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Abstract

In this paper we characterize the relative sensor-target ge-
ometry for bearing-only localization in R

2. We analyze the
geometry in terms of the Cramer-Rao inequality and the cor-
responding Fisher information matrix, aiming to characterize
and state explicit results in terms of the potential localization
performance. In particular, a number of interesting results
are rigorously derived which highlight erroneous assumptions
often made in the existing literature.

1. INTRODUCTION

Currently the two most common passive measurement tech-
nologies available for localization and tracking are bearing
measurements [1]–[4] and time-of-arrival based measurements
(or time-difference-of-arrival measurements) [5]. However, in
this paper we focus on bearing (or angle of arrival (AOA))
based localization systems in R

2. This paper is part 1 of a pair
of papers characterizing the relative sensor-target geometry
in terms of the lower bounds on the potential localization
accuracy. In part 2 [6] the relative sensor-target geometry for a
time-of-arrival (or time-difference) based localization problem
is characterized in a similar fashion.

It is well known that the relative sensor-target geometry
plays a significant role in potential localization performance
[1]. A number of papers [1], [7], [8] provide a partial character-
ization of the sensor-target geometry with various metrics (all
related to the Cramer-Rao inequality). Indeed, the Cramer-Rao
bound itself has played a role in determining optimal sensor
trajectories and control laws for bearing-only localization and
target tracking in numerous papers in the literature, e.g. see
[1], [9]–[13] and the many references therein. In this paper we
provide a more rigorous characterization of the relative sensor-
target geometry for bearing-only localization that, to the best
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of the authors knowledge, cannot be found explicitly in the
literature. We state specific results in terms of the relative
angular geometry of the sensors with respect to the target.
In particular, we look at the problem of finding the optimal
angular configuration of sensors given arbitrary target ranges
(and under some estimator assumptions).

The remainder of this paper is organized as follows. In Sec-
tion 2 we outline some notation and conventions for bearing-
only localization. In Section 3 we introduce the Cramer-
Rao inequality and the related Fisher information matrix.
Moreover, in Section 3 we discuss the relationship of the
Fisher information matrix to geometric characterizations and
we derive the Fisher information matrix and determinant for
bearing-only localization with an arbitrary number of sensors.
In Section 4 we explore the bearing-only localization geometry
in detail and provide some informative illustrations. In Section
5 we give our conclusion.

2. NOTATION AND RELATED CONVENTIONS

We consider a single stationary target and multiple sensors all
located in R

2. The single target’s location is given by p =
[xp yp]T . Consider a number of sensors labeled 1, . . . , N ≥ 2
with the location of the ith sensor given by si = [xsi ysi]T .
Let the range between the ith sensor si and the target p be
given by ri = ‖p− si‖. The angle subtended at the target by
two sensors i and j is denoted by ϑij = ϑji ∈ [0, π).

A. Bearing Conventions

The true azimuth bearing φi from sensor i to the target is
measured clockwise from the global North direction and such
that φi(p) ∈ [0, 2π). The measured value of φi is given
by φ̂i = φi(p) + ei where ei is the measurement error.
The ei term is assumed to be normally distributed with zero
mean and variance σ2

φ, i.e. ei ∼ N (0, σ2
φ). It is common to

mathematically model the bearing with the following equation

φi(p) = arctan2 (xp − xsi, yp − ysi) (1)

where the arctan2 function is defined such that φi(p) ∈
[0, 2π) (note that arctan2 is related to the standard arctan
function and is common in many computer programming
languages). The set of measurements from N sensors can be
written as Φ̂ = Φ(p)+e where Φ(p) = [φ1(p) . . . φN (p)]T
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and e = [e1 . . . eN ]T . We assume that the measurement
errors of distinct sensors are mutually independent. Moreover,
for simplicity, we assume that the error variances of multiple
distinct sensors are equal and given by σ2

φ. The covariance
matrix of e is then given by Rφ = σ2

φIN where IN is an N -
dimensional identity matrix. The general measurement vector
Φ̂ can thus be considered an observable normally distributed
random vector and can be described by Φ̂ ∼ N (Φ(p),Rφ).

B. Comment on Relative Geometric Configurations

Without loss of generality we will always arrange the sensor
indexing such that the true bearings obey φj ≥ φi when j > i
and ∀i, j ∈ {1, . . . , N}. Essentially we can always re-number
the sensor locations or rotate the coordinate system such that
this arrangement holds.

3. THE CRAMER-RAO INEQUALITY AND FISHER

INFORMATION FOR BEARINGS LOCALIZATION IN R
2

The Cramer-Rao bound states that under (two) mild regularity
conditions the minimum variance achievable by an unbiased
estimator is equal to the inverse of the Fisher information
matrix. Considering an unbiased estimate p̂ of p the Cramer-
Rao bound states that

E
[
(p̂ − p)(p̂ − p)T

] ≥ I−1(p) � C(p) (2)

where I(p) is the Fisher information matrix. In general, if
I(p) is singular then no unbiased estimator for p exists with
a finite variance [14], [15]. If I(p) is nonsingular then the
existence of an unbiased estimator of p with finite variance
is theoretically possible. If (2) holds with equality then the
estimator is called efficient and the parameter estimate p̂ is
unique [15]. Finally, the condition (2) says nothing about the
performance and realizability of biased estimators.

Consider the set of measurements from N sensors Φ̂ ∼
N (Φ(p),Rφ). The Fisher information matrix in this case
quantifies the amount of information that the observable ran-
dom vector Φ̂ carries about the unobservable parameter p. It
is a matrix with the (i, j)th element given by

(I (p))i,j = E

[
∂

∂pi
ln
(
fΦ̂(Φ̂;p)

) ∂

∂pj
ln
(
fΦ̂(Φ̂;p)

)]
where pi is the ith element of the target’s location vector
p (e.g. p1 = xp and p2 = yp). Also, fΦ̂(Φ̂;p) is the
likelihood function of p given fixed measurements and the
natural logarithm of fΦ̂(Φ̂;p) is given by

ln
(
fΦ̂(Φ̂;p)

)
=

1
2
(Φ̂ − Φ(p))TR−1

φ (Φ̂ − Φ(p)) + c

where c is a constant term independent of p. The general
Fisher information matrix is then given by

I(p) = ∇pΦ(p)TR−1
φ ∇pΦ(p) (3)

For the case of a single sensor measuring the bearing φ̂1 =
φ1(p) + e1, the Fisher information matrix is given by

I (p) =
1

σ2
er2

i

[
cos2 (φ1(p)) − sin(2φ1(p))

2

− sin(2φ1(p))
2 sin2 (φ1(p))

]
(4)

where ri = ‖p − si‖. Some simple calculations show that
det |I(p)| = cos2(φ) sin2(φ) − sin2(2φ)

4 ≡ 0 is identically
satisfied for any p, and hence, unsurprisingly of course, no
unbiased estimator with finite variance exists for the target
location p with N = 1 bearing sensors.

The variance of the sum of independent random variables
is equal to the sum of the variances. This immediately implies
that the general Fisher information matrix for N bearing
measurements is simply given by

I (p) =
1
σ2

e

N∑
i=1

1
r2
i

[
cos2 (φi(p)) − sin(2φi(p))

2

− sin(2φi(p))
2 sin2 (φi(p))

]
(5)

where i indexes the bearing measurement from the ith sensor.
Independent measurements from additional sensors in general
positions cannot decrease the total information.

Note that det (I(p)) is inversely proportional to the un-
certainty area of an unbiased estimate of p [15]. We use
det (I(p)) to analyze the sensor-emitter geometry and es-
tablish which sensor configurations minimize the variance (or
mean-square-error) achievable by an efficient estimator.

In this paper we are not constructing estimators but rather
characterizing the effect of the localization geometry on the
performance of a generic unbiased and efficient estimator. In
practice this analysis can only serve as a guide for sensor
placement with biased estimation algorithms. Indeed, the
relationship between the analysis conducted in this paper
(assuming efficient unbiased estimators) and its applicability
for biased estimators is yet to be completely understood.
However, the goal of many localization algorithms, e.g. see [1],
[2], is to obtain unbiased estimates (despite the fact that biased
estimators have the ability to outperform the Cramer-Rao
bound in terms of the mean square error achieved). Indeed,
many localization algorithms attempt to remove the bias via
additional processing [2]. Therefore, the results obtained in
this paper are still of practical significance. In part 2 [6] we
discuss the issue of biasedness in further detail.

The following result gives a means to approach the deter-
minant maximization problem.

Theorem 1: Let ri = ‖p − si‖ be arbitrary but fixed for all
i ∈ {1, . . . , N}. The following are equivalent expressions for
the Fisher information determinant for bearing-only localiza-
tion:

(i) det (I (p)) =
1
σ4

φ

∑
S

sin2(φj − φi)
r2
i r2

j

, j > i (6)

(ii) det (I (p)) =
1

4σ4
φ

( N∑
i=0

1
r2
i

)2

−
(

N∑
i=0

cos (2φi)
r2
i

)2

−
(

N∑
i=0

sin (2φi)
r2
i

)2
 (7)

where we define S = {{i, j}} to be the set of all combinations
of i and j with i, j ∈ {1, . . . , N} and j > i, implying that we
have |S| =

(
N
2

)
.
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Proof: Note that Rφ = σ2
φI and thus R−1

φ = 1/σ2
φI. Let

G = ∇xy(x) so that from (3) we also find

det (I (p)) =
1
σ4

φ

det
(
GTG

)
=

1
σ4

φ

∑
m={1,...,(N

2 )}
det (Gm)2

using the Cauchy-Binet formula, see e.g. [16]. Here Gm is a
2 × 2 minor of G taken from the set of minors indexed by
S = {{i, j}}. All 2 × 2 minors of G can be given as

GS =

[
1
ri

cos(φi) 1
ri

sin(φi)
1
rj

cos(φj) 1
rj

sin(φj)

]

where in fact S = {{i, j}} with |S| =
(
N
2

)
can be considered

the set of all combinations of i and j with j > i. Now
the expression for the determinant given by (i) follows easily
by trigonometry. For part (ii) we easily find that (5) can be
rewritten as

I (x) =
1
σ2

φ

[ ∑N
i=0

(1+cos(2φi))
2r2

i
−∑N

i=0
sin(2φi)

2r2
i

−∑N
i=0

sin(2φi)
2r2

i

∑N
i=0

(1−cos(2φi))
2r2

i

]
Taking the determinant of this matrix and rearranging leads

easily to (ii), see also [17].
Any sensor-emitter configuration that maximizes the deter-

minant in Theorem 1 is called an optimal sensor configuration
and we will phrase sensor configurations in terms of the
angles subtended at the emitter by the sensor-pairs given
by ϑij = ϑji ∈ [0, π). Again, we define optimality in the
sense of minimizing the Cramer-Rao bound. Thus an unbiased
and efficient estimator (if it exists) will achieve the smallest
mean square error when the sensors are placed in an optimal
configuration.

Corollary 1: Reflecting a sensor about the emitter position,
i.e. moving a sensor from si to 2p−si, does not affect the value
of the Fisher information determinant.

Proof: Substituting 2p − si for si in the determinant
given in Theorem 1 part (i) does not affect ri = ‖p − si‖ or
sin2(φj − φi) for any j.

Therefore, an optimal sensor configuration is not generally
unique for given arbitrary sensor-emitter ranges.

The maximization of det (I (p)) can be solved on-the-fly
in practice and it can be used to derive control laws for
mobile sensors, i.e. gradient ascent based control laws are
commonly employed, e.g. [18]. Subsequently, our focus is on
explicitly analyzing the relative geometry in order to provide
practitioners with some useful results upon which judgments
can be made regarding the potential localization accuracy.

In the next section we examine a number of specific
results regarding geometrical characterizations of bearing-only
localization performance bounds.

4. ON THE GEOMETRY OF BEARING-ONLY BASED

LOCALIZATION

In this section we characterize geometrical aspects of the
bearings-only localization problem. The angle subtended at
the target by two sensors i and j is ϑij = ϑji ∈ [0, π).

A. The Optimal Geometry For Two Sensors and One Target

Here we characterize the geometry for two bearing sensors and
one target. The main result of this subsection is now given.

Proposition 1: Given arbitrary ranges r1 and r2 then the
optimal two-sensor angular geometric arrangement for local-
ization of a single target is when the angle ϑ12 = π

2 .
Proof: From Theorem 1 part (i) we obtain the following

optimization problem

argmax
φ1,φ2

1
r2
1r

2
2

sin2 (φ2(p) − φ1(p))

which is solved when φ2(p)−φ1(p) = cπ
2 where c ∈ ±{1, 3}.

This immediately implies that ϑ12 ≡ cπ
2 (mod π) = π

2 .
The following result is also useful for geometric character-

ization of unbiased localization algorithms.
Proposition 2: No unbiased estimator of the target location

p exists with a finite variance when tan(φ1(p)) = tan(φ2(p)),
i.e. the two sensors are collinear with the target, or when r1 →
∞ or r2 → ∞.

Proof: No unbiased estimator exists when the Fisher
information matrix is singular which occurs when

cos (φ1(p)) sin (φ2(p)) − cos (φ2(p)) sin (φ1(p)) = 0

which implies tan(φ1(p)) = tan(φ2(p)). The first part of
the proposition is proved. If either r1 or r2 approach ∞ then

1
r2
1r2

2
approaches 0 and the Fisher information matrix is again

singular. The proof of the proposition is complete.
We can observe the determinant value over a range of

possible target locations and with a fixed sensor geometry.
The sensor locations are given by s1 = [−1/2 0]T and
s2 = [1/2 0]T and we plot the determinant value for target
coordinates obeying xp ∈ [−3/2, 3/2] and yp ∈ [−3/2, 3/2].
The illustration is given in Figure 11.
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Fig. 1: The volume of the information ellipse for two sensors measuring the
bearings to a target.

Observe in Figure 1 that the optimal geometries are clearly
visible. Notably, given arbitrary ranges then the optimal ge-
ometry results in the target lying on the depicted semi-circular
arcs which result in the angle subtended at the target by the
two sensors being equal to π

2 . Further, note that no unbiased
(or biased [1]) estimator exists for target locations on the x-
axis where the target would be collinear with both sensors.

1Note that as either target range, r1 or r2, approaches zero then the
information volume approaches infinity. Hence, we limit the maximum volume
displayed in the figure to 20. This explains the rings in the contour plot around
the sensor positions and the flat peaks in the corresponding surface plot.
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B. The Optimal Geometry For Three Sensors and One Target

The optimal localization geometry for three sensors and one
target is described in this subsection. The main result of this
subsection is given in the following theorem.

Theorem 2: Let ri be arbitrary but fixed ∀i ∈ {1, 2, 3}.
The optimal sensor configuration is not unique. Every optimal
angular separation ϑ12, ϑ13 and ϑ23 can be obtained by first
solving

ϑ12 = 1
2 arccos

(
r4
2r4

1−r4
3r4

1−r4
3r4

2
2r4

3r2
2r2

1

)
ϑ13 = 1

2 arccos
(

r4
3r4

1−r4
3r4

2−r4
2r4

1
2r2

3r4
2r2

1

)
ϑ23 = π − ϑ12 − ϑ13

(8)

when the arccos(·) are defined to be real (which occurs si-
multaneously for ϑ12 and ϑ13) and then by an application of
Corollary 1. If no real solution for both ϑ12 and ϑ13 exists then
det (I(x)) is maximized when{

ϑij = π
2 , if ri < rk or rj < rk, i, j ∈ {1, 2, 3}/{k}

ϑij = 0 or π, otherwise (9)

where now (in the second solution (9)) we have automatically
accounted for sensor reflections as per Corollary 1.

Proof: From Theorem 1 part (i) we can derive the
following optimization problem

argmax
A,B

α sin2(A) + β sin2(B) + γ sin2(B − A) (10)

where A = (φ2 − φ1), B = (φ3 − φ1) and where α = r2
3 ,

β = r2
2 and γ = r2

1 are arbitrary constants. Equating the
gradient to zero and rearranging gives

α sin(2A) + β sin(2B) = 0 (11)

sin(2A)
[
α

γ
+

α

β
cos(2A) + cos(2B)

]
= 0 (12)

sin(2B)
[
β

γ
+

β

α
cos(2B) + cos(2A)

]
= 0 (13)

From (11) we note that if sin(2A) = 0 then sin(2B) = 0
or if sin(2A) 
= 0 then sin(2B) 
= 0. Thus, sin(2A) = 0 and
sin(2B) = 0 implies A = cAπ

2 and B = cBπ
2 with cA, cB ∈ N.

Also, if sin(2A) 
= 0 
= sin(2B) then (12) and (13) lead to[
α

γ
+

α

β
cos(2A) + cos(2B)

]
= 0[

β

γ
+

β

α
cos(2B) + cos(2A)

]
= 0

which can be solved for A and B to give

A =
1
2

arccos
(

β2γ2 − α2γ2 − α2β2

2α2βγ

)
(14)

B =
1
2

arccos
(

α2γ2 − α2β2 − β2γ2

2αβ2γ

)
(15)

where the arccos(·) are simultaneously real and hence A and
B are defined by (14) and (15) appropriately only when the

two respective conditions∣∣∣∣β2γ2 − α2γ2 − α2β2

2α2βγ

∣∣∣∣ ≤ 1 (16)∣∣∣∣α2γ2 − α2β2 − β2γ2

2αβ2γ

∣∣∣∣ ≤ 1 (17)

are satisfied. Therefore, we now have two mutually exclusive
sets of critical points corresponding to when sin(2A) =
sin(2B) = 0 and sin(2A) 
= 0 
= sin(2B) respectively. If A =
cAπ
2 and B = cBπ

2 then cos(2A) = ±1 and cos(2B) = ±1
which lie on the boundary of where (16) and (17) are satisfied.
The maximizing values for A and B in (10) must change
continuously for continuous changes in α, β and γ. The values
for A and B given by (14) and (15) only connect smoothly
with those found by solving sin(2A) = 0 and sin(2B) = 0
on the boundaries of where (16) and (17) are satisfied.

Therefore, if A = cAπ
2 and B = cBπ

2 solve (10) then they
do so for all α, β and γ or they do so only when no real
solutions exist via (14) and (15). Now it can be verified that
if α = β = γ then both (16) and (16) are satisfied with strict
inequality. Moreover, (14) and (15) give real solutions for A
and B which lead to a greater value of (10) when compared
to A = cAπ

2 and B = cBπ
2 .

Hence, it follows that (14) and (15) maximize (10) when
the conditions (16) and (17) are satisfied. Otherwise, the
maximizing solutions of (10) are A = cAπ

2 and B = cBπ
2

with cA, cB ∈ N. It is straightforward to find the relationship
between the ϑij and A and B when (14) and (15) give real
solutions under the convention that φj ≥ φi when j > i and
∀i, j ∈ {1, . . . , N}.

When A = cAπ
2 and B = cBπ

2 maximize (10), then one of
the sin2(·) terms in (10) is always zero while the other two
sin2(·) terms are one. If ri < rj and ri < rk, for i, j, k ∈
{1, 2, 3} for i 
= j 
= k then the sin2(·) term in (10) with ri as
a coefficient is the one that should be zero in order to solve
the problem (10). With the substitution of α = r2

3 , β = r2
2 ,

γ = r2
1 we thus find that the proof is complete.

In general if the optimal geometry is given (originally) by
(8) then Corollary 1 implies a maximum of four different opti-
mal configurations can be obtained from the original solution
(8) by reflecting sensors about the emitter. The following are
two important special cases.

Corollary 2: When r1 = r2 = r3 then a particular optimal
geometry for bearing-only localization with three sensors and
one target is when ϑ12 = ϑ13 = ϑ23 = 2

3π.
Corollary 3: When r1 = r2 = r3 then a particular optimal

geometry for bearing-only localization with three sensors and
one target is when ϑ12 = ϑ23 = 1

3π and ϑ13 = 2
3π.

The following result characterizes a different aspect of the
geometry for bearing-only localization with unbiased localiza-
tion algorithms.

Proposition 3: No unbiased estimator of the target location
p exists with a finite variance when

tan(φ1(p)) = tan(φ2(p)) = tan(φ3(p))

or when ri, rj → ∞.
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Proof: The proof involves determining when the Fisher
information determinant is zero or when (10) is zero and hence
the Fisher information matrix is singular. If we assume ri 
= 0
and ri 
= ∞ then each term becomes zero only when the
following condition is satisfied

cos (φi(p)) sin (φj(p)) − cos (φj(p)) sin (φi(p)) = 0 (18)

which implies tan(φi(p)) = tan(φj(p)), ∀, i, j ∈ {1, 2, 3}.
If two ranges ri and rj with i 
= j approach ∞ then the
determinant vanishes and the proof is complete.

The first condition in Proposition 3 implies that the three
sensors are collinear with the target.

It is also clear that no biased estimator exists when the
conditions of Proposition 3 hold.

Consider the following example which illustrates the change
in optimal angular geometry in terms of the relative changes
in sensor-target ranges. The illustration is given in Figure 2.

Figure 2 shows the variation of the optimal geometry as the
range r1 changes from r1 << r2 = r3 to r1 >> r2 = r3.
The particular ranges and ϑij (in degrees) are given in the
figure titles. In Figure 2(a), the ranges are such that conditions
(16) and (17) do not hold and hence the optimal geometry is
such that sensor 1 forms right angles with sensors 2 and 3.
At the other extreme in Figure 2(d), the ranges are such that
r1 >> r2 = r3 and hence sensor 2 and 3 are (almost) at right
angles with sensor 1 splitting the major difference between
sensors 2 and 3. From the theorem we find that as r1 → ∞
we expect ϑ23 → π

2 in this example. Sensor reflections over
the emitter do not change the optimality of the geometry so
this figure illustrates only the most intuitive examples.

C. The Optimal Geometry for N Sensors and One Target

In this subsection we provide a number of important results
concerning the optimal geometry for bearing-only localization
with N ≥ 3 sensors and one target. The case of N = 2 has
been completely characterized and does not follow easily from
the following discussion. Thus, in this section we generally
assume N ≥ 3.

Theorem 3: Given ranges ri = rj , ∀i, j ∈ {1, . . . , N} from
each sensor to the target, the following statements hold true:

(i) A point given by (φ1, . . . , φN ) is a critical point (i.e. a
maximum, minimum or inflection) of the determinant
given in Theorem 1 if

tan(2φi(p)) = tan(2φj(p)) (19)

for all i, j ∈ {1, . . . , N} or

N∑
i=1

sin(2φi(p)) = 0 and
N∑

i=1

cos(2φi(p)) = 0

(20)
(ii) The determinant vanishes if and only if tan(φi(p)) =

tan(φi(p)), ∀i, j ∈ {1, . . . , N}. The determinant
vanishes at the global minimum.

(iii) The solutions to (20) are globally maximizing values
for the determinant given in Theorem 1.
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Fig. 2: This figure illustrates the different optimal sensor-target geometries
for different ranges ri from sensor i to the target. In this illustration, only
r1 changes from one graph to the next and the ranges and ϑij (in degrees)
are given in the figure titles. In part (a) the range r1 << r2 = r3 means
that the conditions (16) and (17) do not hold and hence the optimal relative
sensor geometry shown is when ϑ12 = ϑ13 = π

2
and ϑ23 = π (or ϑ23 = 0

is equivalently valid but not shown). In part (b) the range r1 < r2 = r3

but the conditions (16) and (17) do hold and hence the optimal geometry is
not a right angle geometry. In part (c) we see that when r1 = r2 = r3 the
optimal sensor geometry is equally spaced around the target. In part (d) we
want to illustrate that as r1 >> r2 = r3 the angle ϑ23 approaches π

2
as

r1 approaches ∞. Indeed, when r1 >> r2 = r3, part (d) illustrates that we
can easily approximate the optimal geometry as such. Recall from Corollary
1 that sensor reflections over the emitter do not change the optimality of the
geometry and hence this figure illustrates only the most intuitive examples.

Proof: With no loss of generality let ri = rj = 1, ∀i, j
so that from Theorem 1 part (i) we obtain the optimization
problem

argmax
φ1,...,φN

∑
S

sin2(φj − φi) (21)

where we define S = {{i, j}} to be the set of all combinations
of i and j with i, j ∈ {1, . . . , N} and j > i, implying that
|S| =

(
N
2

)
. Taking the derivative of (21) with respect to φk,

∀k ∈ {1, . . . , N} leads to the following system of N equations

∂

∂φk

∑
S

sin2(φj − φi) =
N∑

i=1
i�=k

sin(2(φk − φi)) =

sin(2φk)
N∑

i=1

cos(2φi) − cos(2φk)
N∑

i=1

sin(2φi) =

[
sin(2φk) − cos(2φk)

] · N∑
i=1

[
cos(2φi)
sin(2φi)

]
= 0

Noting that the summation is equivalent for all N equations
with k ∈ {1, . . . , N}, the gradient vanishes if and only if

N∑
i=1

sin(2φi(p)) = 0 and
N∑

i=1

cos(2φi(p)) = 0
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or
∑N

i=1[cos(2φi) sin(2φi)]T is within the null space of
[sin(2φk) − cos(2φk)], ∀k ∈ {1, . . . , N}. One particular
scenario that satisfies the latter (null space) condition is when

sin(2φk) cos(2φi) − cos(2φk) sin(2φi)
‖[sin(2φk) − cos(2φk)]‖‖[sin(2φi) cos(2φi)]T‖ = 0

∀i, k ∈ {1, . . . , N} which implies

tan(2φi) = tan(2φk), ∀i, k ∈ {1, . . . , N}
Thus, we have shown that the solutions to (19) and (20) are

critical points of the optimization problem. This proves part
(i) of Theorem 3. Part (ii) of Theorem 3 follows easily by
inspection of (21) since each term of (21) must vanish. From
Theorem 1 part (ii) with ri = 1, ∀i we find the determinant is
upper-bounded by N2

4σ4
φ

which is achievable if and only if (20)
holds. This proves part(iii) of Theorem 3.

Remark 1: If φi = φj ± cijπ/2, ∀i, j with cij ∈ {0, 1, 2, 3}
then from (19) we know the determinant has a stationary point
(e.g. minimum, maximum or inflection point). In general, the
determinant will not vanish unless cij ∈ {0, 2}, ∀i, j which
leads directly to part (ii) of Theorem 3. Furthermore, the
determinant might or might not achieve the global upper-bound
of N2

4σ4
φ

depending on the number N of sensors and how many

sensors are separated by cπ/2 with c ∈ {1, 3}.
Theorem 3 part (iii) implies the following useful corollary.
Proposition 4: Given ranges ri = rj , ∀i, j ∈ {1, . . . , N}

from each sensor to the target, then the optimal sensor-target
geometry is not unique when N ≥ 3. Some particular optimal
geometries for bearing-only localization with N > 2 sensors
and one target can be obtained by first letting

ϑij = ϑji =
2
N

π, ∀i, j ∈ {1, . . . , N}, j − i = 1 (22)

or by letting

ϑij = ϑji =
1
N

π, ∀i, j ∈ {1, . . . , N}, j − i = 1 (23)

where ϑij = ϑji ∈ [0, π) and then by an application of
Corollary 1 on either (22) or (23). When N = 2 and r1 = r2,
the unique optimal geometry occurs when ϑ12 = ϑ21 = 1

2π.
Proof: The proof of this proposition is straightforward

and involves verifying that the given (initial) conditions in the
proposition satisfy part (iii) of Theorem 3. We omit the details
for brevity. See also part 2 [6] of the pair of papers for a similar
result for time-of-arrival based localization.

Proposition 4 implies the following corollary which sum-
marizes the two intuitively appealing special cases.

Corollary 4: Assume that ri = rj , ∀i, j ∈ {1, . . . , N} and
ϑij = ϑji ∈ [0, π) with j−i is the angle subtended at the target
by two adjacent sensors i and j. Then ϑij = ϑji = 2

N π and
ϑij = ϑji = 1

N π with j − i = 1 and ∀i, j ∈ {1, . . . , N} are
two separate optimal angular configurations of the N sensors
relative to the single target.

Theorem 3 part (ii) implies the following useful corollary.
Corollary 5: Given that ri = rj , ∀i, j ∈ {1, . . . , N} then

no unbiased estimator exists for the target location p when the
condition of Theorem 3 part (ii) is satisfied.

Thus, we now have some intuitively appealing results on
the bearing-only localization geometry for N ≥ 2 sensors. In
part 2 [6] we discuss further the practicality of the assumption
of unbiased and efficient estimation which is inherent to the
geometrical characterization in this paper [19], [20].

5. CONCLUSION

In this paper we explored the characteristics of the relative
sensor-target geometry for bearing-only localization in R

2. In
particular, we illustrated via analysis that the optimal geometry
can change significantly for sensors with non-equal target
ranges. Indeed, we have shown that the assumption of uniform
(angular) spacing is not even a good approximation when one
of the sensors is much closer or much further away from the
target relative to the other sensors. The analysis given in this
paper is also related to optimal path planning and control of
mobile sensors for localization, e.g. see [13], [18].
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