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Abstract— This paper proposes a distributed control law for
maintaining a triangular formation in the plane consisting of
three mobile autonomous agents. It is shown that the control law
can cause any initially non-collinear, positively-oriented {resp.
negatively-oriented} triangular formation to converge exponen-
tially fast to a desired positively-oriented {resp. negatively-
oriented} triangular formation. It is also shown that there
is a thin set of initially collinear formations which remain
collinear and may drift off to infinity as t →∞. These findings
complement and extend earlier findings cited below.

I. INTRODUCTION

Ever since the appearance of the work of Baillieul and Suri
[1] which emphasizes the potential problem of controlling a
group of mobile autonomous agents in a “directed” formation
containing a cycle, interest has focused on understanding
this issue in depth. A formation is directed if each agent
i can sense only the relative position of its “co-leaders”
where by an agent i’s co-leaders are meant other designated
agents in the formation whose distances from agent i it is
the responsibility of agent i to maintain. Since a directed
triangular formation in the plane is the simplest formation
with asymmetric co-leader relations which is both rigid and
contains a cycle, it is natural to consider the problem of
trying to maintain a directed triangular formation. Prompted
by this, we consider the problem of maintaining a directed
formation of three agents in a triangle by having each agent
locally control its own position so that the distance to its
co-leader {or next agent in the triangle} is constant. This
particular problem has also recently been addressed in [2]
and [3]. The latter considers intuitively devised local control
laws which cause each agent to move in the direction of
their respective co-leaders. The former addresses a slightly
different problem and uses a control law similar to that
proposed in [3]. In this paper we address the same problem
using control laws of a more gradient-like nature which lend
themselves to a simpler and perhaps crisper analysis than
do those considered in [2] and [3]. Using straightforward
arguments we prove that unique solutions to the systems
of nonlinear differential equations involved exist globally.
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We explicitly characterize a closed invariant manifold N on
which agents are collinearly positioned and show by example
that in this singular case, the three agents can move indefi-
nitely, all ultimately converging to the same constant velocity.
Our main result is to show that the control we propose
will cause any initially non-collinear, “positively-oriented”
{resp. negatively-oriented} triangular formation to converge
exponentially fast to a prescribed positively-oriented {resp.
negatively-oriented} triangular formation and then come to
rest. This finding extend the findings of [2] and [3] and
provides a different perspective. In fact, the results of [2] are
very similar to those in this paper; the essential differences
between the two papers lie in the controls considered, the
analytical methods used to analyze them, and the degrees of
completeness of the proofs given [4]. We refer the reader
to [2] and [3] for additional background and references on
controlling triangular formations. See also the recent thesis
by Krick [5] which deals with the more general question of
formation control via rigidity.

II. TRIANGLE FORMATION

We consider a formation in the plane consisting of three
mobile autonomous agents labelled 1, 2, 3 where agent 1
follows 2, 2 follows 3 and 3 follows 1. For i ∈ {1, 2, 3}, we
write [i] for the label of agent i’s co-leader where [1] = 2,
[2] = 3 and [3] = 1. We assume that the desired distance
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Fig. 1. Directed Point Formation

between agents i and [i] is di; here the di are positive
numbers which satisfy the triangle inequalities:

d1 < d2 + d3 d2 < d1 + d3 d3 < d1 + d2 (1)
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Note that there are two distinct triangular formations which
satisfy the desired distance constraints. The first is as shown
in Figure 1 and is referred to as a positively-oriented triangle.
The second, called a negatively-oriented triangle, is the
triangle which results when the triangle shown in Figure 1
is flipped over.

In the sequel we write xi for the Cartesian coordinate
vector of agent i in some fixed global coordinate system
in the plane, and yij for the position of agent j in some
fixed coordinate system of agent i’s choosing. Thus for i ∈
{1, 2, 3}, there is a rotation matrix Ri and a translation vector
τi such that yij = Rixj + τi, j ∈ {1, 2, 3}. We assume that
agent i’s motion is described by a simple kinematic point
model of the form

ẏii = ui i ∈ {1, 2, 3}
where ui is agent i’s control input. Thus in global coordi-
nates,

ẋi = R−1
i ui, i ∈ {1, 2, 3} (2)

We assume that for i ∈ {1, 2, 3}, agent i can measure the
relative position of agent [i] in its own coordinate system.
This means that for i ∈ {1, 2, 3}, agent i can measure the
signal Rizi where

zi = xi − x[i], i ∈ {1, 2, 3} (3)

As controls we consider

ui = −Riziei, i ∈ {1, 2, 3} (4)

where
ei = ||Rizi||2 − d2

i , i ∈ {1, 2, 3}
Note that the rotation matrices do not affect the definition of
the ei in that

ei = ||zi||2 − d2
i , i ∈ {1, 2, 3} (5)

Moreover Ri cancels out of the update equation

ẋi = −ziei, i ∈ {1, 2, 3} (6)

The closed loop system of interest is thus the smooth, time-
invariant, dynamical system described in global coordinates
by the equations

ẋ1 = −(x1 − x2)(||x1 − x2||2 − d2
1) (7)

ẋ2 = −(x2 − x3)(||x2 − x3||2 − d2
2) (8)

ẋ3 = −(x3 − x1)(||x3 − x1||2 − d2
3) (9)

In the sequel we shall refer this system as the overall system.

III. ANALYSIS

Our aim is to study the geometry of the overall system
defined by (7)-(9). Towards this end let

e =




e1

e2

e3


 x =




x1

x2

x3


 z =




z1

z2

z3


 (10)

First note that as a consequence of the definitions of the zi

in (3),
z1 + z2 + z3 = 0 (11)

and

ż1 = −z1e1 + z2e2 (12)
ż2 = −z2e2 + z3e3 (13)
ż3 = −z3e3 + z1e1 (14)

Next observe that the equilibrium points of the overall system
are those values of the xi for which

ziei = 0, i ∈ {1, 2, 3} (15)

Let
E and Z denote the manifolds

E = {x : e = 0} Z = {x : z = 0} ∪ Q (16)

where

Q =
3⋃

i=1

{x : zi = 0, e[i] = 0, e[[i]] = 0}

It is clear from (15) that every point in the manifold Z ∪ E
is an equilibrium point of the overall system. The following
proposition asserts that the converse is also true.

Proposition 1: The manifold Z ∪ E is the set of equilib-
rium points of the overall system.
Proof: Since it is clear that all points in Z∪E are equilibrium
points of the overall system, it is enough to prove that there
are no others. Towards this end, first suppose that there is an
equilibrium point x̄ at which z1 = 0. It will be shown that
at this point, either z2 = z3 = 0 or e2 = e3 = 0 and thus
the only equilibrium point of the overall system at which
at least one zi = 0, is a point in either {x : z = 0} or
{x : zi = 0, e[i] = 0, e[[i]] = 0}.

The assumption that z1 = 0 implies that at x̄, z2 = −z3

because of (11). Moreover, either e2 = 0 or z2 = 0 because
of (15). If z2 = 0, then z3 = 0 because of (11); thus in
this case z1 = z2 = z3 = 0 and x̄ ∈ {x : z = 0}. If,
on the other hand, e2 = 0, then either z3 = 0 or e3 = 0;
if z3 = 0 then again z1 = z2 = z3 = 0. If e3 = 0, then
x̄ ∈ {x : z1 = 0, e[1] = 0, e[[1]] = 0}.

To prove that the only other equilibrium points of the
overall system are in E , it is enough to show that if the zi

are all non-zero, the only points at which (15) hold are in E .
But this is obvious. Thus we’ve proved that the equilibrium
points of the overall system are exactly the set of points in
Z ∪ E .

It is easy to see that Z and E are disjoint sets. In the
sequel it will be shown that E is attractive. It is thus not
unreasonable to conjecture that all trajectories starting
outside of Z might approach E . However, we will give an
example which illustrates that this is not the case. On the
other hand, the good news is that there is another manifold
containing Z , but still not large enough to intersect E ,
outside of which all trajectories approach E . The manifold
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to which we are referring corresponds to those formations
which are collinear. To explicitly characterize this manifold,
we need the following fact.

Lemma 1: The points at x1, x2, x3 are collinear if and
only if

rank
[
z1 z2 z3

]
< 2

The simple proof is omitted.
To proceed, let N denote the set of points in IR6 corre-

sponding to agent positions in the plane which are collinear.
In other words

N = {x : rank
[
z1 z2 z3

]
< 2, z1 +z2 +z3 = 0} (17)

Note that N is a closed manifold containing the Z . Although
N contains Z , it is still small enough to not intersect E :

Lemma 2: N and E are disjoint sets.
Proof: Let x ∈ N and let z be correspondingly defined by
(3) and (10). Since Z and E are disjoint, it is enough to
show that E and the complement of Z in N are disjoint.
Therefore suppose that x 6∈ Z in which case zi 6= 0 for
some i ∈ {1, 2, 3}. Then there must be a number λ such that
z[i] = λzi. Hence z[[i]] = −(1 + λ)zi. Suppose x ∈ E ; then
||zi|| = di, i ∈ {1, 2, 3}. Thus |λ|di = d[i] and |1 + λ|di =
d[[i]]. Then di + d[i] = d[[i]] when λ ≥ 0, di + d[[i]] = d[i]

when λ ≤ −1, and d[i] + d[[i]] = di when −1 < λ < 0.
All of these equalities contradict (1). Therefore N and E are
disjoint sets.

That N might be the place where formation control will
fail is further underscored by the fact that N is an invariant
manifold. Said differently, formations which are initially
collinear, remain collinear forever. To understand why N
is invariant, first note that for any two vectors p, q ∈ IR2,
det

[
p q

]
= p′Gq where

G =
[

0 1
−1 0

]

From this and (11) it follows that det
[
z1 z2

]
=

− det
[
z1 z3

]
. This and the definition of N in (17) imply

that
N = {x : det

[
z1 z2

]
= 0} (18)

But along any solution to (12) – (14) for which (11) holds,

d

dt
det

[
z1 z2

]
= −(e1 + e2 + e3) det

[
z1 z2

]
(19)

Thus if det
[
z1 z2

]
= 0 at t = 0, then det

[
z1 z2

]
= 0

for all t > 0. Therefore N is invariant as claimed.
It is interesting to note that |det

[
z1 z2

] | is equal to
twice the area of the triangle with vertices at x1, x2, x3 and
for a triangle of positive area, sign{det

[
z2 z3

]} is the
triangle’s orientation. A proof of these elementary claims
will not be given.

Later in the paper it will be shown not only that a
triangular formation cannot be achieved from an initially
collinear formation, but also that there are initially collinear

formations which drift off to infinity as t →∞. Despite the
fact that misbehavior can occur within N , the dimension of
N is less than 6 which means that “almost every” initial
formation will be non-collinear. The good news is that
all such initial formations will converge to the desired
formation and come to rest, and moreover, the convergence
will occur exponentially fast. This is in essence, the
geometric interpretation of our main result on triangular
formations.

Theorem 1: Every trajectory of the overall system (7) -
(9) starting outside of N , converges exponentially fast to a
finite limit in E .

The set of points IR6−N consists of two disjoint point sets,
one for which det

[
z1 z2

]
> 0 and the other for which

det
[
z1 z2

]
< 0. Once this theorem has been proved, it

is easy to verify that formations starting at points such that
det

[
z1 z2

]
< 0, converge to the positively-oriented trian-

gular formations in E whereas formations starting at points
such that det

[
z1 z2

]
> 0, converge to the corresponding

negatively-oriented triangular formation in E .
The proof of Theorem 1 involves several steps. The first

is to show that solutions to the overall system exist globally.
To accomplish this it is especially useful to first note that the
differential equations (12) – (14) together with (11) define a
self-contained dynamical system since ei = ||zi||2−d2

i , i ∈
{1, 2, 3}. This system is Lipschitz continuous and evolves on
the linear manifold defined by (11). We call this system, the
Z - system.

Our first goal is to prove that the zi exist globally and are
bounded. Towards this end we note that because of Lipschitz
continuity, for any fixed initial value z(0), there must be a
largest interval [0, T ) on which a unique solution to (12) -
(14) exists. If we define

V = e2
1 + e2

2 + e2
3

then along such a solution

V̇ = −2{(z′1z1e
2
1 − z′1z2e1e2) + (z′2z2e

2
2 − z′2z3e2e3)

+(z′3z3e
2
3 − z′3z1e3e1)}

or

V̇ = −||z1e1 − z2e2||2 − ||z2e2 − z3e3||2 − ||z3e3 − z1e1||2
(20)

Thus V is monotone non-increasing. Since V is also bounded
below by 0, V must be bounded on [0, T ). In view of
V ’s definition, the ei are also bounded on [0, T ). But
boundedness of the ei implies boundedness of the zi because
of (5). In particular

3∑

i=1

(||zi||2 − d2
i )

2 =
3∑

i=1

e2
i

≤
3∑

i=1

e2
i (0) =

3∑

i=1

(||zi(0)||2 − d2
i )

2
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This shows that each solution to the Z-system is bounded
wherever it exists. It follows by standard arguments that
T = ∞. We have proved the following.

Lemma 3: All trajectories of the Z-system exist and are
bounded on [0,∞). In particular,

||z|| ≤
√

2(||z(0)||+ ||d||), t ∈ [0,∞)

where ||d|| = d1 + d2 + d3.
Notice that because of (6), Lemma 3 establishes the global
existence of all solutions to the overall system.

Proposition 2: All trajectories of the overall system exist
on [0,∞).
Although such solutions exist globally they need not all be
bounded.

Our next goal is to show that there is an open set of points
in IR6 from which all solutions to the overall system tend
to E exponentially fast. Towards this end, first observe from
(20) that

V̇ = −e′Q′Qe

where

Q =



−z1 z2 0
0 −z2 z3

z1 0 −z3




Note that Q is also the transpose of the rigidity matrix [6]
of the point formation shown in Figure 1. By inspection it
is clear that the rank of Q is less than three just in case, for
at least one distinct pair of integers i, j ∈ {1, 2, 3}, zi is a
scalar multiple of zj ; moreover, because of (11) for such i
and j, zk would also have to be a scalar multiple of zj where
k is the remaining integer in {1, 2, 3}. In other words,

rank Q < 3 ⇐⇒ rank
[
z1 z2 z3

]
< 2

In the light of this and the definition of N , it is clear that
Q′Q is positive definite if and only if x 6∈ N . Let ρ be a
positive number and define

S(ρ) = {x : e2
1 + e2

2 + e3
3 < ρ, z1 + z2 + z3 = 0}

Note that E ⊂ S(ρ) and that S(ρ) −→ E as ρ → 0. In view
of Lemma 2 it is therefore possible to choose ρ so small that
N and the closure of S(ρ) are disjoint. Let ρ be so chosen
and let Ŝ denote the closure of {z : x ∈ S(ρ)}. It is clear
that Ŝ is compact and that µ(Q′Q) > 0, z ∈ Ŝ , where for
each z ∈ Ŝ , µ(Q′Q) is the smallest eigenvalue of Q′Q. Thus
if we define

λ = inf
z∈Ŝ

µ(Q′Q)

then λ > 0. Therefore if x(0) ∈ S(ρ), then V (0) ≤ ρ and
x(t) ∈ S(ρ), t ≥ 0 because V is non-increasing. This implies
that V̇ is bounded above by −λ(e2

1 + e2
2 + e2

3) and thus that
trajectories in S(ρ) approach E as fast as e−

λ
4 t.

Note that for a trajectory to converge to E means that the
corresponding formation converges to the desired triangle. To
show that the formation actually comes to rest is a simple
matter of exploiting the fact that the ||ẋi|| are bounded above

by signals which are decaying to zero exponentially fast. A
proof of this last observation will not be given here.

To show that all trajectories outside of N converge
exponentially fast to E requires more work. In view of the
preceding, we already know that any trajectory which enters
S(ρ) in finite time must converge to E exponentially fast. The
problem then is to show that any trajectory starting outside
of N must enter S(ρ) in finite time. A key observation
from (20) needed to prove this is that V̇ < 0 whenever the
three velocity vectors ziei, i ∈ {1, 2, 3} are not all equal.
Prompted by this, let

M = {x : x ∈ N , z1e1 = z2e2 = z3e3}
Note that M and E are disjoint because N and E are.

Lemma 4: V̇ = 0 if and only if x ∈M∪ E .
Proof: Since it is clear that V̇ = 0 whenever x ∈M∪E , we
need only prove the converse. Suppose x is such that V̇ = 0.
Then clearly, z1e1 = z2e2 = z3e3. It is enough to show that
x ∈ N if x 6∈ E . Suppose x 6∈ E . Then at least one ei is
nonzero - say e1. Then z1 and z2 are linearly dependent as
are z1 and z3. This can only occur if x ∈ N .

Note that for each x ∈ M, the corresponding z satisfies
ż = 0, so M is an invariant manifold; moreover along any
trajectory in M, the three agent positions move at the same
constant velocity. Thus if M contains any non-zero point,
then the formation leaving that point will drift to infinity.
The following example shows that non-zero points in M
actually exist.
Example: Consider d1 = 1, d2 = 2 and d3 = 1.5
which satisfy the triangle inequalities (1). Then one numeric
solution to the equations z1e1 = z2e2 = z3e3 which lies in
M is

x∗ =
[−1.4076 0 −2.0456 0 0 0

]′

At x∗, ẋ1 = ẋ2 = ẋ3 =
[
0.3783 0

]′. Using x∗ as the
initial value we carry out simulations for the overall system
(7) -(9). As predicted, agents 1, 2 and 3 drift to infinity in
the direction of the x-axis.

To show that trajectories starting outside of N must
converge exponentially fast to E , it is enough to show that
all such trajectories are bounded away from M, even in the
limit as t →∞. To understand why this is so, suppose that
x(t) is a trajectory starting outside of N and that for all t,
x(t) is bounded away from M. Then

γ = inf
t→∞

δ(x(t))

must be a positive number where for x ∈ IR6, δ(x) denotes
the distance between x and M. In view of the preceding,
x(t) will converge to E provided there is a finite time t1
such that x(t1) ∈ S(ρ). To prove that such a time must
exists, we will assume the contrary and show that this leads
to a contradiction.

Suppose that for all t, x(t) is in the complement of S(ρ)
which we denote by S̄(ρ). Thus for all t, x(t) is in the
closed set X = {x : δ(x) ≥ γ, x ∈ S̄(ρ)} which in turn is
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disjoint with M∪E . In view of Lemma 4, V̇ < 0 for all t.
In addition, for all t, z(t) is in the compact set W = {z :
x ∈ X , ||e||2 ≤ ||e(0)||2}; therefore V̇ is bounded above
uniformly by a negative number, namely

σ = − inf
z∈W

2{(z′1z1e
2
1 − z′1z2e1e2) + (z′2z2e

2
2 − z′2z3e2e3)

+(z′3z3e
2
3 − z′3z1e3e1)}

Thus V ≤ V (0)−σt for all t. But this is impossible because
V is nonnegative. Therefore x enters S(ρ) in finite time and
consequently converges to E .

The convergence of x trajectories to E from points outside
of N could also be deduced from the Lasalle Invariance
Principle [7] by defining the domain of definition of the
original system to be IR6 − N . However to make use of
this principle one would still have to prove that trajectories
starting at points outside of N are bounded and bounded
away from M, since the pre-compactness hypothesis of the
principle demands this. Indeed, this is roughly the approach
taken in [2]. An advantage of the approach taken in this paper
is that it enables one to establish exponential convergence
whereas, without further elaboration, the Lasalle Invarance
Principle only provides asymptotic convergence.

We now turn to the problem of showing that all trajectories
starting outside of N must be bounded away from M, even
in the limit as t →∞. As a first step toward this end, let us
note that

det
[
z1(t) z2(t)

]
=

e−
∫ t

τ
(e1(s)+e2(s)+e3(s))ds det

[
z1(τ) z2(τ)

]

t ≥ τ ≥ 0 (21)

because of (19). In view of (18) it must therefore be true
that any trajectory starting outside of N cannot enter N
{and therefore M} in finite time. It remains to be shown
that any such trajectory can also not enter M even in the
limit as t → ∞. To prove that this is so we need several
facts.

Lemma 5:
N = N1 ∪N2 ∪N3

where

Ni = {x : x ∈ N , ||zi|| = ||z[i]||+ ||z[[i]]||}, i ∈ {1, 2, 3}
The simple proof of this lemma is omitted.

In view of the preceding it is possible to write

M = M1 ∪M2 ∪M3

where Mi = Ni ∩M.

Lemma 6: For any x ∈M,

e1 + e2 + e3 < 0

Proof: We will prove this lemma for the case when x ∈
M1. Following similar procedures, one can prove that the

conclusion holds when x ∈M2 or x ∈M3. Since x ∈M1,
we know that ‖z1‖ = ‖z2‖ + ‖z3‖. Now we consider four
cases:
Case 1: ‖z2‖ = ‖z3‖ = 0. Then ‖z1‖ = ‖z2‖ + ‖z3‖ = 0.
Thus ei = −d2

i < 0 for i = 1, 2, 3. So e1 + e2 + e3 =
−∑3

i=1 d2
i < 0.

Case 2: ‖z2‖ = 0 and ‖z3‖ 6= 0. Then e2 = −d2
2 < 0,

z2e2 = 0 and ‖z1‖ = ‖z2‖ + ‖z3‖ 6= 0. On the other hand,
in view of the definition of M, we have z1e1 = z3e3 =
z2e2 = 0, so it must be true that e1 = e3 = 0. Hence,
e1 + e2 + e3 = e2 = −d2

2 < 0.
Case 3: ‖z2‖ 6= 0 and ‖z3‖ = 0. Similar to the discussion in
case 2, it can be shown that e1 = e2 = 0 and e3 = −d2

3 < 0.
So e1 + e2 + e3 = e3 = −d2

3 < 0.
Case 4: ‖z2‖ 6= 0 and ‖z3‖ 6= 0. Then ‖z1‖ = ‖z2‖+‖z3‖ 6=
0 and ‖z1‖ > ‖z2‖. If ei = 0 for some i ∈ {1, 2, 3}, then
ei = 0 for all i ∈ {1, 2, 3} because e1z1 = e2z2 = e3z3

and ‖z1‖, ‖z2‖, ‖z3‖ > 0. However, e1, e2 and e3 cannot be
zero at the same time because agents’ positions are collinear
when x ∈ M. Thus ei 6= 0 for all i ∈ {1, 2, 3}. Since
e1z1 = e2z2 and ‖z1‖ > ‖z2‖, it follows that |e1| < |e2|.
Because of the definition of M1, we know that z1 is pointing
to the opposite direction with respect to that of z2 and z3,
which implies that e1e2 < 0 and e1e3 < 0. Now suppose
e1 < 0. Then e2 > 0 and e3 > 0, which imply that
‖z1‖ < d1, ‖z2‖ > d2 and ‖z3‖ > d3. Consequently
d1 > ‖z1‖ = ‖z2‖ + ‖z3‖ > d2 + d3 which contradicts the
triangle inequality d1 < d2 + d3. Hence, it must be true that
e1 > 0, e2 < 0 and e3 < 0. In view of the fact |e1| < |e2|,
we know e1 + e2 + e3 < e3 < 0.
Considering the discussion of all these four cases, we con-
clude e1 + e2 + e3 < 0.

We are now ready to show that any trajectory starting
outside of N , cannot approach M in the limit as t → ∞.
Suppose the opposite is true, namely that x(t) is a trajectory
starting outside of N which approaches M as t →∞. Then
in view of (21), (18), and the fact that M⊂ N ,

lim
t→∞

| det
[
z1 z2

] | = 0 (22)

We will now show that this is false.
In view of Lemma 6, there must be an open set V con-

taining M on which the inequality in the lemma continues
to hold. In view of Lemma 2 and the fact that M ⊂ N , it
is possible to choose V small enough so that in addition to
the preceding, V and E are disjoint. For x(t) to approach M
means that for some finite time T , x(t) ∈ V, t ∈ [T,∞).
This implies that e1 + e2 + e3 < 0, t ≥ T . In view of (21),
| det

[
z1 z2

] | ≥ | det
[
z1(T ) z2(T )

] |, t ≥ T . But

| det
[
z1(T ) z2(T )

] | =
e−

∫ T
0 (e1(s)+e2(s)+e3(s))ds| det

[
z1(0) z2(0)

] |

Moreover, | det
[
z1(0) z2(0)

] | > 0 because z starts outside
of N . Therefore | det

[
z1 z2

] | > |det
[
z1(T ) z2(T )

] | >
0, t ≥ T which contradicts (22). This completes the proof
of Theorem 1.
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The preceding proves among other things that trajectories
starting outside of N cannot approach M. But N is an
invariant manifold. Moreover, we’ve already proved that all
trajectories starting outside of N converge to E . We can
therefore conclude that any trajectory starting outside of N
can never enter N . On the other hand, any trajectory starting
inside of N must approach M. This can easily be proved
by exploiting the fact that V̇ < 0 at all points in N which
are not in M.

IV. CONCLUDING REMARKS

It is likely that the findings of this paper can be shown
to hold for any given rigid formation in the plane consisting
of any number of autonomous agents, provided each agent
admits a kinematic point model as assumed in this paper,
and the distance constraints which each agent must satisfy
are consistent [8]. This is suggested not only by the results
derived here but also by the findings of [9] which address
the distance constrained formation maintenance problem
assuming small errors in agent positions. To deal with more
realistic agent models, one might consider the use of virtual
shells [10].
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