THE TRACKING PROBLEM: A COMPARISON OF THE
MODERN AND CLASSICAL APPROACHES

Brian D. O. Anderson
Department of Electrical Engineering, University of Newcastle
New South Wales, 2308, Australia

Abstract
Two distinct formulations of the optimum tracking problem have been presented in
the literature. The classical formulation is in frequency domain terms, assumes
stationarity and stability of the underlying systems, and assumes zero initial
conditions; the optimal control is given in open-loop form via a frequency
domain formula, and its evaluation requires the extraction of spectral factors
with certain analyticity properties, and expansion in partial fractions with
subsequent deletion of some of these partial fractions. The modern formulation is
in time domain terms, does not assume zero initial conditions, but normally
assumes finite-dimensionality of the underlying systems. The optimal control is
given in time domain terms and partly in feedback form. It is computed by solving
a matrix Riccati differential equation or a quadratic matrix equation. By posing
a tracking problem with constraints permitting solution via both techniques, the
two techniques are shown to yield the same control law.
The study of the tracking problem via two techniques suggests technical reasons
why the classical procedures are not as effective as they might be.

1. INTRODUCTION
The first serious attempts at formulating and solving quadratic optimization problems are well
summed up in the books of Morton, Gould and Kaiser (1) and Chang (2). These books took a frequency
domain point of view, and solutions to the various optimization problems formulated were normally
achieved using the idea of polynomial spectral
factorization. Subsequently, the work of Kalman (3), (4) appeared which generalized the earlier results.
More specifically, the restriction on the time-invariance of the underlying systems was
removed, and the restriction that the system con-
cidered be initially in the zero state was removed.
As it turns out though in retrospect, the fact that
the original design procedures only apparently
worked for zero initial states is not so important,
since implementation of the resulting optimal
control in feedback form serves to handle the
non-zero initial state case equally well. Further,
although the modern approach would appear superior,
it should also be noted in fairness to the authors
of (1) and (2), that the approaches of (3) and (4)
are more restrictive in the sense that they assume
the underlying systems to be finite-dimensional,
whereas (1) and (2) do not make this assumption.

The purpose of this paper is to interrelate the
approaches of (1) and (2) with that of (3) for the
tracking problem, where with $u(t)$ the input to the
system and $e(t)$ amount by which its output
deviates from a certain desired output, the aim is
to choose $u(t)$ to minimize an index of the type

$$V = \int_0^\infty (a e^2(t) + u^2(t)) dt \quad (a > 0)$$

The precise nature of the underlying systems for
which the interrelation is established will be
discussed subsequently.

In (3), regulator designs via both techniques were
related, the regulator problem being the special
case of the tracking problem with desired output
zero. In making the connection between designs via
both techniques, it was shown that for a special
initial state vector of the underlying system, the
two designs yielded the same controller. Then, by
an argument depending on the existence of a special
coordinate representation of the state-space
equations of the underlying system, the restriction
on the initial state-vector was removed. This
technique is inherently very difficult to extend to
multiple input systems, and in any case could with
conceptual advantage be replaced by a more direct
argument. This is done implicitly in this paper.

217
where the regulator problem appears as a special case in our approach to the general tracking problem.

2. REVIEW OF THE TWO TRACKING PROBLEM FORMULATIONS AND SOLUTIONS

The classical version of the optimum tracking problem proceeds as follows.

We are given \(G(s) \), the transfer function of an asymptotically stable plant, whose input and output we denote by \(u(t) \) and \(y(t) \), and in the Laplace-transform domain by \(U(s) \) and \(Y(s) \). We are also given a reference signal \(r(t) \), with Laplace transform \(R(s) \). The aim is to choose a transfer function \(G_c(s) \) of a compensator, such that with the compensator driven by \(R(s) \) and driving the plant, i.e., with

\[
U(s) = G_c(s)R(s) \tag{2}
\]

the following integral is minimized:

\[
\int_0^t \left[a(y(t) - r(t))^2 + (u(t))^2 \right] dt \tag{3}
\]

where \(a \) is a positive constant. It is tacitly assumed that the states of plant and compensator are zero at time \(t = 0 \).

Figure 1 shows the control scheme.

The optimum compensator is given by the formula

\[
G_c(s) = \frac{a}{R(1+G(s)) + \left(\frac{bG(s)}{(1+G(s))} \right)} \tag{4}
\]

In this as in later expressions, the superscript bar denotes paraconjugation, i.e., \(\bar{G}(s) = \overline{G(-s)} \); the superscript + around parentheses denotes the operation of factoring the enclosed function, assumed rational in \(s \), and eliminating (i.e., replacing by unity) those numerator and denominator factors with right half plane zeros; finally, the subscript + around square brackets denotes the operation of performing a partial fraction expansion and discarding (replacing by zero) those partial fractions with right half plane poles, it being tacitly assumed that this operation is applied to a rational function of \(s \) whose denominator polynomial has higher degree than the numerator polynomial.

From the point of view of achieving optimality, many other control schemes are possible. For example, if in Figure 2 \(G_1(s) \) and \(G_2(s) \) are chosen so that

\[
G_1(s) = \frac{bG(s)}{(1+G(s))} \tag{5}
\]

optimality will be achieved, because both schemes yield the same relation between \(R(s) \) and \(U(s) \), and \(R(s) \) and \(Y(s) \).

The common feature of all possible schemes is that the same \(U(s) \) must be used in every case; we see from (2) and (4) that the optimal \(U(s) \) is given by

\[
U(s) = \frac{a}{(1+G(s)) + \left(\frac{bG(s)}{(1+G(s))} \right)} \tag{6}
\]

By contrast, the modern version of the optimum tracking problem proceeds as follows, (7)a.

We are given a set of state-space equations describing a plant

\[
x = A x + gu \quad y = h'x \tag{7}
\]

with an initial state \(x_0 \). Here \(x \) is an \(n \)-vector, \(F \) an \(n \times n \) matrix and \(g \) and \(h \) are \(n \)-vectors. Without loss of generality, the pair \((F, h) \) is assumed completely controllable and \((F, h) \), completely observable. We do not in general assume that \(F \) is asymptotically stable. We are also given a reference signal \(r(t) \), and the aim is to choose a control \(u(t) \) such that the following integral is minimized:

\[
\int_0^\infty \left[a(h'x - r(t))^2 + (u(t))^2 \right] dt \tag{8}
\]

The solution to this problem is obtained in the following way, (9)b.

Let \(H \) be the unique, positive definite matrix (known to exist) satisfying

\[
H^2 + F'HF - h'h + ah' = 0 \tag{9}
\]

Let

\[
\kappa = H \tag{10}
\]

Then the optimal \(u(t) \) is given by

\[
u(t) = -h'x(t) + \kappa \lim_{t \to \infty} \left(F'F - h'h \right) u(t) \tag{11}
\]

assuming the limit exists. The control arrangement is shown in Figure 3, where \(w(t) \) is shorthand for the second toca on the right side of (11).

3. NORMAL STATEMENT OF THE PROBLEM

Before meaningful comparison can be made between the two tracking system designs, we must ensure that the two design procedures are being applied to the same situation. This means that the plants under consideration must be the same, the reference signals must be the same, and the same value of \(a \) must be used in both performance indices, (3) and (6). The latter two requirements are satisfied by fiat, and the first requirement by insisting that

\[
G(s) = h'((sI-F)^{-1} \kappa \tag{12}
\]

The classical solution procedure requires that \(G(s) \) have all its poles in \(Re(s) < 0 \) (although there is no corresponding requirement in the modern procedure), and therefore we make the assumption that the eigenvalues of \(F \) all have negative real part.

Furthermore, we must also find a technique for dealing with nonzero initial conditions on the plant using the frequency domain design approach. This is in fact quite easy, (5). Figure 4 illustrates that a plant of transfer function \(G(s) \) with a nonzero initial condition is equivalent to a plant of transfer function \(G(s) \) with a zero initial condition and with an additive signal at the output (depicted in the Figure by its Laplace
transform \(Y_0(s) \), which is the zero-input response of the plant.

There is a restriction on \(Y_0(s) \) because it is a zero-input response of the plant. Thus suppose that

\[
G(s) = \frac{p(s)}{q(s)} = \frac{h(s)}{a(s)} - \frac{1}{a(s)} \tag{13}
\]

where \(p \) and \(q \) are polynomials with no common factor and with the degree of \(p \), \(\delta(p) \) for short, greater than \(\delta(q) \). Note that

\[
p(s) = det[\alpha - \lambda I]
\]

Then any zero-input response must be of the form

\[
y_0(s) = \frac{n(s)}{p(s)} = \frac{h(s)}{a(s)} - \frac{1}{a(s)} \tag{15}
\]

for a certain polynomial \(n(s) \) with \(\delta(n) < \delta(p) \) and for a certain \(B \)-vector \(x_0 \). There is no constraint requiring nonexistence of common factors of \(u(s) \) and \(p(s) \).

How successful tracking requires that \(y(s) \) approach \(r(s) \), or, see Figure 4, that the inverse transform of \(G(s)U(s) \) should approach \(r(s) - y_0(s) \), which is a standard tracking problem for the classical approach, with reference signal \(r(s) = y_0(s) \).

We can now give a formal statement setting out what has to be done to demonstrate equivalence of the two approaches: given \(G(s) = \frac{h(s)}{a(s)} - \frac{1}{a(s)} \), with \(\{Y, A\} \) completely controllable, \(\{Y, B\} \) completely observable and all eigenvalues of \(\gamma \) possessing negative real part; given \(n(s) \), an arbitrary polynomial with degree less than that of \(p(s) = det(a(s)) \), and given the associated initial state \(x_0 \) defined via \(n(s)/p(s) = n(s)/(a(s)) \); give a desired output \(r(s) \); show that the control \(U(s) \) defined by

\[
U(s) = \frac{\alpha}{\gamma} \left(\begin{array}{c}
\frac{Y - B}{B} \\gamma
\end{array} \right) + \frac{\gamma}{\gamma^2}
\]

is the Laplace transform of

\[
u(t) = \gamma - \delta^{\alpha}(t) + a(t) \tag{11}
\]

with \(\kappa \) defined according to equations (5) and (10), and \(x \) obeying the differential equation (7) with initial condition \(x_0 \).

A. DETAILS OF THE CONNECTION PROCEDURE

We first note the following two lemmas:

Lemma 1. With quantities as defined previously, the following relation holds:

\[
(1 - a(s))U = 1 - \kappa(s) - a(s) \gamma \tag{17}
\]

Lemma 2. With quantities as defined previously, and the definition of the polynomial \(\gamma(s) \) by

\[
y_0(s) = \frac{n(s)}{p(s)} = \frac{h(s)}{a(s)} - \frac{1}{a(s)} \tag{18}
\]

the following relation holds:

\[
U_3(s) = \frac{Y(s)}{\gamma(s)} + \frac{\gamma(s)}{\gamma^2} \tag{24}
\]

In Figure 5 all guarantees that \(U_3(s) \) is given by (13).

The overall optimal control required according to the classical theory is \(U_3(s) + U_2(s) \). Observe now from (27) and Figure 5 that such an input will
be achieved if the scheme of Figure 5 is altered to replace the zero initial state by the initial state x_0. No alteration of $u(t)$ is required. Thus the scheme of Figure 5 generates the correct optimal control according to classical notions. This figure also shows that $u(t) = -k'x(t) + u_0(t)$.

Therefore, bearing in mind the formula for the optimal control derived by the modern approach, repeated, for convenience in a slightly different format as

$$u(t) = -k'x(t) + \int_0^t [h'(e^{gk})(t \tau) g(\tau) d\tau \]$$

we see that it remains to show that $u_0(t)$, as given by (24), is the Laplace transform of the quantity

$$y(t) = \alpha \int_0^t [e^{gk}(t \tau) g(\tau) d\tau \]$$

This may be shown as follows. Introduce the shorthand notation $v(t) = e^{gk}(t \tau) g(\tau) d\tau$. Then

$$\int_0^t e^{gk}(t \tau) d\tau = \alpha \int_0^t dt \int_c e^{gk}(t \tau) d\tau$$

Let $s = t \tau$ and integrate with respect to τ and t. Then

$$\int_0^t e^{gk}(t \tau) d\tau = \int_0^t \alpha \int_c \left[e^{gk}(s) e^{-st} d\tau \right] = \int_0^t \alpha \left[e^{-st} \right] = \int_0^t \alpha \left[e^{-st} \right]$$

Comparing this with (24), we see that the desired result is established.

CONCLUSIONS

The significance of the result established lies not so much in the fact that classical and modern results may be related (although, to be sure, there is significance in this) but rather in a fact that has been alluded to, but not emphasized up till this point, relation of the two sorts of results for the case of an unstable plant is a difficult problem. In this paper, we took the fairly easy way out, by requiring the plant to be asymptotically stable. The effect of this was to allow us to prove Lemma 1, and to use the result of Lemma 2 with the operator $-1 + \frac{k \alpha}{s}$ applied to both sides of equation 18.

If F is unstable, this is not possible. The difficulty seems to lie in the fact that classical solutions of quadratic minimization problems demand application of the operator -1, requiring extraction of the left half plane poles and zeros of the function to which it is applied. By contrast, the result effectively derived in the equation $1 + \frac{k \alpha}{s} = \left[1 - k \alpha \right] \left[1 - k \alpha \right]^{-1} \left[1 - k \alpha \right]^{-1}$ amounts to a factorization of the function on the left side of the equation in which left half plane zeros only are factored out, and if F is unstable, left half plane poles are certainly not factored out. This sort of factorization appears to be behind any frequency domain description of the modern approach.

REFERENCES

Fig. 1. First Classical Control Arrangement

Fig. 2. Alternative Classical Control Arrangement

Fig. 3. Modern Control Arrangement

Fig. 4. Inclusion of Initial Conditions in the Classical Approach

Fig. 5. Definition of u_1 and u_0