

. ... .
∂gn
∂θ1

... ∂gn
∂θN

⎤
⎥⎥⎥⎥⎦
= In (11)

By solving the equation set (11) we can obtain the analytical
expression for ∂gi

∂θj
(i = 1, 2, ..., n; j = 1, 2, ..., N) in terms of

∂fi
∂xj

(i = 1, 2, ..., N ; j = 1, 2, ..., n). For ease of exposition

we use giθj to denote the expressions of ∂gi
∂θj

as functions of

x1, x2, ..., xn. Here we take ∂g1
∂θ1

for example. We can obtain
the following equation.

1When the measurement is the range between target and sensor, an
ambiguity problem may be encountered: we may obtain two estimated target
positions. At that time we assume further information such as a priori area
restriction to resolve the ambiguity problem
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Fig. 1. Introduce One Extra Variable (Here N=3 and n=2)

∂g1
∂θ1

= g1θ1 (12)

Differentiating the equation (12) in respect to x1, x2, ..., xn
respectively we can obtain an equation set as follows.

⎡
⎢⎢⎢⎢⎣

∂f1
∂x1

... ∂fN
∂x1

. ... .

. ... .

. ... .
∂f1
∂xn

... ∂fN
∂xn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

∂2g1
∂θ12

.

.

.
∂2g1

∂θ1∂θN

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

∂g1
θ1

∂x1

.

.

.
∂g2

θ1

∂xn

⎤
⎥⎥⎥⎥⎥⎦

(13)

Note that the quantities on the right side of this equation
are all expressible analytically in terms of derivatives of the
fi, and so as functions of x1, x2, ..., xn. Hence by solving the

equation set (13), we can obtain a formula for ∂2g1
∂θ2

1
which

only contains of the derivatives of fi. The formulas for ∂2gi
∂θ2

j

can be obtained in the same way. Substituting the formulas
into equation (10) we can finally obtain the easily-calculated
equations for the bias.

B. N=n+1 Situation
One more sensor is introduced in this situation. In the

noiseless case, a single well-defined position of the target can
be obtained by solving the equation (1). However, in the noisy
case generally there will be no solution for the equation (8).
Further the equation (8) will become overdetermined which
means there are more scalar measurements than there are
unknowns. Because N �= n, we cannot obtain the equation
(11). In other words we cannot straightforwardly express the
bias using the derivatives of f. At the same time, to calculate
the localization mapping g directly becomes even harder,
requiring analytical solution of (3). Therefore we adopt a
method based on the least squares approach to introduce an
extra variable into the equation (8).

Consider N -dimensional space, with axes corresponding to
the N measurements. Assume a surface (shown in Fig. 1)
consists of points which correspond to all sets of noiseless
measurements (θ1, θ2, ..., θN ). According to the least squares

method, the cost function in equation (3) has the following
form:

Fcost-function(x, Θ̃) =

N∑
i=1

(fi − θ̃i)
2 =

N∑
i=1

δθ2i (14)

In fact, the least squares method attempts to find a point
(θ1, θ2, ..., θN ) (the white point in Fig. 2) on the surface
corresponding to an obtained set of noisy measurements
(θ̃1, θ̃2, ..., θ̃N ) (the black point in Fig. 2 which is generi-
cally off the surface) to minimize the distance between the
two points. Hence the white point must be the orthogonal
projection of the black one on the surface, or the black point
must be on the normal vector to the surface passing through
the white one. Therefore the distance between the two points
can be formulated as follows:

Dmin =

√√√√ N∑
i=1

δθ2i = ε||u|| (15)

where u denotes the normal vector at the white point and ε is
a coefficient to set the distance. The normal vector u can be
calculated as follows.

At the white point we can obtain n tangent vectors as
follows:

vi = [
∂f1
∂xi

,
∂f2
∂xi

, ...,
∂fN
∂xi

]T i = 1, 2, ..., n (16)

By cross multiplying the n tangent vectors, we can obtain
the normal vector u [9].

u = [u1, u2, ..., uN ]T = v1 × v2...× vn (17)

Note that in the noiseless case Θ = f where f can be written
down easily according to the geometry of the sensors and
target. Therefore for the black point we can obtain a new
analytical mapping F = (F1, F2, ..., FN )T by moving from
f along the normal vector for a minimal distance ε||u||. The
new mapping F is no longer overdetermined because an extra
variable ε has been introduced into the mapping.

Now we have a new mapping F: RN → RN as follows.

Θ̃ = F(x̃, ε) = f(x̃) + εu (18)

After introducing the extra variable ε, now N = n.
Therefore we can consider the localization mapping (call it
G) as the inverse mapping of F. We can then proceed along
the same lines as previously.

C. N>n+1 Situation
With N > n+1, the situation is similar to N = n+1 case

except that the extra variable ε is no longer a scalar. Instead
it is a vector which can be defined as follows.

ε = [e1, e2, ..., eN−n]
T (19)

where ei (i = 1, 2, ..., N−n) denotes a coefficient to minimize
the moved distance in each dimension of the normal.

The other processes are as same as the situation described
in III. B. We omit the details here.

IV. SIMULATION RESULTS

In this section, Monte Carlo simulation results will be
provided. For ease of exposition we present two types of
simulation results in 3-dimensional space. In the first situation,
there are three sensors which means N = n. In the second
situation, we add an extra sensor resulting in N = n+ 1.

2856



(3,3,3) (4,4,4) (5,5,5) (6,6,6) (7,7,7) (8,8,8) (9,9,9) (10,10,10)
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Target Position

A
bs

ol
ut

e 
D

is
ta

nc
e

Experimental Bias
Analytical Bias
The bais after using the proposed method

Fig. 2. Comparison of Experimental Bias and Analytical Bias

A. Simulation Assumptions
• Assume the measurements here are range measurements.
• The measurement error for each sensor are produced by

independent Gaussian distributions with zero mean and
variance σ2=1.

• All the simulation results are obtained from 5000 Monte
Carlo experiments.

• In the simulation the bias is considered as the absolute
distance (average of 5000 experimental results) between
the true target position and the estimated target position.

• Analytical bias denotes the bias obtained by using the
analytical expression derived from our method.

• Experimental bias denotes the bias obtained by using
simulations.

B. Three Sensors Situation
In this situation, we fix the three sensors at (6, 0, 0), (0, 6, 0)

and (0, 0, 6). The target position is changed from (3, 3, 3) to
(10, 10, 10) in steps of (1, 1, 1).

From Fig. 2 we see that by using the proposed method
the bias can be corrected almost perfectly. The analytical bias
obtained using the proposed method is consistent with the
experimental bias. More simulation results demonstrate the
proposed method can reduce the bias to a very low level
except for adverse geometries, e.g. target remote from the
plane containing the sensors. Though it is not very large as
shown in the figure, the bias for x and y components is greater
than 5% of their standard deviation [1] which means to correct
the bias still makes sense.

C. Four Sensors Situation
In this situation, the four sensors are fixed at (0, 0, 0),

(0, 8, 0), (8, 4, 0) and (4, 4, 8). Further we fix both the x and
y value of the target at 4 while changing the z value from 1
to 10 with steps of 1.

Though an extra variable is introduced into the simulation,
the results in Fig. 3 demonstrate the proposed method contin-
ues to yield good performance. By using the proposed method,
the bias can be reduced to a very low level almost equal to
zero.

V. CONCLUSION

In the previous work [3, 4], we proposed a method to correct
the bias in localization algorithms in 2-dimensional space.
The bias-correction method mixes Taylor series and Jacobian
matrices to express the bias analytically in an easy way. In this
paper we extend the bias-correction method to n-dimensional
space with N sensors. We analyze the bias-correction method
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Fig. 3. Comparison of Experimental Bias and Analytical Bias

in three situations. In the first situation the dimension is
equal to the number of sensors. Next we introduce an extra
sensor resulting in an overdetermined problem. A method
based on a least squares approach is adopted to solve the
overdetermined problem. In the third situation, the number of
sensors is greater than the dimension. Monte Carlo simulation
results demonstrate the performance of the proposed bias-
correction method. Our future work is aimed at improving
the performance of the proposed method by using high-order
term of the Taylor series; this may be important in high noise.
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