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Abstract: An Hy control performance criterion dependent on a controller pa-
rameter vector is analyzed from the point of view of evaluating the domain of
attraction of its global minimum when a gradient-based algorithm is used in tuning
the parameters. The objective of this analysis is twofold: (i) examine how some
design parameters of the criterion can be used to enlarge the domain of attraction;
(ii) examine how the minimization of a sequence of intermediate criteria can
possibly lead to the global minimum of the original criterion without the danger
of entrapment in a local minimum. Copyright (©2007 IFAC
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1. INTRODUCTION

Many control design methods are based on con-
trol performance criteria minimization. The as-
sociated optimization problems appear in model-
based design as well as in data-based design meth-
ods. For model-based design, solutions may be
achieved by means of tools such as Riccati equa-
tions and Linear Matrix Inequalities (LMT’s). In
control design methods based on input-output
data, where no model is available and a fixed
parametrized controller structure is used, iterative
optimization of the parameter vector is required,
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Federal Science Policy Office, by the Brazilian Ministry
of Education through CAPES, and by ARC Discovery-
Projects Grants (DP0342683, DP0664427) and National
ICT Australia. National ICT Australia is funded through
the Australian Government’s Backing Australia’s Ability
initiative, in part through the Australian Research Council.

and it has been found that a limiting factor in
many cases is the convergence to local, nonglobal,
minima of the performance criterion.

In this paper we analyze the properties of an
H, parameter-dependent control performance cri-
terion to determine under which conditions this
criterion is free of local minima in the parameter
space. These conditions involve the data set used
for the data-based design, the initial condition for
its iterative optimization, and the formulation of
the performance criterion itself.

In contrast to earlier work, this paper focuses on
the analysis of the cost function itself, rather than
on the methods used to optimize it. We analyze
whether or not the global minimum of the cost
function has a large enough domain of attraction
(when a gradient descent algorithm is used) and
what can be done to increase that domain without
compromising the final performance. We favor
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improving our understanding of the underlying
problem rather than increasing the sophistication
of the solution. In so doing, we also expect our
results to be useful for model-based optimization.
Our results provide guidelines to choose the per-
formance criterion, design the experiments and
initialize the optimization algorithm so that it will
converge to the global minimum. To keep the anal-
ysis simple, we focus on a noise-free scalar system
only; this situation allows one to transform almost
any reasonable Hy control performance criterion
into one without local minima by just manipulat-
ing some simple design parameters. In the noisy
case, though the analytical results to be presented
here remain valid, the noise rejection part of the
criterion cannot be directly manipulated and the
influence of the other design parameters is there-
fore indirect and more complicated.

The paper is organized as follows. Notations and
background are explained in Section 2. Section 3
contains our main results on the properties of the
H; optimal control criterion. These properties are
exploited in Section 4 to propose a scheme that
converges to the global minimum of the criterion.
Conclusions are drawn in Section 5.

2. PRELIMINARIES

Consider a linear time-invariant discrete-time
single-input single-output process

y(t) = G(2)u(t), (1)

where z is the forward time-shift operator, G(z)
is the process transfer function, assumed rational
and proper, and u(t) is the control input. This
process is controlled by a linear time-invariant
controller C(z,p) which is assumed to have a
parametric structure as specified below.

Assumption 1. Linear parametrization:
Cl(zp) = p7C(2) (2)

where p € D, C R and C(2) is a column vector
of known rational functions. [ |

It is further assumed that C'(z, p)G(z) has positive
relative degree for all p € D,. Some of the most
common controller structures are linearly parame-
trized, PID with fixed derivative pole being the
most popular. Indeed, a PID can be written as in
(2) with p¥ = [ky ki kq| and

z z—1

CT(z)=11 .
z—1 z

The control action u(t) can be written as

u(t) = C(z,p)(r(t) — y(t)) 3)
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where 7(t) is the reference signal, which is as-
sumed to be quasi-stationary, so that its spectrum
D, (e7) is well-defined (Ljung (1999)). The system
(1)-(3) in closed loop becomes

y(t,p) =T (2, p)r(t

T@m=T§%£%§5=cme@aam
S(z0) = !

14+ C(z,p)G(z)

where we have now made the dependence on the
controller parameter p explicit in the output signal

y(t, p).

For later reference, we provide here some addi-
tional definitions. We say that the quasi-stationary
signal r(t) is persistently exciting of order k (PEk)
if its spectrum ®,(e’) has at least k nonzero
components. We say that a vector field V(e?*) =
[v1(7%) va(e?) ... vp(e’) )T, where each v;(e’)
is a function of the frequency variable w, has
full rank if the functions v;(e?) form a linearly
independent (LI) set over the reals, that is, if
AeRF n#0: 9TV () =0.

We search for the controller parameters that make
the output of the system as close as possible to
the desired one, that is, we solve an optimization
problem min, J(p) where J(p) is a control per-
formance criterion. This control design formula-
tion is representative of several well-known control
designs. It is closely related to LQR and LQG
problems (Anderson and Moore (1971)) and has
been extensively studied in the contexts of model
reference adaptive control (MRAC) (Astrém and
Wittenmark (1995)) and generalized predictive
control (GPC) (Bitmead et al. (1990)).

We deal primarily with design methods that, con-
trary to the tradition of GPC or LQR, search for
the solution of this optimization problem without
knowledge of the process transfer function G(z).
They do so by means of iterative gradient schemes
where the estimation of the gradient is made di-
rectly from data: IFT (Hjalmarsson et al. (1998))
and FDT (Kammer et al. (2000)). These methods
only guarantee convergence to a local minimum.

In adaptive control and data-based control design
a model for the process is not known a priori, so
neither is the cost function. Only local information
about the cost function can be obtained from
data collected on the system, so iterative gradient-
based methods are used. The iteration is given by

piv1 = pi —viVJ(pi) (4)

where VJ(p) = 8,(19_5);)) and y; > 0Vi. A set of initial
conditions for which the algorithm converges to
the global minimum of J(p) is called a domain

of attraction (DOA) of the algorithm. To define
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the DOA of the algorithm (4), use is made of the
property in the following theorem.

Theorem 2.1. Consider a twice-differentiable func-
tion J(-) : R — R*. Assume that this function
has an isolated global minimum p, and define the

set Ba(ps) ={p: (p—p)"(p—ps) <a}. I

(p—p)"VI(p) > 0Vp € Balps),p# ps ()

then there exists a sequence ~;, ¢ = 1,...,00 such
that B, (ps«) is a DOA of algorithm (4) for J(p). m

Convergence to the global minimum is determined
by the nonexistence of local extrema expressed by
a condition like (5). We note that condition (5)
is quite similar to quasi-convexity of J(p), which
is a sufficient condition for (5) (Greenberg and
Pierskalla (1971)).

3. PROPERTIES OF THE H»,
PERFORMANCE CRITERION

In formulating a performance criterion one tries
to express some optimal trade-off between refer-
ence tracking and economy of control effort. The
reference tracking objective is measured by the
size of T'(z, p)r(t) — ya(t), where y4(t) is a desired
response, which is often specified as the output of
a reference model: y4(t) = Ta(z)r(t). The control
effort is typically measured by the size of the
control signal u(¢). In an Hy performance criterion
the size of each signal is measured by an Hj
norm. For the control effort, this would thus yield
Ju(p) = E[(u(t))?]. For reasons that will become
apparent later, we shall replace the control crite-
rion by the more general form J,(p) = E[(u(t) —
uq(t))?] where uq(t) = Uq(2)r(t) is the desired
control effort. The transfer function Ugy(z) is to
be specified by the designer, just like the reference
model Ty(z). We examine a sensible choice of Uy
later. The H; criterion examined in this paper is
then the following weighted sum:

J(p) = Ady(p) + (1 = N)Ju(p). (6)

for some scalar A € [0, 1], and where

Jy(p) = E[(T (2, p)r(t) — ya(t))?] (7)
Ju(p) = El(u(t) — ua(t))?]. (®)

3.1 Analysis of each term

Let ' be the set of all control parameter values
that render the closed-loop system BIBO-stable,

that is, [ 2 {p : T(z,p) is BIBO-stable}. For
p € I' Parseval’s theorem yields:
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50 =5 [ 1@, 0) = T [ @, (w)

1) =5 [|C(e,p)S (e, ) ~Usle™) P, ()

9)
3.1.1. Reference tracking: Jy,. The ideal perfor-
mance for J, would be obtained if p was such
that T'(z,p) = Ty4(z), in which case Jy,(p) would
vanish. Let us define the ideal controller Cy(2),
which would achieve exactly this performance:

Td(z)

Cal2) = G0 - Tale)

(10)

Inserting (10) into the criterion J,, and dropping
the dependence on w for simplicity of notation,
the reference tracking criterion can be written as

17 )
3(6) = 5= [ |S0)SiG PICa = CpP dydu(a)

where we have defined Sy(z) = 1 — T4(2).
Note that, apart from the multiplicative term
| S(e’, p) |? inside the integral, the cost function
in (11) is quadratic in the decision variable p.

This similarity to a quadratic criterion is explored
in (Campi et al. (2002)), where the approxima-
tion S(z,p) = Sa(z) is made, thus obtaining a
quadratic cost function. However, this approxima-
tion implies, in general, that a different minimum
is attained. Here we do not make such approxima-
tion, but remark that when S(z,p) ~ S4(z) the
cost is approximately quadratic in p. This causes
the Hy criterion to satisfy (5) in a set in which
these functions are close enough to each other, as
stated in the following Theorem.

Theorem 3.1. Let C(e’*) be full-rank, r(t) be
PEp and assume that 3pg € I': C(z, pg) = Ca(2).
Let T C T" be a connected set such that pg € T
and, for all p € T:

—m/2 < LS(e?, p) — £LSq(e’’) < w/2Vw (12)
Then Jy(p) has no local extrema in Y. [ |

For reasons of space, we only give a sketch of
the proof, which will be necessary for further
developments. The gradient of Jy(p) can be put
in the form

VJy(p) = My(p)(p = pa)

where M, (p) is the following matrix:

My() = ([ 8,1 GS() R(SiS()CC" o)

—T
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where R{} denotes the real part and V*(e/¥) £
VT (e=9). If the symmetric part of My(p), say
M (p), is positive definite, then

VIy(p)" (0= py) = (p = pa)" My(p)(p — pa)
=(p—pa)" M;(p)(p— pa) >0

M;(p) is an integral of the Hermitian matrix
C(2)C*(z) multiplied by scalar factors. So, M (p)
is positive definite if the elements of C(z) are
linearly independent and if all scalar factors are
strictly positive, which is guaranteed by the phase
condition (12) and the persistence of excitation
condition on 7(t).

3.1.2. Control effort: J,  The ideal controller
for J,(p), for which this criterion would van-

ish, is defined as Cy(z) = #gz[}d(z), with
the corresponding sensitivity function S, (z) =
m. Inserting this controller in the cri-
terion yields the alternative expression:

17 _
Ju(p) = o / | S(p)Sy 2| Cu — CTp|? ®,.dw(13)

This expression is entirely similar to the expres-
sion (11), and when S(z, p) = S, (2) the cost J,,(p)
is approximately quadratic in p. This yields the
following result, similar to Theorem 3.1.

Theorem 3.2. Let C(e’*) be full-rank and assume
that 3p, € T : C(z,py) = Cyu(2). Let T C T be a
connected set such that p,, € T and, for all p € T:

/2 < LS(e,p) — LS, (") < /2 Vw (14)
Then J,(p) has no local extrema in T. ]

We then have VJ,(p) = M, (p)(p — pu) with

Mu(p) = ~( / D,| S(p) 2 R{SLS(p)CC" }dw)

—T

In the formulation of a control performance cri-
terion, the reference model Ty is a design vari-
able whose choice is essentially determined by the
required closed loop performance specifications.
In our criterion (9) for J,(p), the transfer func-
tion Uy is also a design variable, whose choice
is determined by the limitations imposed on the
control energy. The following Lemma establishes
an interesting connection between the choice of
the reference model T; and a possible choice for
Ug.

Lemma 8.1. The controller Cy(z) that realizes
Uq4(z) is identical to the controller Cy(z) that
realizes Ty(z) if the design transfer function Uy(z)

is chosen as Uy(z) = %((ZZ))'
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Proof: The controller C,, is defined by =7 +Cct 7=

U4. Therefore 1fg€G =UyuG =Ty [ |

Observations:

(i) We should caution that this choice for Uy
requires knowledge of the plant model G(z). In
data-based control design, G is either unknown or
is only known approximately.

(ii) Even if the design choice Uy = % is made,
this does not necessarily mean that the two terms
of the criterion, J, and J,, will be minimzed
by the same controller parameter p because the
weighting functions in (11) and (13) are different.
However, the two optimal controller parameters
will be identical if the ideal controller Cy = C,, is
in the controller set, i.e. Ip. : Cy(z) = pI C(2).

3.2 Putting the pieces together

The gradient of the criterion (6) can be written as

VJ(p)=AMy(p)(p — pa) + (1 = \)Mu(p)(p — pu)

= AM(
=M(p)(p— px) (15)
where M(p) £ AM,(p) + (1 — \)M.,(p), and the

global minimum p, is a linear combination of the
global minima of each cost component:

pe =10 I—G}Bﬂ (16)

where © = AM~'(p)M,(p). These definitions
make sense only if M(p) is nonsingular. A suf-
ficient condition for this is that both M (p) and
M (p) are positive definite. Under these condi-
tions the total cost J(p) has the same properties
as its components and we can state a result which
is similar to the ones presented previously.

Theorem 3.3. Let C(e?*) be full-rank and 7(t) be
PEp. Let T C T be a connected set such that
Py, pu € T and that, for all p € T,

| £5(e?, p) — £S4(e?) |<

| £5(e?, p) — £8,(e") |<

ST

Assume further that p, € Y. Then the Hy cost
J(p) in (6) has no local extrema in Y. [ |

4. COST FUNCTION SHAPING

The conditions under which the cost functions J,
and J, are well behaved are given in terms of
the problem data: process model G(z), reference
model Ty(z), control signal model Uy(z), reference
signal r(t), etc. Some of these data can be ma-
nipulated by the designer, and we are interested
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in manipulating them in order to force these cost
functions to be well behaved in the largest possible
set or at least in a set which contains the current
controller; we call this “cost function shaping”.
The central idea of cost function shaping is to
generate intermediate cost functions which are
increasingly close to the desired one, such that for
each cost function we obtain convergence to its
global minimum and at the end of this process we
have achieved the global minimum of the desired
cost function. We now examine how each variable
can be manipulated to achieve this objective.

4.1 Manipulation of the reference spectrum

We have seen that the SPR (strictly positive real)
property of a particular transfer function is suf-
ficient for uniqueness of extrema, hence conver-
gence of gradient-based algorithms, within a given
set. For each part of the total criterion, a different
transfer function is concerned, as expressed in (12)
and (14), unless the special choice of Lemma 3.1
can be made for Uy. The corresponding transfer
functions, Sy and S,, are only partially at the
designer’s disposal. However, the SPR, condition is
not a necessary condition; it can be circumvented
by a proper manipulation of the reference r(t).
We first explore the properties of the sensitivity
function that enter the SPR conditions.

Lemma 4.1. Consider the sensitivity function
S(z,p) = (1+pTC(2)G(2))~ . For all p1,pe € I':

£8(1, p1) = £S(1, p2) (17)
£8(=1,p1) =25(=1, p2) (18)
Proof:
L8, p) = 30 L i) = 3 £ — au(p)
i=1 i=1

where b; are the poles of the loop transfer function
C(e7)G(e?) and a;(p) are the closed-loop poles.
For w = 0 we have

n

28(1,p) =Y Z(1—b) = > L1 —a;(p))
i=1 i=1
But >, Z(1 —b;) does not depend on p and

> Z(1—ai(p) =0Vi,peTl

i=1
because a;(p) belong to the unit disc for all p € T'.
The same argument is valid for w = 7. [ |

From the property above and the continuity of
S(e’,p) we can also conclude that the phase
difference between two sensitivity functions is
small for frequencies close to w = 0 and w = 7.

Lemma 4.2. For all p € I', Jw;, wy, such that:
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| Z5(e,p) = £Sa(e™) |< = Y < w

Yw > wp [ |

RN

| £S8(e", p) = £Sa(e) |<

Thus, if only those frequencies for which the phase
difference is small are weighted by the reference
spectrum, the integral will still be strictly positive
as desired, even if the phase difference exceeds
/2 in some frequency ranges. So, if the reference
spectrum is concentrated at the borders of the
frequency spectrum, then the minimum is unique
in I', as formalized in the following theorem.

Theorem 4.1. Let C(e’) be full-rank and let r(t)
be PEp. Then there exist w;,wp, with 0 < w; <
wp, < m, such that &, = 0 Vw € (w;,wp) implies
that pg is the unique extremum of J,(p) in I'. ®

4.2 Manipulation of Ty

We have seen that choosing an initial controller
po such that Si;f;())) is SPR should be appropriate
to obtain convergence to the global optimum.
It is often the case that the controller to be
tuned is in operation, that it is stabilizing the
plant, but achieving poor performance. Since “one
bird in the hand is worth two in the bush”, it
may not be a good idea to abruptly change the
controller parameters to another value at which
not even stability is totally assured. So, instead of
bringing pg close to pg4, let us consider temporarily
changing T,(z) so as to bring pg close to pg in the
initial stages of our controller tuning strategy.

Starting from an initial controller which delivers
a given performance, say Tp(z), which we con-
sider poor, we choose a first cautious reference
model T} (z), close to Tp(z), aiming at a modest
performance improvement. Once the global opti-
mum of this new criterion (p!) has been achieved,
we can pick a second, more ambitious, reference
model T7(z), and optimize it starting from p}
as initial controller. This argument can be used
successively, with several intermediate reference
models, until the desired reference model Ty(z)
is achieved. This concept of cautious control is a
familiar one in data-based control design (Kam-
mer et al. (2000), Hjalmarsson et al. (1998)) and
in iterative identification and control design (see
e.g. Lee et al. (1993), Zang et al. (1995)).

4.8 Manipulation of Uy

From our analysis above, we see that relaxing the
tracking part of the criterion, J,(p), by iterative
manipulation of T has the property of enhanc-
ing the probability of converging to the global
minimum of the criterion. The same can be done
with the control criterion J,, although it is not
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usual. Regarding the control effort objective, the
traditional ug(t) = 0 requirement does not even
make sense by itself, since the optimal solution
for J, then consists in turning off the controller.
These considerations led us to the proposal of the
new Hy criterion (6), with Ty(z) and Ugi(z) as
designer choices.

4.4 Case study

Consider the problem of adjusting the gain p of a
PI controller C(z, p) = pZ=%3. The process trans-

z—1

fer function is G(z) = —5% but this information
is not available to the designer. This system must
track a reference consisting of a square-wave with
unitary amplitude and period T' = 30 s. The
desired tracking performance is specified by the

reference model Ty(z) = 25753255 The Ha

cost Ji(p) = 0.7E[(y(t) — ya(t))?] + 0.3E[u?(t)]
is plotted as the continuous line in Figure 1. It
presents a local maximum around p = 0.35, so
the DOA is limited to p > 0.35.

If we allow the criterion to search for the con-
trol action Ug(z) = 05%2_0%?7 instead of
Uq4(z) = 0, the cost becomes J(p) = 0.7E[(y(t) —
ya(t))?]+0.3E[(u(t) — ua(t))?] given in the dashed
line, which is quasi-convex. Notice that the global
minima are very close for both cases, so the
achieved performance in both cases is almost the
same. However, should we try to minimize Jy
starting from a low gain controller we will prob-
ably get stuck at the local minimum at p ~ 0.3.
On the other hand, if we insist that Ji(p) is what
we want to minimize, then we can just use the
minimization of J>(p) as an intermediate task to
this end.

Alternatively, it is possible to manipulate the
spectrum of the reference so that it excites only
those frequencies at which the phase difference
(12) is small, that is at very low and/or very
high frequencies. In the present case, where the
reference is a sequence of steps, taking less data
points to calculate the cost will make the reference
appear as a higher frequency signal, since in prac-
tical computations, expectation is approximated
by a sum:

Ji(p) = Ji(p, N)
N
_ % S [0.7(y (1) — a(t))? + 0.3(u(t))?]
t=1

If only a small number of data (V) is used, then
only the transient part of the response is taken
into account, so it is as if a high-frequency signal
had been applied. The result of taking only 20
data points is shown as the line with circles in
Figure 1. The approximate cost with 20 data
points J; (p,20) is quasi-convex and presents the
same minimum as the exact cost Jy(p).
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Fig. 1. Ji(p) (full), Jo(p) (dashed), and .J;(p, 20)
(circles).

5. CONCLUSION

We have shown how the domain of attraction
of the global minimum of a simple Hy control
performance criterion can be enlarged by either
manipulating some design variables of the crite-
rion, or by replacing the criterion by a succession
of logically chosen intermediate criteria that have
larger domains of attraction.
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