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1. A variety of optimal control problems involving l inear  systems 

with quadratic perfohance indices, and.several'network theory 

problems, require the computation of the l imiting,  o r  steady s ta te ,  

solution of a matrix Riccati d i f fe ren t ia l  equation. It is the aim 

of this paper t o  show that  th i s  solution,can also b e  obtained by 

computing the limiting solution of an associated matrix difference 

equation. I n  many cases, t h i s  approach appears t o  .offer 

significant computational advantages. 

2. Consider the c lass ic  optimal control  problem: given the system 

find the control which minimizes . _ .  

u = j [U-RU + X * L L - X I ~ ~  . . 
0 . 

(2) 

where R = R.. > 0 and where. IF,G] is completely control_lable and 
-. 

[F,L] .completely observable. The solution is 111 . . 

. u o ( ~ )  = -R-'G-IIX(~) 
. . (3) 

where ' n =. lim IP(t,tl)}. . . ( 4 )  
trcso 

.and where - a, = FF.+ F'F - FGR-~G-F * i.tf ; .Xt1 ,tl) - 0 ( 5 )  ' 
d t . .. 

. .  . 
The minimum value 'of (2) is xillxo; the, closed-loop system (1) .' 

and (3) is asymptotically stable;  and ll is the.synnnetric positive 

dei ini te  solution of the equation 

IIF + F'II - IIGR-'G'II + LL* = 0 .  (6) 

'with the property that  i f  Q is any other solution of (61, then 
- 
i i  - Q 2 0. 
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3.. .The minimization problem sta ted i n  2 can be reformulated so a s  to 
-. 

.eliminate from the performance index the quadratic term i n  the state.  

Define a control by 

u = u + KCx e (7) 
so that  equation (1) becomes 

4 = F l x + G u e  , where F l = F . - G K '  (8) 

The matrix K i n  (8) is chosen so as  to'.rnake F1 asymptotically 

stable. Procedures for  finding such K are  s e t  out, for example, 

i n [ 2 ] .  The performance index is -now, with Q = LL' + KXK', . ' 

rn 

Define P as  the symmetric nonnegative def ini te  solution of 

PFI + F;P = -Q (10) 
d Hence x'Qx = -x'PFlx - X'F~PX = - (x'ht) + Zx'PGu, by (8). 

. Substitute into  (9): 
rn 

~ ( 4 . u )  = jotu;~ue + Z I . ( P G - ~ U J ~ ~  + ~ 6 %  - lin &*(T)~~(T)I(II) 
Tw 

Since the optimal closed-loop system is known t o  be asymptotically 

stable,  the l a s t  term i n  (11) is zero when 3 achieves its 

minimum value. Setting H = PG - KFi and 

Jl(x0.u = [[upue+ Zx.Hu>dt (12) 

i t  is clear that  the  minimization of (12) subject t o  (8) is 

equivalent to the  minimization of (2) subject t o  (I), with the 

minimizing controls related by uo ( t )  = u i ( t )  1 ~ ' x ( t ) .  The 

minimization of a performance index of the  form (12) subject to  (8) 

is discussed i n  [3]. The resu l t s  reported there  r e ly  on the . . 

assumption tha t  the  pa i r  [F1,H] is completely observable, which i n  

our case is not t rue  i n  general. However, since Fl is asymptoticall. 

s table,  it may be shown that  [Fl,H] need not be completely 

observable for  the r e su l t s  of [3] to be val id .  It follows then from' 

131 that  a necessary and suff ic ient  condition for  the  existence bf 
an optimal control  is that  there ex i s t  a number a > 0 such that  

-1 the matrix Z(s) = %(R-aI)+H'(sT-F1) G is posi t ive  rea l .  The 



-1 ' 
optimal con t ro l  is then givcn by uL(t) = -R (G-11 + i Id)x(t) .  

'where 

i = l i m  ! P ( t , t l ) l  (14) 
t+- 

dP P F ~  +F;$ - (I;G+H)R-'(G'!+H'); ? ( t l , t l ) . = O  ( 1 5 )  a n d  where - - = 
d t 

.* . 
Again, x~fixo is t h e  minimum value of (12); the  optimal closed- 

loop sysrem is asymptotical ly s t ab le ;  and li, i s  t h e  s p e t r i c  . '  

nonpos i t ive  d e f i n i t e  so lu t ion  of 

with t h e  proper ty  t h a t  i f  i s  any o the r  s o l u t i o n  of (16), then 

i -  G z 0  (17) 

Now s i n c e  the  optimal  cont ro l  u,O(t) is known to e x i s t ,  being 

given by u O ( t )  = u 0 ( t )  f K'x(t), i t  fol lows t h a t  t h e  condit ion e - 
necessary f o r  t h e e x i s t e n c e  of If a s  defined by (14) must be 

s a t i s f i e d .  Moreover, by considering (11) and t h e  f a c t  t h a t  x~11xO 

and x&xo minimize (2) and (12), r e spec t ive ly ,  it follows t h a t  

n = i i + p  (18) 

Guided by t h e  b i - l inea r  transformation s = (2-l)(zfl), which can 

be used . to  de f ine  t h e  z- transfer  funct ion  of a d i s c r e t e  system from 

the  t r a n s f e r  funct ion  of a continuous system, we now def ine  

matr ices A, B ,  C,  U and Y by the  r e l a t i o n s  
-2 F = A I A - I  ; G = 2(A+I) B ; H = C; 

v' = R + c-(A+I)-~B + B-(A*+I)-'c; $=  ~(A*.+I)-~I;(A+I)-~ 
(19) - .  

Subs t i tu t ing  these  i n t o  eqn. (16) r e s u l t s ,  after a lengthy 

manipulation, i n  t h e  equation 

A'YA - - (A'GB~c) [u+B-GBI-~ (B'<A+C*) = o (20) 

where t h e  requi red  inverse  e x i s t s  s ince  it can b e  shown t h a t  

U + B'?B = R + B'(A'+I)-~[~~~](A+I)-~B, which is p o s i t i v e  d e f i n i t e .  

Eqn. (20) may no t  have a unique so lu t ion .  However, i n  view of (17) 
a 

and the  l a s t  of eqns. (19), i t  is c l e a r  t h a t  Y must be the  

nonposi t ive d e f i n i t e  so lu t ion  of (20)  wi th  t h e  property that '  
- 
8 - $ > 0  - (21) 

where C is any o the r  so lu t ion  of (20). It now remains t o  show 

t h a t  Y is t h e  l imi t ing  so lu t ion  of a matr ix d i f f e rence  equation. 



4. Consider the discrete-time minimization problem: given a system 

x(n+l) = A x h )  + Bu(n) ; x(0) = so, find the control sequence 
m 

{u0(k)} which minimizes Jd(so,u) = 1 [u ' (k)~u(k)  + 2xa(k)Cu(k)l 
k=o where U = U' > 0, A is asymptotica~ly s table ,  and [A,B]  is 

completely controllable.  The theory of th i s  problem is en t i re ly  

analogous to that  of the continuous-time problem of minimizing (12) 

subject to  (8). Xoreover, whenever the  matrices A, B, C and U 

are  related to  the corresponding matrices of the continuous-time 

problem by (19). as  they a r e  i n  our case, it may be shown that  the 

existence of the solution of the'continuous-time problem implies the 

existence of the solution of the  discrete-time problem, and conversely. 

Therefore, the discrete-time problem has a solution i n  our case; i t  

can be shown t o  be given by ue(k) = -[U+B'YBI-~(B''YA+C~)X(~) where 

w-" and 
Y(n,N) = A-Y (n t l  ,N)A - [ ~ ' ~ ( n f l  ,N)B+C] [u+B'Y(~+~,N)B~~IB'Y(~+~,?~)A+C'I 

. . 
(23) 

with +(N,N) = 0. 

The optimal closed-loop system turns out to  be.asymptctically s table ,  

which implies tha t  b is the  symmetric nonpositive d e f i n i t e  .. 
solution of (20) which also s a t i s f i e s '  (21). Hence Y.= y. Thus 

to  compute 11 i n  (4), we compute Y above, gnd- make use o f .  (18) 

and the i a s t  equation of (19). 
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