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1. A variety of optimal control problems involving linear systems
with quadratic performance indices, and-several network theory
problems, require the computation of the limiting, or steady state,
solution of a matrix Riceati differentiai equation. It is the aim
of this paper to show that this solution can also be obtained by
computing the limiting solution of an associated matrix difference
equation. In many cases, this approéch appears to offer
significant computational advantages. ' _
2. Consider the classic optimal control problem: given the system
_ x = Fx + Gu : x(O) - Xy . | {1)
find the control which minimizes '

m Kl

J(xu,u) = { [u‘Ru + x“LLx] dt - S . (2)

wvhere R = R“ > 0 and where. [F,G] is completely controllable and

[F,L] .completely observable:. The solution is [1]
-1

we(t) = -R "G Mx(t) _ . . : (3)
where M= lim {P(t,t)) . . ‘(4)
. )
dP ~1..

.and where -4t - PF-+ F°P ~ PQR Gfﬁ + IL* ;_§(E1,t1} = 0 (5)

The minimumAvélﬁe:bf (2) 1is xaﬂxg; the. closed-loop system (1)

and (3) is asymptotiéally stable; and N is the symmetric positive
definite solution of the equation

'IIF+FII—HGR GII+LL=0 . (6)

'with the property that if ¢ is any other solution of (6), then
i-¢2>0.
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3. .The minimization problem stated in 2 can be reformulated so as to
.eliminate from the performance index the quadratic term in the state.

" Define a control by

v, =u + K'x . ¥)
- 50 that equation (1) becomes
% = Fix + Ga, . where Fj =F.-GK~ (8)

The matrix K in (8) is chosen so as to'make F; asymptotically
stable. Procedures for finding such- K are set out, for example,
in-{ll. The performance index is now, with Q = LL” -+ KRX®, . °

-]

J(xg,u) = JO [u;Rue - Zu;RK'x + x‘Qx]dt _ - _ (9)

Define P as the symmetric nonnegacivé definite solution of

. PF; + FIP = -Q ' (10)
Hence x"Qx = -x"PFix ~ x'Ffo = - %E'(x‘rx) + 2x'PGue by (8). ‘
. Subst;tute into (9): :

=]

J(xg,u) = Jolu;Rne + lx'(PG'-KR)ue]dt + x4Pxp - %:ﬂ {i'(T)Px(T)}(ll) :

Since the optimal closed-loop system is known to be asymptotically
stable, the last term in (11) is zero when J achieves its
minimum value. Setting H = PG ~ KR and

Ji{xo,u ) = I:[uekue'+ 2x Hue]dt (12)

1t is clear that the minimization of (12) subject to (8) is
equivalent to the minimizarion of (2) subject to (1), with the
minimizing cdntrols related by u’(t) = u;(t) - K'x(t). The
minimization of a performance index of the form (12) subject to (8)

is discussed in [3]. The results reported there rely on the
assumption that the pair [Fy,H] is completely observable, which in
our case is not true in general. However, since Fy 1is asymptoticall
stable, it may be shown that [Fy,H] need not be completely
observable for the results of [3] to be valid. It follows then from
[3] that a necessary and sufficient condition for the existence of

an optimal control is that there exist a number o > 0 such that

the matrix Z(s) = %(R-aI)+H’(sI—F1)—1G is positive real. The
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optimal cén;rol is then given by u;(t) ?-"R#I(G’H + H)x(t},

where ' -
' 1 = lin {ﬁ(t,t1)} S (18
L e B
‘and where - %% = PFy + FiP - (§G+H)R"1(G’§+H‘); P(ty,t1) = 0 (15)

Again, xgﬂxg' is the minimum value of (12); the optimal closed-l
loop system is asymptotically stable; and 1. is the symetric ;

nonpositive definite solution of
CiFy + PN - (36 + WRIGT 4 H) = 0 ' (16)

with the property that if ¢ is any other solution of (i6), then
| - 420 - (17)
Now since the optimal control u;(t) is known to exist, being
given by u;(t) = u’(t) + K’x(t): it follows that the condition
necessary for the existence of I as defined by (14) must be
 satisfied. Moreover, by considering (il1) and the fact that xaﬁxg
and xaﬁxo minimize (2) and (12), respectively, it follows that

. I =1+p - 8)
Guided by the bi-linear transformation s = (z-1)(z+l)}, which can
be used to define the z-transfer function of a discrete system from
the transfer function of a continuous system, we now define
matrices A, B, C, U and Y by the relations
‘ Py = (D)D) 6= 2D 2B H =G

U=R+ ¢~ (a+D) B + B-(a%#D) s ¥ = 2(A1+1)"15(A+1)Zig)

Substituting these into eqn. (16) results, after a lengthy .
manipulation, in the equation .

A“%A - ¥ - (A"9B4C) [U+B7¥B] (B ¥Atc) = O (20)
where the required inverse exists éince it can be shown that-
U+ B¥B = R + B (A"+D) [204Q) (A+1) !B, which is positive definite.
Egqn. {(20) may not have a unique solution. However, in view of (l7)
and the last of equs. (19), it is clear thét‘ @ must be the

nonpositive definite solution of (20) with the property that

¥ ~6>0 (21)
vhere ¢ is any other solution of (20). It now remains to show

that ¥ dis the limiting solution of a matrix difference equation.
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4. Consider the discrete-time minimization problem: given a system
x(o+l) = Ax(n) + Bu(n);- x(0) = xg, find the control sequence
{u’(k)} which minimizes Iy xp,u) = f (u” (k) Uulk) + 2" (K)Cu(k)]
where U=1U" >0, A& is asymptotica%ig stable, and [A,B] is
completely controllable. The theory of this problem is entirely
analogous to-that of the continuous—time problem of minimizing (12)
subject to (8). Moreover, whenever the matrices A, B, C and U
are related to the corresponding matfices of the continuvous-time
problem by (19), as they are in dur case, it ﬁay be showm that the

~ existence of the solution of the'continuous—-time problem implies the
existence of the solution of the discrete-time problem, and conmversely.
Therefore, the discrete-time problem has a solution in our case; it
can be shown to be given by u°(k) = ~[U+B°¥8] "L (B“¥A4C )% (k) where

¥ o 1im{¥(n,M)} (22)
and : W e
¥Y(n,N) = A°¥(ntl,N)A = [A°Y(ntl,N)B+C] [U+B“Y (n+l,N) B] [B“i‘(nﬂ,b(t%g—)i-c‘]

with Y(N,§) = 0.

The optimal closed-loop system turns out to be asymptotically stable,
which implies that ¥ is the symmetric nonpositive éefinite
solution of (20) which also satisfiesi(Zl). Bence Y= ¥, Thus

to compute @I in (4), we compute ,; —above, and make use of (18)

and the last equation of (19).
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