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Abstract— In this paper we propose a method for enhancing
synchronizability using convex optimization. This method is
based on adding new edges to the network, later the perfor-
mance of the proposed method is tested through providing
some numerical examples. Furthermore, a comparison with
another method for adding edges, namely edge addition using
an eigenvector criterion is presented. Moreover, the extension
of the proposed method to the networks with different edge
weights is described.

I. INTRODUCTION
Recently the study of behaviour of networked systems

has gained a lot of attention, and researchers from different
disciplines were interested in different aspects of this be-
haviour, e.g. rendezvous problem in multiagent systems [1],
localization of sensor networks [2], etc. A very important
dynamical behaviour of an interconnected network is syn-
chronization, and many groups around the globe focused on
the relationship between synchronization and the structural
topology of a network, see [3], [4] and references therein.
In particular, the community is interested to find ways to

enhance the network synchronizability. For instance, in [5]
the authors suggested that network synchronizability can be
enhanced if the coupling strength from a node is inverse to
its degree. The works in [6], [7] introduced inserting weights
into the network while keeping the network topology un-
changed to improve the network synchronizability. Moreover,
in [8] it is shown that synchronizability can be enhanced by
reducing the maximal betweenness centrality (BC) of the
node, while in [9] it is shown that this end can be achieved
by minimizing the maximal BC of an edge. In [10], which
has the closest result to this paper, the authors proposed a
heuristic method for adding one edge at a time with small
weight to increase synchronizability of a network.
Another closely related set of works are those concerning

consensus problems in distributed systems; [11] provides
an overview of existing convergence results for reaching
consensus. Furthermore, in [12] the authors study conver-
gence speed for consensus problem in both linear time-
invariant and time-varying topologies. In [13] the continuous
consensus functions of the initial state of the network agents
are considered and the necessary and sufficient conditions
characterizing any algorithm that asymptotically achieves
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consensus are presented. Later, this characterization is the
building block to obtain various design results for networks
with weighted, directed interconnection topologies.
In this paper we consider a network with undirected edges

corresponding to bidirectional information links. In addition,
in the beginning we assume that the weights of the edges in
the network are all equal to one. However, later in the paper
we show that this is not an essential assumption and we
relax the equality assumption. We propose two methods to
enhance synchronizability of the network. First, we try to do
so by adding extra edges to the network, i.e. by changing
the topology of the network in a way that this addition
optimizes an optimality index. Second, we do it by changing
the weights of the edges in the network in order to optimize
the same optimality index. In Section II we introduce this
optimality index to be the second largest eigenvalue of a
matrix called the coupling matrix. Note here that in [14] a
way to optimize the same optimality index is proposed for
networks of mobile agents, where the agents are required to
move to positions forming a setting with the optimality index
acquiring its extremum. The approach in [14] used algebraic
methods along with an iterative algorithm for seeking to
achieve optimization. The problem is not a convex one, and
the algorithm [14] is essentially a greedy one.
The structure of the paper is as follows: in the next

section the necessary background is presented. In Section
III we consider the problem of how to add some unit-
weight edges to enhance synchronizability of the network,
and present some numerical examples. In Section IV we
solve the same problem but allowing the edges to be added
to have predetermined arbitrary weights, and demonstrate the
applicability of the method by introducing some numerical
examples. In Section V we extend the results of Sections III
and IV to synchronization enhancement of networks having
links (edges) with arbitrary weights. Finally in Section VI
we present some concluding remarks.

II. BACKGROUND

Consider a network, N , of n interconnected nodes where
the node interconnection is represented by an undirected
graph G(V , E), with vertex set V{i}|V|=n

i=1 , each vertex rep-
resenting a node with the same label, and edge set E =

{ei}
|E|=p

i=1 . An edge connects two vertices if the nodes asso-
ciated with those vertices have an information link, e.g. have
communication, can sense each other, etc. If ei connects
vertices j and k, in the rest of this paper for simplicity we
denote ei by {j, k}. The graph G is called the underlying
graph of N . Additionally, for each node labelled i one has
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the state dynamics

ẋi = f(xi) + c

n∑
j=1

aijxj , i = 1, · · · , n (II.1)

where xi = [xi1, · · · , xid]� ∈ R
d, d ∈ N, is the state

variable of node i, c > 0 is the coupling strength [4], [3],
and the differentiable function f represents the dynamics
of an isolated node. For the time being, for the sake of
simplicity and without loss of generality, we assume that
the weight for each edge is equal to one. We extend the
method proposed here to the networks with different weights
for different edges in Section V. Furthermore, we define
coupling matrix A = [aij ] ∈ R

n×n to be A = −L,
where L = H�H is the Laplacian matrix associated with G,
where H is the incidence matrix associated with G. One can
construct H = [hij ] ∈ R

p×n in the following way. If edge
ei is incident on nodes (vertices) j and k, where j < k, then
hij = 1, and hik = −1, and hil = 0 for any l /∈ {j, k}.
In other words, the i-th row of the matrix H corresponds to
edge ei. Furthermore, we make the following definition for
the sake of clarity.
Definition 2.1: The complement of a graph G is the graph

Gc with the same vertex set but whose edge set consists of
the edges not present in G (i.e., the complement of the edge
set of G with respect to all possible edges on the vertex set
of G).
For connected G, the following relation between the eigen-
values of A holds [15], [16].

0 = λ1(A) > λ2(A) ≥ · · · ≥ λn(A) (II.2)

The system (II.1) is known [3] to obtain synchronization
exponentially fast, i.e. x1(t) = · · · = xn(t) = z(t) as t →
∞, if G is connected and

c ≥
|q̄|

|λ2|
, (II.3)

q̄ is the largest value of q < 0 that for some d × d diagonal
positive definite matrix D and τ > 0 satisfies:

[Df(z(t)) + qId]�D + D[Df(z(t)) + qId] ≤ −τId.

Here, Df(z(t)) ∈ R
d×d is the Jacobian of f evaluated

at z(t), and Id ∈ R
d×d is an identity matrix. Note that

z(t) ∈ R
d can be a stable equilibrium point, a limit cycle or

a chaotic attractor of an isolated node:

ż(t) = f(z(t)). (II.4)

If the network obtains synchronization with a small c, then
it is considered to have strong synchronizability. Inequality
(II.3) indicates that network synchronizability depends on the
second largest eigenvalue of A, and consequently one can
enhance this synchronizability (with c fixed) by decreasing
the value of λ2(A). So we identify λ2(A) as an optimality
index and aim to minimize it for the rest of this paper. This
idea is described in the next section in more detail.

III. ENHANCING SYNCHRONIZABILITY BY ADDING
MULTIPLE UNIT-WEIGHT EDGES

Partitioning H as

H =

⎡
⎢⎣

h1

...
hp

⎤
⎥⎦ (III.1)

where hi = [hi1, · · · , hin], we have

A = −H�H = −

p∑
i=1

h�
i hi (III.2)

In addition, we define Gc(V , Ec) as the complement graph

of G, where Ec = {ec
i}

|Ec|=pc

i=1 , and denote Hc =

⎡
⎢⎣

hc
1
...

hc
pc

⎤
⎥⎦

to be its incidence matrix, where pc = n(n−1)
2 − p. Now we

formally define the following problem.
Problem 3.1: Consider a network of n interconnected

nodes with underlying undirected graph G(V , E). The goal is
to add m edges to G, call the new graph G′ with associated
coupling matrix A′, to obtain the smallest possible λ2(A′).
Where should one add these edges to reach this goal?
First we describe A′ in more detail. The new graph, G′ can
be described as a graph with the vertex set V as before and
edge set E ′, where E ′ = E ∪ E+ , E+ ⊂ Ec, and |E+| = m.
Additionally, let G+ be the graph with V as vertex set and
E+ as edge set. Call the incidence matrix and Laplacian
matrix associated with this graph, H+ and L+ respectively.
Thus, the Laplacian matrix of G′, L′ can be calculated as,
L′ = L + L+, and consequently A′ = −L′.
We can cast Problem 3.1 as the following minimization

problem.

minimize λ2

(
A−

pc∑
i=1

sih
c
i
�hc

i

)

subject to 1
�s = m

si ∈ {0, 1}, i = 1, · · · , pc.

(III.3)

where s = [s1, · · · , spc ], and 1 is a vector with 1 entries.
Remark 3.1: Note that in (III.3), the objective function is

actually λ2 (A′), and −
pc∑

i=1

sih
c
i
�hc

i = A+. Because the si

are all 0 or 1, the matrix
pc∑

i=1

sih
c
i
�hc

i is obtained by selecting

certain edges (corresponding to si = 1) to constitute E+ and

the matrix A−
pc∑

i=1

sih
c
i
�hc

i is A′. The constraint 1�s = m

ensures that precisely m additional edges are selected.
Before continuing further we introduce the following propo-
sition:
Proposition 3.1: Minimization of the objective

function of (III.3) is the same as minimization of
2∑

j=1

λj

(
A−

pc∑
i=1

sih
c
i
�hc

i

)
.
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Proof: In the light of (II.2), we know λ1(A
′) = 0 and

the result is straightforward.

Using Proposition 3.1 we rewrite (III.3) as

minimize
2∑

j=1

λj

(
A−

pc∑
i=1

sih
c
i
�hc

i

)

subject to 1
�s = m

si ∈ {0, 1}, i = 1, · · · , pc

(III.4)

Furthermore, we have the following proposition,
Proposition 3.2: Given arbitrary positive integers k and

M satisfying k ≤ M and an arbitrary M × M symmetric
matrix X , let Γk(X) denote the sum of k largest eigenvalues
of X . Then Γk(.) is a convex function over the set ofM×M
symmetric matrices.

Proof: From [17] we know

Γk(X) =

k∑
i=1

λi(X)

= sup
{
tr(Z�XZ)|Z ∈ R

M×k, Z�Z = I
}

where tr(.) is the trace function and k ≤ M . For arbitrary
matrices X and Y , and constant 0 ≤ θ ≤ 1, we have

Γk(θX + (1 − θ)Y ) = sup
Z�Z=I

[
tr(Z�(θX + (1 − θ)Y )Z)

]
= sup

Z�Z=I

[
tr(Z�θXZ) + tr(Z�(1 − θ)Y Z)

]
≤ sup

Z�Z=I

[
tr(Z�θXZ)

]
+ sup

Z�Z=I

[
tr(Z�(1 − θ)Y Z)

]
≤ θ sup

Z�Z=I

[
tr(Z�XZ)

]
+ (1 − θ) sup

Z�Z=I

[
tr(Z�Y Z)

]
Hence Γk(.) is a convex function over the set of M × M
symmetric matrices.

Because of Proposition 3.2, the objective function in (III.4)
is convex. However (III.4) has Boolean constraints as well,
as a result, it cannot be solved using convex optimization
techniques [18]. However, one can solve the relaxed version
of it, which is

minimize
2∑

j=1

λj

(
A−

pc∑
i=1

sih
c
i
�hc

i

)

subject to 1
�s = m

si ∈ [0, 1], i = 1, · · · , pc

(III.5)

This minimization problem has convex constraints and can
be solved using standard convex optimization techniques, as
described in more detail below. Assume s∗ is the solution
to this problem; it is not necessarily a solution to the
original problem (III.4), since s∗i can take a non-integer
value. However, one can say that the value of the objective
function for s∗ is a lower bound for the value of the objective
function at a solution of the original problem, because the
feasible set for the relaxed problem contains the solution to
the original problem as well. Call this lower bound Ls. To
generate a suboptimal solution to the nonrelaxed problem
we can proceed as follows: Let s∗i1 , · · · , s∗ipc

denote the
elements of s∗ rearranged in descending order; compose the

pc-vector ŝ with entries ŝi ∈ {0, 1} such that ŝik
= 1 for

k ∈ {1, · · · , m} and ŝik
= 0 for k ∈ {m + 1, · · · , 2n}.

This way the entries of ŝ with indices corresponding to the
m largest elements of s∗ are assigned to be unity and the
rest to be zero. The associated objective value with ŝ, call it
Us, is an upper bound for the optimal objective function. We
define a gap between the upper bound and the lower bound
as, δs = Us − Ls. For the cases that δs is negligible one
can be sure that ŝ is the solution of the original problem.
However, if δs is not negligible a local optimization method
can be used if desired to seek other better solutions [18],
[19].
Standard convex optimization perhaps may appear not

immediately applicable to solving the convex optimization
problem (III.5), however if we cast the problem in the
Semidefinite Programming (SDP) framework it can be solved
easily. Assume F (s) is the affine function of s ∈ R

μ: F (s) =
F0+s1F1+· · ·+sμFμ, where μ ∈ N, s = [s1, · · · , sμ]�, and
F0, F1, · · · , Fμ are η-by-η symmetric matrices, and η ∈ N.
To minimize the sum of the k largest eigenvalues of F (s) we
can solve the following semidefinite programming problem,
in t, S, s:

minimize kt + tr(S)
subject to tI + S − F (s) ≥ 0

S ≥ 0
S = S�

where S ∈ R
η×η . For further information see [20] and

references therein. For a proof the reader may refer to [21],
however, we provide another simple proof here in case the
aforementioned reference is not available to the reader. We
state the following lemma.

Lemma 3.1: Let s∗ achieve min
k∑

i=1

λi(F (s)), where

λ1 ≥ λ2 ≥ · · · , λη , and let t and S satisfy

tI + S − F (s) ≥ 0

S ≥ 0

S = S�

Then

kt + tr(S) ≥
k∑

i=1

λi(F (s)),

and there exist t∗ and S∗ attaining the lower bound.
Proof: Without loss of generality, using diagonalization

by an orthogonal matrix if necessary, suppose

F (s∗) = diag(λ1, · · · , λn).

Let E = [Ik 0n−k]; then

tI + S − F (s∗) ≥ 0 ⇒ E(tI + S)E� − EF (s∗)E� ≥ 0

⇒ tIk + S11 − diag(λ1, · · · , λk) ≥ 0

where S11 is the first k-by-k diagonal block of S. Hence,

kt + tr(S11) −
k∑

i=1

λi(F (s)) ≥ 0. Since S ≥ 0, tr(S11) ≤
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tr(S), so

kt + tr(S) ≥
k∑

i=1

λi(F (s)).

Next, let

S∗ = diag(λ1 − λk+1, · · · , λk − λk+1, 0, · · · , 0)

, t∗ = λk+1.

Then we see that

t∗I + S∗ − F (s∗) =

diag(0, · · · , 0, 0, λk+1 − λk+2, · · · , λk+1 − λn) ≥ 0.

Further kt∗ + tr(S∗) =
k∑

i=1

λi(F (s)), i.e. the lower bound

is attained.

A. Numerical Examples
Here we introduce three numerical examples. The software

package used to solve them is CVX, for more information see
[22] .
Example 3.1: Consider the network with a graph as de-

picted in Fig. 1 with,
H =2
6666666666666666666664

1 −1 0 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0

0 0 0 1 −1 0 0 0 0 0

0 0 1 0 −1 0 0 0 0 0

1 0 0 0 0 −1 0 0 0 0

0 0 1 0 0 −1 0 0 0 0

0 0 0 0 1 −1 0 0 0 0

0 0 0 0 1 0 0 −1 0 0

0 0 0 0 1 0 0 0 −1 0

0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 1 0 −1

0 0 0 0 0 0 0 0 1 −1

3
7777777777777777777775

We are interested to add one edge; after solving the
optimization problem (III.5), using the method described for
determining ŝ, we set the value corresponding to {2, 10} to
one and calculate δs = 0.0873, which is negligible compared
to the lower bound Ls = −1.3230. Therefore, the result
obtained obtained is very close to the global optimum of
the cost function and the added edge is the optimum edge
addition.
Example 3.2: In this example we consider the network

in Example 3.1 but we aim to add 5 edges. The edges
to be added are obtained by doing the same procedure in
Example 3.1 are, {4, 10}, {1, 9}, {2, 8}, {4, 7}, and {2, 7}.
Furthermore, Ls = −1.1677, and δs = 0.0543, which is
negligible.
Example 3.3: In this example we consider a network with

50 nodes, and 151 edges. It is desired to add 20 more edges.
The optimization procedure used in Examples 3.2 and 3.3 is
applied. The values for Ls and δs are respectively, -2.2986
and 1.4922, and in this case the latter is not negligible. Fig.
2 shows the network with the added edges.

1
2

4
5

3

9

10

8

6

7

Fig. 1. The graph of the network studied in example 3.1.
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Fig. 2. The network studied in example 3.3. The solid blue lines correspond
to the existing edges and the dashed red lines correspond to the newly added
edges.

IV. ENHANCING SYNCHRONIZABILITY BY ADDING
EDGES WITH THE SAME NON-UNIT WEIGHTS

In this section we consider the case where the edges that
are going to be added to the network all have the same
prescribed weight ω, which is not necessarily equal to one.
As a result the optimization problem (III.5) will become:

minimize
2∑

j=1

λj

(
A− ω

pc∑
i=1

sih
c
i
�hc

i

)

subject to 1
�s = m

si ∈ [0, 1], i = 1, · · · , pc

(IV.1)

In [10] a method to select where to add one edge when ω
is sufficiently small is proposed and it is suggested that the
added edge be retained when ω is not necessarily small, but,
say, 1 ; In the next example we compare the result obtained
by solving (IV.1) and the one obtained by using the method
in [10]. We use the same method here as used in Section
III, to solve (IV.1). However, the results are not necessarily
the same, since here the objective function has a parameter
ω which may affect its optimum.

A. Numerical Examples
Example 4.1: Consider the network introduced in Exam-

ple 3.1. It is desirable to add an edge with weight of ω = 0.1
to the network. Solving (IV.1), the edge to be added is
calculated to be {2, 10}, which is the same edge suggested
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Fig. 3. The network studied in example 4.2. The solid blue lines correspond
to the existing edges and the dashed red lines correspond to the newly added
edges.

by the method in [10]. The δs associated with the solution
of (IV.1) is equal to zero which means the solution indeed
is the optimal solution to the problem.
Example 4.2: In this example and similarly to Example

3.3, we consider a network with 50 nodes and 150 edges,
and we are interested to add 20 new edges each with a weight
ω = 0.1. The values for Ls and δs are respectively, -0.7557
and 0.0148, where the value for δs is negligible. Fig. 3 shows
the network with the added edges.

V. NETWORKS WITH DIFFERENT EDGE WEIGHTS

There are scenarios where the edges connecting different
vertices have different weights. These different weights may
be the result of having edges (links) with different commu-
nication bandwidth, different importance, etc. To consider
these scenarios we have to redefine the matrix A. Consider
a graph GW (V , E , W ), where V and E are the vertex and
edge set as described before, and W = diag(w1, · · · , wp) is
the edge weight matrix, where wi > 0 is the weight of edge
ei. Hence, we have the following definition for AW :

AW = −H�WH, (V.1)

or equivalently,

AW = −

p∑
i=1

wih
�
i hi. (V.2)

Having a definition for AW one can apply the methods
introduced in Section III and Section IV for selecting the
edges to be added to the network, replacing A with AW .
So the minimization problem for adding m edges with equal
prescribed weight ω will be:

minimize
2∑

j=1

λj

(
AW − ω

pc∑
i=1

si hc
i
�hc

i

)

subject to 1
�s = m

si ∈ [0, 1], i = 1, · · · , pc.

(V.3)

The difference between (V.3) and (III.5) is presence of AW

and ω in (V.3), which affects the solution of the minimization
problem

In what follows we provide an example to show how one
can add a few edges with weights equal to ω to a network
with weight matrix W .

A. Numerical Example
Example 5.1: In this example we consider the same net-

work as Example 3.1. However, we assume the following
weight matrix:

W = diag(2.0961, 1.8646, 1.6613, 1.0408, 1.7916

1.6499, 0.7607, 0.6582, 0.7261, 0.0689

0.7797, 1.1219, 1.3396, 2.9646, 0.6798),

It is desired to add 5 edges with weight ω = 0.25 in
order to enhance the synchronizability. Solving (V.3) we
get Ls = −1.1302 and δs = .0098 which is negligible.
The proposed edges to be added are, {2, 10}, {2, 9}, {4, 9},
{4, 10}, and {1, 10}. This addition decreases the second
largest eigenvalue from −0.4784 to −1.1302.

VI. CONCLUDING REMARKS
In this paper a method for enhancing synchronizability of

a network of interconnected nodes is presented. This method
is heuristically appealing and can be computed in short time
intervals (On a 2.0GHz computer it takes 1 second to cal-
culate a candidate for edge addition). The proposed method
is based on adding new edges to increase synchronizability
of the network, and its applicability is demonstrated via
several numerical examples. In addition, the result obtained
using this method is compared with the result obtained using
another method introduced in [10]. While the latter requires
small weights for added edges to the network, the former
does not require such condition.
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