SMOOTHING OF NOISY RANDOM-TELEGRAPH-TYPE SIGNALS

David J. Clements and Brian D.O. Anderson
Department of Electrical Engineering
University of Newcastle, New South Wales, Australia

Abstract

For a class of Markov processes in additive gaussian white noise, both the equations for the optimal fixed-point smoother and those for a sub-optimal fixed-lag smoother are presented. Simulation results for the random telegraph wave are discussed.

1. INTRODUCTION

It has been shown in the literature\cite{1} that fixed-lag smoothers for both the continuous and discrete-time linear-gaussian problems exhibit the following desirable properties: (1) the expected value of the mean square error is a non-increasing function of the lag and (2) for a value of lag of the order of the dominant time constant of the associated (zero-lag) filter, practically all of the possible improvement that smoothing offers over filtering is attained. Further, for stationary time-invariant processes\cite{2}, the ratio of the fixed-lag error to the filtering error decreases as the signal-to-noise ratio increases. Hence, for those applications where a time delay between the estimate of the state of a process and the state itself is acceptable, it is worthwhile looking at the possibility of using fixed-lag smoothing rather than filtering.

Intuitively, it seems plausible that these properties should in fact hold for a larger class of processes than that above. In this paper, we derive and examine properties of a sub-optimal fixed-lag smoothed estimate of the states of a class of Markov processes in the presence of additive gaussian white noise. Simulation of the fixed-lag smoother for the special case of the random telegraph wave suggests that the above properties do in fact hold for the class of processes under study.

2. A NONLINEAR FILTERING RESULT

Suppose \(\{x(t), t \geq 0\} \) is a Markov process with a distinct states \(a_1, \ldots, a_n \) and stationary transition probabilities \(P_{ij}(h) = \Pr(x(t+h) = a_j | x(t) = a_i) \) satisfying

\[
P_{ij}(h) = \begin{cases} 1 - \nu_{ij} h + o(h) & \text{if } i = j \\ \nu_{ij} h + o(h) & \text{if } i \neq j \end{cases}
\]

(1)

where \(h > 0 \) and \(\nu_{ij}, \nu_{jj} \) are nonnegative constants such that \(\sum_{j} \nu_{ij} = \nu_{jj} \). Let a measurement process \(\{z(t), t \geq 0\} \) be defined by

\[
dz(t) = h(x(t)) dt + \beta(t) dw(t)
\]

(2)

where \(dw(t) \) is an increment in a Wiener process independent of \(x \) with a derivative of covariance \(\delta(t-t') \), \(\beta(t) \) is a continuously differentiable function bounded away from zero and \(h \) is a real-
real-valued function with values \(h_1, \ldots, h_n \) not necessarily distinct. Denote the \(z \) process over the interval \([0, t]\) by \(Z_t \) and denote the filtered probabilities \(P_z(x(t) = a_j | Z_t) \) by \(p_j(t) \). Then, following Nonham[3], it can be shown that these probabilities satisfy

\[
dp_j(t) = \left[-\sum_{j=1}^{n} p_j(t) + \sum_{j=1}^{n} \sum_{i=1}^{n} p_j(t) \right] dt \\
+ \beta(t) \beta(t)^{-1} P_z(t) \left[h(t)^{-1} \hat{v}(t) \right] \left[ds(t) - \hat{v}(t) dt \right]
\]

with \(\hat{v}(t) = \beta(t)^{-1} P_z(t) \left[h(t)^{-1} \hat{v}(t) \right] \), the conditional expectation of \(h(x(t)) \). The initial condition for (3) is just the initial probability distribution for \(x(0) \).

3. FIXED-POINT SMOOTHING

For each fixed \(t \), define the augmented process \((X(t), \tau) \) by \(X(t) = (x(t), x(t)) \). This process has \(N \times N \) states \(a_1, a_2, \ldots, a_N \); or in component form \((a_i, a_j) \) with \(i = (1, j) \) and \(i, j = 1, 2, \ldots, N \). From the properties of \(x \), it also follows that this new process in Markov and has stationary transition probabilities \(P_{ij}(h) \) satisfying

\[
P_{ij}(h) = \begin{cases}
1 - V_j h + o(h) & i = j \\
V_j h + o(h) & i \neq j
\end{cases}
\]

for \(i = (1, j) \) and \(j = (1, j) \). The nonnegative constants \(V_{ij} \), \(V_{ij} \) are defined by \(V_i = V_{i1} \), \(V_{jj} = V_{1j} \), and satisfy \(V_{i1} V_{1j} = V_{i1} \). \(V_{ij} \) and satisfy \(V_{ij} = V_{1j} \).

With \(h(X(t) | \tau) = x(t) \), the measurements are given by

\[
dx(t) = x(t) dt + \beta(t) dw(t), \quad \tau \geq t
\]

Then denote the filtered probabilities of \(X \), \(P_z(x(t) | \tau) = a_j | Z_t \) by \(p_j(t) \) and the fixed-point smoothing probabilities of \(x \), \(P_z(x(t) = a_j | Z_t) \) by \(p_j(t) \) with \(i = (1, j) \). We have the filtered probabilities of \(x \) completely determining the fixed-point probabilities of \(x \). From Section 2 the former are easily found as the solution of the equations

\[
dp_j(t) = \left[-\beta(t) p_j(t) + \sum_{j=1}^{n} \sum_{i=1}^{n} p_j(t) \right] dt \\
+ \beta(t) \beta(t)^{-1} P_z(t) \left[h(t)^{-1} \hat{v}(t) \right] \left[ds(t) - \hat{v}(t) dt \right]
\]

with the initial condition \(P_z(t) = \delta_{ij} p_j(t) \), \(i = (1, j) \) and with \(\hat{v}(t) = \beta(t)^{-1} P_z(t) \left[h(t)^{-1} \hat{v}(t) \right] \), the conditional expectation of \(x(t) \).

The above approach to the continuous-time fixed-point smoothing problem has been used previously for both the linear[4] and nonlinear[3] cases.

RANDOM TELEGRAPH WAVE EXAMPLE

For a process with states \(\pm 1 \) and switching parameter \(v \) with \(u_j = v \) and \(u_j = -v \) for \(i, j = 1, 2 \), the fixed-point equations (6) are, with independent variables \(q_1, Z \) and \(D \),

\[
dq_1(t) = -2q_1(t) + \beta^2 \left[1 - q_1(t)^2 \right] dt, \quad q(0) = 0 \tag{7}
\]

\[
dZ(t) = \beta^2 \left[2D(t) - 1 - Z(t) \right] dt, \quad Z(0) = 0 \tag{8}
\]

\[
dD(t) = \beta^2 \left[2D(t) - 1 - Z(t) \right] dt, \quad D(0) = 1 \tag{9}
\]

where \(q \) is the conditional expectation of \(Z \), \(Z \) is the fixed-point estimate of \(x \), \(D \) is the probability that both components of the \(X \)-process are the same; and \(I \) is the innovations process with \(dI(t) = dz(t) - q(t) dt \).

4. FIXED-LAG SMOOTHING (DISCRETE-TIME)

For the fixed-lag smoothing problem we need to know the evolution of the quantities \(P_{z}(t | t+1) \) with \(L \) fixed and \(t \) varying. One approach which suggests itself is to take equation (6) for \(P_z(t | t) \), to express \(P_z(t | t+1) \) as an integral using this equation, and then to compute the differential now letting \(t \) rather than \(t \) vary. Although this method works for the linear-gaussian problem[6] it fails here because of the conditional rather than unconditional expectations in the integrand. We thus treat only the discrete-time case and derive a
suboptimal fixed-lag estimate as a linear combination of the states of a discrete-time nonlinear system driven by the measurements. With obvious notation we have, discretizing (6)

\[P_z(k|z) = P_z(k|z_k) + \sum_{j=1}^{N} V_{ij}P_z(k|z_{j-1})T + \beta(k)^{-2}P_z(k|z_{1-j})(z_{j-1} - z(k))T(k) \]

where \(k \) is fixed, \(1 \) takes the values \(k, k+1, k+2, \ldots \), and 1(\(k \)) = \(z(k+1) - z(k) - \alpha(k)T \). Now, fix \(\alpha \) in these equations, and in writing down (10) for each \(k \) in the range \(1 \) to \(L+1 \), define the new variables \(P_{ij}(k) = P_z(k|z_{j-1}) \) for \(i=1, \ldots, N \) and \(j=1, \ldots, L+1 \). We then obtain

\[P_{i,j+1}(k) = P_{ij}(k) + \sum_{j=1}^{N} V_{ij}P_{ij}(k)T + \beta(k)^{-2}P_{ij}(k)(z_{j-1} - z(k))T(k) \]

while the quantities \(P_{ij}(k) \) are none other than the filtered probabilities associated with the original \(x \)-process, and hence are updated by the discrete-time version of the filter equations (3). Finally, the suboptimal fixed-lag estimate of \(x(k|L) \) given \(z(k) \) is

[10]

ALTERNATIVE DERIVATION

We now outline an alternative derivation of (11) which is based on a discrete-time approximation [7] to the continuous-time processes involved and the idea [1] that the discrete-time fixed-lag smoothing problem can be posed as one of filtering a related process. Consider first a discrete-time Markov process \(\{x(k), k=0, 1, \ldots \} \) for which the transition probabilities \(P_z(x(k+1) = a_j | x(k) = a_i) \) are denoted by \(P_{i,j} \) with \(P_{i,j} = V_{ij}T \) for \(i,j \) and \(P_{i,j} = \gamma_{ij} \) for \(i \neq j \), \(T \) being the discretization interval; and second, the observation process defines as

\[(k) = s(k)T + \beta(k)w(k)/T \]

where \(\{w(k), k=0, 1, \ldots \} \) is Gaussian white noise with unit variance.

Suppose we define a new Markov process \(\{s(k), k=L+1, \ldots \} \) with \(S(k) = \{s(k) \ s(k-1) \ldots s(k-L-1)\} \), then the fixed-lag probabilities of the \(s \)-process are simply sums of the filtered probabilities of the \(x \)-process. The latter can be derived using a well-known recursive formula [9,17] and approximating [7] for small \(T \).

5. SIMULATION - DISCUSSION AND RESULTS

For our example, the random telegraph wave, we generated the approximated discrete-time processes mentioned in the final part of section 4. It was found that for reliable results the following points needed to be considered.

(a) Consider the discrete-time filter equation (see (7))

\[q(k+1) = -2\alpha q(k)T + \beta^{-2}[1-q(k)^{-2}][x(k)-q(k)]T
+ \beta^{-1}(1-q(k)^{-2})w(k)T \]

\[q(0) = 0 \]

(b) The definition of \(q \) implies \(|q(k)| \leq 1 \) for all \(k \). However, from (12) it is clear that for a sufficiently large value of \(w \), this bound will be violated. Then, the term \(1-q(k)^{-2} \) is destabilizing in the sense that its effect on the increment is to cause \(|q(k+1)| > |q(k)| \). Hence, for a sequence of values of \(w \) with suitable sign, \(q \) may become arbitrarily large. An ad hoc solution, which was found to be satisfactory, was to redefine \(q(k) \) as \(\pm 1 \) at each iteration whenever \(|q(k)| > 1 \). An alternative method is to bound the noise samples and choose a sufficiently small sampling interval \(T \).

(b) It is also necessary to ensure that the discrete-time processes are, in fact, approximations to their continuous-time counterparts. Each term on the right side of (12) is small if we choose \(T \) such that \(T < \beta / 2\alpha \sqrt{T} \) and \(VT \) is small. Although ad hoc, this bounding proves to be a successful guideline in the choice of parameters in the simulation. This bound on \(T \) implies that the larger the signal-to-noise ratio the greater is the amount of computation per unit of time.
An example of the results of simulation is shown in Fig. 1, with $v = 50$, $\beta = 0.07$ and $T = 0.0005$. Then $VT = 0.025$ which is "small" and $\beta/20\sqrt{V} \approx 0.0005$. Thus the conditions on T are satisfied. It is apparent from Fig. 1 that there is an initial rapid improvement in estimation with lag, followed by an evening out to a steady-state value. For the filter eq.(12), we can associate a time constant of $1/2VT$ sampling intervals. For our example, $1/2VT = 20$. Compare this with Fig. 1 where the lag for which practically all improvement is obtained is about 15. We found that every example for which T, v and β were satisfied, this type of behaviour was observed.

Fig. 2 shows a plot of improvement of smoothing over filtering versus a noise measure $\mu = \sqrt{q}$. The similarity with the linear-gaussian case can be seen.

![Figure 1](image1)

![Figure 2](image2)

REFERENCES