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Transfer Function Approximation and Identification
Using Magnitude and Phase Criteria
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Abstract—In this paper, we show how convex optimiza-
tion can be used for model reduction and identification
of transfer functions. Two different methods are presented.
In the first method magnitude functions are matched, and
in the second method phase functions are matched. The
weighted error bounds have direct interpretation in a Bode
diagram. Both methods are suitable to engineers working
with Bode diagrams. Furthermore, we see that transfer
functions that have similar magnitude or phase functions also
have a small relative H-infinity error under some minimum
phase assumptions. The error bounds come from bounds
associated with the Hilbert transform operator restricted in
its application to rational transfer functions. Two examples
are included to illustrate the results.

Keywords— Model approximation, model reduction, system
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I. INTRODUCTION

It has become increasingly popular in control and sys-
tems theory to use convex optimization to solve problems
of various nature, see, for example, [3], [4]. One reason
is the efficient software available for solving semidefinite
programs in polynomial time. Another reason is that many
well-known problems, such as H., optimization, can be
cast as semidefinite programs using Linear Matrix Inequal-
ities (LMIs). It is, however, not known how to use these
tools to obtain optimal transfer function approximations in
the H,, norm. The reason is a nonconvex rank constraint
that is needed to enforce the degree of the approximation
[4, Corollary 7.11]. For this reason, various suboptimal
methods, such as balanced truncation [4], [9], [10], are
often being used for model reduction.

One possibility for obtaining an optimal model reduction
problem that can be solved in polynomial time is to change
the norm. The Hankel norm model reduction problem
can be solved in polynomial time, and often yields good
approximations in H,, norm as well, see [5]. Other new
interesting approaches are to use the real part norm, see [8],
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or a special parametrization of unstable transfer functions
together with the L., norm, see [17]. In particular, the
methods in [8], [17] give tighter lower bounds on the H,
approximation error than Hankel approximation, easily
incorporate weights, and can be used with samples of
frequency data or the impulse response. This opens up the
possibility of using the methods in [8], [17] for system
identification as well.

In this paper, we show that transfer functions of given
degree can be matched optimally to magnitude and phase
data in polynomial time, using standard LMI solvers. The
proposed methods share some advantages with the methods
in [8], [17], such as the possibility of using weights and
samples of data, but also have direct interpretations in Bode
diagrams. Two examples of the problems we solve in the
SISO case (for ease of illustration) are

|| log |Gl —log |G]||cc — min )
|larg G, — arg G| o — min 2)

where G is a given transfer function, and G, is a stable
approximation of user-specified degree. Since we match
either magnitude or phase, we must put additional assump-
tions on GG, to obtain unique solutions. Generally, we will
require (G, to be minimum phase and stable. This should
be the situation of most interest. However, GG, can easily
be modified to include unstable poles or zeros. Two other
examples of the problems we solve in the SISO case (for
ease of illustration) are to find GG, such that

log [ws(jw)| < log|Ga(jw)| —log|G(jw)l
< —log|wi(jw)| (3)

arg wp(jw) < arg Gq(jw) — arg G(jw)
< —argwi(jw) (4

for all w, where wy,ws are user-specified weights. In (3)
it is assumed that |wi|lcc < 1 and |Jwz|lec < 1, and in
(4) it is assumed that argw; < 0 and argws < 0. For
the magnitude approximation case, we will be able to deal
with MIMO systems as well. For the phase approximation
case, we will not deal with MIMO systems. One reason
for this is the splintering of definition of what phase
is in the MIMO case [1], [7], [11]. Furthermore, we
obtain a priori bounds on the relative error in the H.,
norm, ||G7Y(G — G,)||s. Many other methods, such as
optimal Hankel norm and real part norm approximation,
give a priori bounds on the additive error |G — G4l TO
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go from an additive bound to a relative bound using just
the submultiplicative property of the H,, norm is generally
too conservative. When reducing plant models that should
be used in feedback control design, the relative error is
often a better reduction criterion, see [10, p.101].

To illustrate the methods developed here, two exam-
ples are included. They show how magnitude and phase
approximation can be used for model reduction, system
identification, and filter design in Bode diagrams. Hence,
the results should be of interest to both control and signal
processing engineers.

The organization of the paper is as follows. In Section II,
we formulate and solve the magnitude approximation
problem. In particular, how the problem is formulated as
a semidefinite program is explained in Section II-A. In
Section III, we formulate and solve the phase approxi-
mation problem. The details of the semidefinite program
are given in Section III-A. The methods are illustrated
in Section IV, where two different examples are given.
Finally, in Section V we have conclusions and suggestions
for future work. Proof of all results and further material
and examples are included in [16].

Preliminaries: The modulus on C is denoted by | - |.
The p singular values of a p X p complex matrix M are
denoted by o;(M), i = 1...p, in decreasing order. The
maximum and minimum singular values are also denoted
by o(M) and o(M), respectively. M* is the complex
conjugate transpose of M. The L., norm |||l of ap X p
matrix function G(s) of a complex variable s is defined
by |G|l := esssup,, 7(G(jw)), and G € Ly if |Gl
is finite. A matrix function G € H if it is bounded and
analytic in the open complex right half plane (C.), and
G € HZ if it is bounded and analytic in the open left
half plane (C_). G € RHo(RLy) if it is in Hoo(Loo)
and is rational in s with real coefficients. Furthermore,
G € R,H, if G € RH, and has McMillan degree less
than or equal to n. The conjugate system G~ is defined
by G~(s) := G(—s)T (and G(jw)* = G~(jw) if G
has real coefficients). A square system G is all-pass if
G(jw)*G(jw) = I. We call a matrix function G minimum
phase if it has full rank in C, and stable if it belongs to
Ho.

II. MAGNITUDE APPROXIMATION

In this section, we formulate an optimization problem
that allow us to approximate a transfer function G with
another transfer function GG, (of smaller degree) such
that the gains 0;(G(jw)) and 0;(G,(jw)) are close. The
following assumptions on the model G and the weights
w1, we Will be used for magnitude approximation:

Assumption 1: G, G~ wi,wi, wo,wy' € RLoe,
wy, we are scalar, and [|w1]jeo < 1, ||we|leo < 1.

Remark 1 (Strictly proper models): The condition
G~! € RL., in Assumption 1 excludes strictly proper
models G and G with zeros on the imaginary axis. The
condition G~! € RL., can be relaxed, however. For
example, one can instead require that there is a positive

integer n such that lim,_, ., det(s"G(s)) # 0. The reason
for the conditions on G is to easily guarantee that there
exists a minimum phase spectral factor in R, H.

The optimization problem we shall try to solve is: Given
a px p MIMO transfer function G and weights w1, wy that
satisfy Assumption 1, and a positive integer m, find v and
an approximation G, such that

mén 7, subject to 5)
7,Ga

w2l _ iy VTED
—F—= < a((GT G, <o——, (6
T <ol G0 < o (©)

v>0, and Go,G,' € R, Hy, (N

for all w and ¢ = 1...p. As we shall see in this section,
in the SISO case (p = 1), the problem (5)—(7) is a
quasiconvex minimization problem (see [2, p.145]) and we
will find the optimal approximation G, in R, Ho.. In the
MIMO case (p > 1), we will find a solution if we allow G,
to belong to a set larger than R,, H.. This set contains
R, Hy and is a subset of IR,,,H.,. Next, we motivate
why it is interesting to find solutions to (5)—(7).

The constraints (6) can be reformulated in a number of
ways, as is seen in the following theorem.

Theorem 1: Assume that wq,ws have no zeros on the
imaginary axis. Then (6) is equivalent to each of

01G9)] _ oo < VI
— (G, G < — 8
T <ol(@ o) < e ®)
||w1G71Ga||oo S V 1 +'Y (9)
and  |lwy G5 'Glloo < /147,
and implies
woli)| _ oilGuliw) _ VIFT o

VI+y 7 0i(Gw) T u(w)]
forall w,and i =1...p.

The following corollary to Theorem 1 shows that if an
approximation G, satisfies (6), then its gains 0;(G,(jw))
are close to 0;(G(jw)). In particular, it shows that the
difference between the logarithm of the singular values
of G and G, is bounded. That is, the distance between
the curves typically plotted for MIMO systems in Bode
magnitude plots, is bounded.

Corollary 2: The inequalities (6) imply

1
~5 log(1 + ) + log [wa (jw)|
<logoi(Ga(jw)) —logoi(G(jw))
1
< g log(1+7) —loglwi(jw)| (1)

forall w,and ¢ =1...p.

Remark 2 (Constraints on vy and wi,ws): From
the previous inequalities, it should be clear why we
require v > 0 and [[wifee < 1, |lwallee < 1. If these
conditions are violated, it is possible that a solution where
G.(jw) = G(jw), for some or all w, does not satisfy
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Fig. 1. The interpretation of the weights wi, wa, and the constant
~. The full line represents the model G, the dashed lines represent the
bounds with v = 0, and the dash-dotted lines the relaxed bounds with
~v = 1. The magnitude of the sought approximation G, should be within
the bounds with the smallest possible ~.

the constraints (6). This is obviously undesirable in an
approximation problem.

The bounds (11) and the parameter v have a clear inter-
pretation in a Bode diagram, see Fig. 1. When v = 0 we
are looking for G, with magnitude function |G, (jw)| that
satisfies the tightest bounds in Fig. 1. These bounds are
given by w; and wy. There may be such an approximation
or not, depending on the weights w;,ws and model G.
When v > 0 the bounds are relaxed uniformly, as is
seen in Fig. 1. Hence, when ~ is minimized in (5), we
are looking for an approximation that satisfies the tightest
possible bounds. A similar situation holds in the MIMO
case, but then for each singular value, as seen in (6) and
(&)—(11).

Remark 3 (Equivalence in SISO case): When G s
SISO (p = 1) the inequalities (6) and (8)—(11) are stating
the same thing, since o1(G) = |G|, and (11) is equivalent
to (6). Hence, in the scalar case, if we solve (5)—(7) with
w; = wy = 1, a solution to the problem (1) is obtained.

Remark 4 (MIMO weights): 1t is possible to use MIMO
weights instead of scalar weights w1, w2. Then one should
group the weights together with G, i.e., G — W,GW, and
all the analysis in this section carries through. In general,
it seems enough to use scalar weights, however. MIMO
weights could be useful if one would like to have different
approximation accuracy for different o; in (6) and (8)—
(10). Then one needs to carefully design the directional

1 om 1 m— 1
(D5 0™™ Uy _p®™ 2 4+ + b
—Jjw (Vo ™ T2 DY)

: (12)

PP 2m | PP 2m—2 pp
b5, w=™ + by, _ow + ...+ b

amplification of the weights.

A. Parametrization and the Semidefinite Program

In this section, we see how (5)—(7) is translated into
a semidefinite program. First we introduce the para-
metrization of G,. The parametrization is critical to be
able to formulate the problem as a semidefinite program.
Furthermore, it is also important that the parametrization
contains all G, that are interesting. It is shown in Theo-
rem 3 that the following parametrization is a good choice
and satisfies these conditions. Let m be a positive integer
(which will turn out to be related to the McMillan degree of
the approximant G,) and define an even scalar polynomial

2m—2 4

2 2 2
A (W) 1= W™ + agm_ow ...+ asw” + ag,

and a hermitian polynomial matrix B,,(w) given by (12)
where {a;} and {bzk}, 0<i<2m,1<k<j<p,are
the decision variables. Notice that B,, (w) = B,,(—w)? =
By (w)* € CP*P. The polynomial a,,(w?) has m decision
variables, and B,,(w) has (p/2)(2pm + p + 1) decision
variables.

Theorem 3: Assume that G,w;,wo satisfy Assump-
tion 1, and that the integer m and v > 0 are fixed. If
there is a G, € R,,H,, that satisfies (6), then there exist
Qm, By, that satisfy all of

w1 (jw)* B (w) = (1 +7)am (W) (GG (jw) <0 (13)
|wa (jw)|?am (W) (GG*) (jw) = (1 +7) By (w) <0 (14)
am(w?) >0 (15)

for all w. Conversely, if there are a.,,, B,, that satisfy (13)—
(15) for all w, then there is a G, € Ry, H that satisfies
(6) and G;' € Ry pHoo.

Remark 5 (Equivalence in SISO case): Theorem 3 is
stronger in the SISO case when p = 1. Then there is an
approximation GG, of McMillan degree m that satisfies (6)
if and only if (13)-(15) hold. In the MIMO case, a G,
of McMillan degree m can only result when the decision
variables in a,,(w?) and B,,(w) lie in a proper algebraic
variety.

For fixed v, (13)—(15) is a convex feasibility problem in the
decision variables {a;} and {b] *1. This is because a,, and
B, are linear in the decision variables. Using Theorem 3
in the SISO case, we can thus replace (6)—(7) with the
convex feasibility problem (13)—(15). This implies that the
minimization problem (5)—(7) is quasiconvex [2, p.145],
and that it can be solved by means of a bisection algorithm.

In the MIMO case, we can still replace (6)—(7) with

(13)—(15), and we again obtain a quasiconvex minimization
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problem. However, we can now only guarantee that the so-
lutions belong to I2,,,H .. More precisely, we can obtain
those approximations G, € R,,,H. that can be written
as G,G% = By, /an,. This includes all G, € R, Hoo.

The inequalities (13)—(15) consist of an infinite number
of constraints because of the dependence on w. If a state-
space realization of G(jw) is known, such as in a typical
model reduction situation, this dependence can be removed
using either the Kalman-Yakubovich-Popov (KYP) lemma
[15] or a sum of squares decomposition (in SISO case)
[13], [14]. If G(jw) is only known on a grid {wy}, such
as in the typical system identification situation, (13)—(14)
can be solved directly for the unknowns {a;} and {b’*} by
an LMI solver. Notice, however, that we must also make
sure that a,,(w?) > 0 and B,,(w) > 0 for all w to obtain
G.,G;t € RypHoo. This can be ensured by using the
KYP lemma.

B. Relative H., Error Bounds

In this section, we see that not only does (6) give simple
bounds on the singular values, as shown in Theorem 1 and
Corollary 2, but we can also obtain a priori bounds on the
relative H., norm error. As is discussed in [10], relative
error bounds on plant models are more useful than additive
bounds if the plant is used in closed-loop systems.

Theorem 4: Assume that G, G, € RL,. The inequali-
ties

V147 <oi((GT1G)(jw) < 1+ (16)
for all w and 2 = 1...p, are equivalent to
||(G71Ga)(GilGa)* - [”oo <7 a17)
and [[(G,'G)(G'G) = T]|oo <.
If furthermore (G~'G,),(G,'G) € R,H. and
(G1G,)(0) = I, then (16) implies
IGTHG = Ga)lloe < 2n7yy/1+7 as)

and  [|G7HG — Go)lloo < 2071+ 7.
The second part of Theorem 4 shows that if G~1G,, is
rational, biproper, stable, and minimum phase, GG, can be
proven to be a fine approximation of G even if we have
only matched magnitude data in (16) and (17). This is
because the phase can be reconstructed from the magnitude
with the Hilbert transform, and the error propagation can
be bounded for rational functions. Notice in particular
that the bound depends on the model order n. This is
unfortunate but necessary since the Hilbert transform is not
a bounded mapping for infinite-dimensional systems. For
more details and comments about the tightness of bounds
of this sort, see [1].

III. PHASE APPROXIMATION

In this section, we solve the phase approximation prob-
lem. We will approximate a transfer function G with
another transfer function G, (of smaller degree) such
that the phases arg G(jw) and argG,(jw) are close.
The solution is similar to the magnitude case, but the

parametrization is more complicated here. In particular, we
only consider SISO problems. The reason is the splintering
of the definition of phase of a MIMO system. For example,
the phase of a MIMO system can be defined via phase
functions, see [1], [11], or via the eigenvalues of G(jw),
see [7]. How to construct the parametrization in Section III-
A for the MIMO case is also less obvious.

The approximations that we obtain here will belong to
a subset (Q,,, of the rational transfer functions. The set is
defined as

@ = (6 Gls) = L. frg ar

Hurwitz polynomials, deg f(s) 4+ degg(s) = m}.

If G, € @, it is minimum phase since the zeros are in
the left complex half plane. Because we put restrictions
on arg G,(jw) in this section, we can often control the
stability and McMillan degree of the approximants G, €
@ as well. See Lemma 6.

Before stating the optimization problem, we need some
assumptions on the model GG and the weights w1, wo.

Assumption 2: G,wi,ws € RL. and are scalar,
G,wi,ws have no zeros on the imaginary axis,
argwi (jw) < 0,argws(jw) < 0 for all w, and (without
loss of generality) arg G(0) = argw;(0) = argwy(0) =
0.
The argument function is usually only defined modulo 27.
To obtain a well-defined argument function, we make the
argument function continuous for all w and fix the value of
the argument at w = 0. This is always possible here since
zeros and poles on the imaginary axis are not allowed. This
is for convenience, though it is still possible otherwise, to
avoid having to consider small indentations in the left or
right complex half plane like in Nyquist D-contours.

Now the optimization problem can be formulated. Given
a transfer function G and weights wy,wsy that satisfy
Assumption 2, and an integer m, find ¢ and G, such that

mén ¢, subject to (19)
—¢ +argwy(jw) < arg G, (jw) — arg G(jw)
< ¢ —argw (jw), (20)

0< o< g 26 — 7 < argw (jw) + argwa(jw), (21)
Ga € Qum, (22)

for all w. This problem is almost completely analogous to
magnitude approximation (5)—(7). The constraint (20) has
a clear interpretation in a Bode diagram. The constant ¢
plays here the role that y did in magnitude approximation.
If ¢ > 0 it means that the phase bounds are relaxed, see
Fig. 2. Hence, in the minimization problem we will find
the approximation GG, that satisfies the tightest possible
bounds. It will be shown in Section III-A that (19)-(22)
becomes a quasiconvex minimization problem.

There are two major differences between magnitude and
phase approximation. These are contained in (21). Firstly,
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Fig. 2. The interpretation of the weights wi, w2, and the constant
¢. The full line represents the model G, the dashed lines represent the
bounds with ¢ = 0, and the dash-dotted lines the relaxed bounds with
¢ = 10 degrees. The argument of the approximation G, should be within
the bounds with the smallest possible ¢.

there is an upper bound on the relaxation ¢, and secondly,
there is a constraint on the weights w;, ws and ¢. Hence,
whereas we always find solutions in the magnitude case
(for sufficiently large ), in the phase case, there are
problems that have no feasible solution. In case of an
infeasible problem, one needs to increase the model order
m, or modify the weights.

Remark 6: The assumption 2¢ — 7 < argwi(jw) +
arg ws(jw) < (6 — argwy (jw)) + (6 — argwa(juw)) < 7
means that the relaxed bounds in Fig. 2 are never allowed
to be more than 180 degrees apart. The reason for this
assumption is that we will use Cartesian coordinates to
obtain a convex feasibility problem. The Cartesian coor-
dinates simplify the parametrization and ensure that the
arguments of G and G, are always on the same branch.
Of course, this also restrict us from going into different
branches.

Remark 7: If the weights arg w; and argwy are chosen
to be zero in (19)—(22), a solution to (2) is obtained.
It should also be clear why we assume argw; < 0
and argws < 0, since otherwise with ¢ = 0 a perfect
approximation arg G(jw) = argG,(jw) would not be
allowed.

A. Parametrization and the Semidefinite Program
In this section, we show how (19)—(22) is translated
into a semidefinite program. First we introduce the para-
metrization that is used to obtain GG,. The parametrization
is less direct in this case, but it is shown in Theorem 5
that it is appropriate. Let m be a positive integer (which
will turn out to be related to the order of GG,) and define
m
T(s) =1+ Z t;s', (23)
i=1
where {t;} are the m decision variables. The poly-
nomial 7;, is used to define the real functions

em,1 (W), tm 2(W), dm,1 (W), dm 2(w) as

(W1 G T ) (jw) =: Cm,l(w) +jdm,l("‘})
(wQT;‘:zG) (j(U) = cm,Q(W) +.jdm,2(w)'

Notice that these functions are linear in the decision
variables {t;}, since G, w1, ws are fixed. These functions
Cm,1,Cm,2,dm,1,dm,2 are used to find {¢;}, which are
used to construct T, (s), which in turn gives G,(s). The
following theorem is the phase approximation counterpart
of Theorem 3.

Theorem 5: Assume that G,w;,wy satisfy Assump-
tion 2, that ¢ is fixed and satisfies (21), and m is a fixed
positive integer. Then there is a G, € @, that satisfies
(20) if and only if there are ¢, 1, Cm,2, dm,1, dm,2, defined
by (24), that satisfy

dm1(w) < (tan @)y 1 (w)
and  dy, 2(w) < (tan@)cm, 2(w)

(24)

(25)

for all w.

The following lemma may be used to to control the
stability and McMillan degree of G, € Q..

Lemma 6: Assume that G € RH, is minimum phase
and has relative degree 7. Assume furthermore that

|arg Go(jw) —arg G(jw)| <7/2, as w — o0. (26)

Then G, € @, has relative degree 7, G4, € Ruy+m Hoo,
and m = n + 2n, for some integer n > 0. ’

Notice that Lemma 6 says that it only makes sense to
use m equal to the relative degree of G plus 0,2,4,6, ...
Furthermore, each time m is increased by two, the McMil-
lan degree of the sought approximation GG, increases by
one. One can easily enforce (26) by proper choice of the
weight functions w; and ws. If one does not prescribe
bounds such that (26) holds, the obtained approximation
(G, may have different relative degree than G has. This is
usually undesirable.

Theorem 5 shows that for fixed ¢ and m, (20)-(22)
is a convex feasibility problem, since (25) is linear in
the unknowns {¢;}. Again, this implies that (19)-(22)
is a quasiconvex minimization problem. In the model
reduction situation, there are infinitely many constraints
in (25) because of the dependence on w. Just as in the
magnitude case, the KYP lemma can be used to tackle this.
An alternative, since we here only consider SISO transfer
functions, is to use sum of squares decompositions (SOS)
[13], [14]. In the system identification situation, there are
only finitely many data points and we only need to solve
a linear program.

B. Relative H., Error Bounds

In this section, we state a result about how systems
that have similar phases also can have a small relative
H error. Just as in Section II-B, the result is based on
bounds on the Hilbert transform operator restricted in its
application to rational transfer functions. These are derived
in [1].
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The phase function is a way of representing the argu-
ment. We call &4 the phase function of G when
Gjw)

P () 1= oo = exp(2jar Gljw)).

Notice that phase functions are all-pass functions. We have
the following counterpart to Theorem 4.

Theorem 7: Assume that G, G, € RL,, have no zeros
on the imaginary axis and that € € [0,2). Then

— arcsin% < arg G, (jw) — arg G(jw) < arcsin% 27

for all w is equivalent to

HCI)GQ — (I)G”oo <e. (28)

If furthermore (G,'G),(G71G,) € Ry, Hoo,
(G;1G)(00) =1, € < 1/(2n), then (27) implies

IG7HG — Go) oo < 2ne/(1 — 2ne) 29)

G HG — Go)loo < 2ne/(1 — 2ne).

Hence, not only do we get a good match of the phase if

the phase model reduction problem is solved, we may also

get guarantees that the transfer functions G and G, are

close. This is of course provided that the minimum phase
property (G,'G),(G71G,) € R, H holds.

1V. EXAMPLES

MATLAB together with SeDuMi [18] and YALMIP [6]
are used for the examples.

Example 1 (Model reduction—Magnitude): Using
magnitude model reduction on the 35-th order model

35
s+ 2k
G(S):Hs+2k—1

k=1
with m = 2 and w; = wy = 1 we obtain an approximation

Gu(s) = 1.035s? + 42.09s 4 138.2
T s2 412635+ 13.15

with minimum relaxation v = 0.1. Hence, according to
Corollary 2, the magnitude curves will be no more than
0.38 dB apart for all w. That the bound is tight can be
seen in Fig. 3.

Example 2 (System identification — Phase): Here we
use the phase system identification method to construct
a low-pass filter that has linear phase for low frequencies.
It is often desirable to have filters with linear phase, since
these do not distort the signal (compare with a time delay).
In discrete time, one can easily construct linear phase FIR
filters. However, here we are concerned with continuous-
time rational filters. We will therefore fit a rational transfer
function G, (s) to frequency samples G(jwy) generated by
a discrete-time linear phase FIR filter

G(]w) _ che—lew
=0

with bandwidth 0.5 rad/s and {w;} = {0,0.01,...,0.7}.
The coefficients {¢;} are given by firl(5,0.5) in
MATLAB. We choose to look for G, in Q5 (m = 5). Then

Bode Diagram
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Fig. 3. The model G and the second-order approximation GG, obtained
in Example 1. The uniform bounds are plotted with dashed lines. Here
v = 0.1, which gives an error bound of 0.38 dB.
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Fig. 4. The frequency data G(jwy) (A) and the Sth-order approximation
G, (B) from Example 2. The low-pass filter G, designed with the phase
system identification method, has linear phase behavior up to frequency
0.7 rad/s.

the minimum relaxation becomes ¢ = 0.013 rad, and G,
becomes

Ga(s) =
0.01472
5% 4+ 1.011s% + 0.9101s3 + 0.4047s2 + 0.1193s + 0.01472°
As can be seen in Fig. 4, the phase of the filter G, is very
close to the phase of G. The largest phase error on {wy}
is 0.013 rad, and the bandwidth of G, is approximately
0.5 rad/s.

V. CONCLUSIONS

We have shown how one can match transfer functions
of given degree to magnitude and phase data using stan-
dard LMI solvers. We considered both the case where a
continuum of data was available (model reduction case),
and when only samples of data (system identification case)
was available. In the magnitude case, we dealt with both
SISO and MIMO systems, whereas in the phase case only
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SISO systems were considered. We also showed that under
the assumption that the systems were stable and minimum
phase, systems that have bounded magnitude or phase error
also satisfy a simple a priori bound on the relative H,
error. We illustrated the results in Bode diagrams, where
the results are easily understood, and with two examples.
The examples showed that the results are useful in, for
example, model reduction and system identification.

An interesting topic for future research is how to com-
bine the methods and match both magnitude and phase
simultaneously. For this, methods from [12] could be
useful. Furthermore, how to deal with phase approximation
for MIMO systems is still an open issue. There are also
many applications where the results could be useful. For
example, in the design of band-pass linear phase filters.
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