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Abstract: In many control design problems it is usually of great interest to have
direct control over the closed-loop bandwidth and the transfer function from
reference to plant output. The Internal Model Control (IMC) design method
for stable plants offers this feature. However, there are some shortcomings,
inadequacies and limitations with the IMC design method for both stable and
unstable plants which will be exposed in this paper. With the aim of keeping
the desired features of the IMC design method, we propose a new H∞ control
design method which addresses open issues and also can be used for both stable
or unstable plants in a coherent framework. Copyright c©2005 IFAC

Keywords: H∞ Control, Internal Model Control, Model Matching, Robust
Tracking, Adaptive Control

1. INTRODUCTION

In this paper, we propose a new controller de-
sign method that preserves the desirable fea-
tures and much of the simplicity of the Internal
Model Control (IMC) design method (Morari and
Zafiriou, 1989) but extends its effective range of
application. In particular, we shall capitalize on
the exceptional feature of the IMC design method
which in principle allows—for stable plants with
no jω-axis zeros—the design of a controller that
achieves a closed-loop magnitude response exactly
equal to that of a desired transfer function. In
the IMC framework, this choice of transfer func-
tion is known as the IMC filter, as explained in
Section 2, and it permits inclusion of a single
parameter which tunes the bandwidth of the de-
signed closed-loop system. This important bonus
gives IMC extra appeal in the area of adaptive
robust control where it is desired to have direct
control over the closed-loop bandwidth and hence
the ability to progressively increase the bandwidth
in identification and controller re-design. (Lee et
al., 1995; Anderson, 2002).
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For unstable plants, however, the IMC scheme
is much more involved, to say the least. For
example, the above-mentioned single design pa-
rameter does not directly tune the closed-loop
bandwidth (Morari and Zafiriou, 1989; Campi et
al., 1982). Research directed at finding solutions
for the above-mentioned problems have resulted in
design methods which are nonetheless application-
specific (e.g. excluding unstable plants with un-
stable zeros, and requiring additional parameter
tuning to trade-off the magnitude of the overshoot
and the settling time in the step response) (Campi
et al., 1982; Lee et al., 2001).

Even for stable plants, the IMC design method
may result in an unacceptable design, e.g. pole-
zero cancellation may occur very close to the jω-
axis, and the design method cannot handle plants
with jω-axis zeros.

The IMC design method also deals specifically
with the transfer function from input r1 to out-
put y in Fig. 1, which is the complementary
sensitivity Tyr1

= PC/(1 + PC), by setting its
magnitude response (see Section 2), but it does
not explicitly handle the size of other trans-
fer functions (Tyr2

,Tur1
,Tur2

). However, the other
three transfer functions do relate to certain input-
output properties of a feedback loop as discussed
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Fig. 1. Standard Feedback Configuration

in Section 2, and the IMC design method may fail
to ensure that their values are acceptable.

We shall introduce an H∞ controller design
method with the prime intention of maintaining
the desirable feature of the IMC discussed above
(including control over the closed-loop bandwidth
via adjustment of a single parameter), but also
addressing the potential difficulties with the IMC
design method (Section 3). This proposed con-
troller design method can be used for both stable
and unstable plants and extends the domain of
applicability by addressing some of the IMC lim-
itations, which are pointed out in Section 2 and
addressed in Section 3. The proposed controller
design method of Section 4 relies on an H∞ con-
trol problem that can be easily solved using stan-
dard software. The versatility of the proposed H∞

design technique is illustrated in Section 5.

2. A CRITIQUE OF IMC

We shall outline the IMC design method for
both stable and unstable plants in order to high-
light further the difficulties and the circumstances
where the IMC design method cannot be properly
used, or its applicability is limited by restrictive
assumptions, or it fails to provide a good design.

Consider the unity feedback system in Fig. 1 with
the closed-loop mapping given by

[

y
u

]

=

[

PC
1+PC

P
1+PC

C
1+PC

1
1+PC

]

[

r1

r2

]

= H(P,C)

[

r1

r2

]

(1)

for which H(P, C) ∈ RH∞ satisfies internal sta-
bility requirements (Zhou et al., 1996). We shall
explore this relationship and the requirements of
internal stability for the IMC design method in
the sequel.

Following (Morari and Zafiriou, 1989), stable
plants, which are simpler, are treated separately
from unstable plants. Recall the feedback system
in Fig. 1 and suppose P ∈ RH∞ with no jω-
axis zero 2 . Decompose P multiplicatively into a
stable all-pass Pa, and a stable minimum-phase
Pm component, that is

P = Pa Pm . (2)

The design goal is approached by choosing an
“IMC filter transfer function” F (s) such that with
an appropriate controller, the closed-loop transfer
function is

Tyr =
PC

1 + PC
= PaF (3)

2 Note that the decomposition in Equation (2) cannot be
achieved if P has a jω-axis zero.

thus |Tyr1
| = |F |. A common choice for F is

F =

(

λ

s + λ

)n

(4)

for some λ which specifies the bandwidth of Tyr1
,

and some positive integer n which should be at
least equal to the relative degree of the plant. The
so-called Q-parameter defining the controller

C =
Q

1 − PQ
(5)

which achieves (3) is easily found to be Q = P−1
m F

and |Tyr1
| = |F |.

Evidently Q ∈ RH∞, provided that F ∈ RH∞

and the relative degree of F is at least equal to
that of Pm, guarantees internal stability with the
parameterization given in (5).

Note that in terms of Youla-Kucera parameter-
ization (Youla et al., 1976; Kucera, 1979) ideas,
Equation (5) is a formula for all stabilizing con-
trollers given stability of P . Let P = NM−1,
with N and M right coprime over RH∞, and let
C0 = UV −1, with U and V right coprime over
RH∞, be a controller that internally stabilizes the
feedback system in Fig. 1. Then all controllers for
which the feedback system in Fig. 1 is internally
stable are given by C = (U + MQ̂)/(V − NQ̂)

for any Q̂ ∈ RH∞. Then for P ∈ RH∞, choosing
N = P , M = 1, U = 0 and V = 1 will result in
the parameterization given in Equation (5).

The above discussions confirm the simplicity and
efficiency of the design method for stable plants.
Nevertheless, the method has limitations, depends
on restrictive assumptions and gives rise to certain
open problems that we will explain below.

The IMC design method for unstable plants, how-
ever, requires substantial adjustment (Morari and
Zafiriou, 1989). Let us again seek a controller
parameterization for the design of C as in Equa-
tion (5) and develop the requirements on C that
ensure internal stability. Since

H(P, C) =

[

PQ (1 − PQ)P
Q 1 − PQ

]

∈ RH∞ (6)

it is necessary and sufficient that following con-
ditions be satisfied: i. Q ∈ RH∞ as before and
ii. (1 − PQ) = 0 at the closed right half-plane
poles of P (Morari and Zafiriou, 1989, Thm. 5.1-
1). Hence, the parameterization in Equation (5)
ought to be evolved to meet these conditions on
Q. All Q for which 1−PQ = 0 at the closed right
half-plane poles of P are given in (Morari and
Zafiriou, 1989, Thm. 5.1-2) through the introduc-
tion of a two-step procedure for parameterization
of stabilizing controllers which is indeed an al-
ternative to the standard Youla parameterization
discussed above.

However, notice that any choice of F ∈ RH∞

with relative degree of at least that of P , with the
closed right half-plane poles ai, and additionally
such that

[Pa(s) F (s)]s=ai
= 1 (7)



will result, after retaining the choice Q = P−1
m F ,

in a stabilizing controller achieving Tyr1
= PaF .

Evidently, we cannot expect that the choice F as
in (4) will meet the requirement in (7). A different
transfer function for the filter F is given which will
be discussed in Section 3.1.

One might assert that using the standard Youla-
Kucera parameterization (Youla et al., 1976;
Kucera, 1979) will facilitate the design since there
would be no need to satisfy the different condition
ii. above on Q. It is not hard to verify that us-
ing the standard Youla-Kucera controller param-
eterization discussed above will result in all four
transfer functions in H(P, C) being affine in Q̂.
However, attaining a desired amplitude response
for the closed-loop transfer function Tyr1

with

the proper choice of Q̂ (as can be done in the
stable case) proves to be harder. This will be clear
in Section 3.1 when we discuss the fundamental
limitation on achievable closed-loop performance
when the plant is unstable (Freudenberg and
Looze, 1985). Abstractly though, it is clear that

working with a constrained Q or unconstrained Q̂
is equivalent.

Let us now revisit Equation (1) to elaborate on
the importance of each entry of H(P, C) and also
motivate the importance of considering the four
transfer functions. The (1,1) entry of H(P, C),
which is the complementary sensitivity Tyr1

=
PC/(1 + PC), is clearly important for reference
tracking. The IMC design method sets its magni-
tude response (see Equation (3)) but only ensures
that the other transfer functions in H(P, C) are
stable but does not explicitly handle their size.
The reciprocal of the size of ‖H(P, C)‖∞ is re-
ferred to as the generalized robust stability mar-
gin (Vinnicombe, 2000) and it corresponds to the
amount of (coprime factor) uncertainty that can
perturb P without destabilizing the loop (Zhou
et al., 1996). Thus, we clearly wish ‖H(P, C)‖∞
to be small for a robust design in this sense.
With this introduction in mind, let us now record
six different circumstances where the IMC design
method discussed above cannot be properly used,
or its applicability is limited by restrictive as-
sumptions, or it fails to provide a good design.

First, if P has lightly-damped stable poles in the
closed-loop passband, then P/(1 + PC) will have
large gain near the frequencies of those poles.
Second, if P has lightly-damped stable or unstable
zeros in the closed-loop passband, then C/(1 +
PC) will have large gain near the frequencies of
those zeros. This will have direct impact on the
maximum singular value of H(P, C), σ̄[H(P, C)],
as large Tyr2

or large Tur1
at some frequency

means large σ̄[H(P, C)] and hence poor design.
Third, if the bandwidth of F is chosen to be
much larger than that of P , then |C| will be very
large at frequencies inside the bandwidth of F and
outside the bandwidth of P which will result in
σ̄[H(P, C)] being large and hence poor design.

Fourth, the controller C becomes improper if
the roll-off rate of F is desired to be less than
that of P . Fifth, the simple decomposition in

Equation (2) is not possible if P has zeros on the
jω-axis 3 . Sixth, unstable plants pose problems.

In the following section, we shall introduce a new
controller design method that inherits the useful
desired features of the IMC design method, but
explicitly addresses the above-stated problems.

3. THE PROPOSED H∞ CONTROL DESIGN
METHOD

We wish to accomplish two primarily performance
objectives:

• to have PC
1+PC

close to but not necessarily

equal to a target PaF even with P unstable
or perhaps possessing a jω-axis zero;

• to make sure that the other three transfer
functions in (1) do not take large magnitudes.

Obviously, these two objectives are not the same
and we shall introduce an H∞ index and require
this index to be minimized over all stabilizing
controllers. Moreover, we normally have perfor-
mance objectives in mind, which often require
some transfer functions to be small or below cer-
tain values in some frequency regions and other
transfer functions to be small or below certain
values at other frequencies. The H∞ index will
be weighted to achieve the desired effect. Obvi-
ously, there will be a trade-off between keeping

the size of
[

PC
1+PC

− PaF
]

small and the size of the

other three transfer functions in (1) below certain
values. We shall now briefly sketch our proposed
controller design method here and present a step-
by-step procedure in Section 4.

i. Given a model of the plant P do the following
factorization:

P = PaPm, where

{

Pa ∈ RH∞ , P∼
a Pa = I

Pm has no zeros in C+
(8)

where C+ denotes the open right-half plane.
ii. The admissible controller is given by solving

the following H∞ problem:

γ = min
C ∈C

∥

∥

∥

∥

∥

PC
1+PC

− PaF ε2(s)
P

1+PC

ε1(s)
C

1+PC
ε1(s)ε2(s) 1

1+PC

∥

∥

∥

∥

∥

∞

(9)

where C denotes the set of all proper stabiliz-
ing controllers for the plant P and ε1(s) and
ε2(s) are SISO, stable, minimum-phase and
proper weights 4 .

We shall explain in detail the selection of F and
the weighting functions ε1(s) and ε2(s) in the
following subsections.

3 Note that the IMC design procedure assumes that P
does not have any zeros on the jω-axis.
4 Note that min

C ∈C
‖Fl(., .)‖∞ rather than inf

C ∈C
‖Fl(., .)‖∞

is used since we need both γ and C ∈ C. That is, the
controller C must be proper and stabilizing and must
achieve γ. In the cases we consider, the minimum is
attained.



Note that the proposed design method outlined
above addresses the problems discussed in Sec-
tion 2 concerning the difficulties with the IMC de-
sign method. This design method is applicable to
stable or unstable plants, plants with or without
jω-axis zeros or lightly-damped poles/zeros, and
the filter F (jω) can have a roll-off rate larger or
smaller than that of P (jω), and a bandwidth that
is larger or smaller than that of P (jω). Further-
more, the set C contains stabilizing proper con-
trollers and hence internal stability will always be
achieved and the controller will always be proper.

One can easily verify that the assumptions of a
standard H∞ control problem for the index in (9)
are fulfilled when ε1(s) is chosen to be bi-proper.
The reader is referred to (Zhou et al., 1996; Green
and Limebeer, 1995) for details on the H∞ control
problem and related discussions.

3.1 The Choice of Filter

For the stable plant case, the low-pass filter F
can have the form of equation (4). However,
plants with right-half-plane poles and/or zeros
impose fundamental limitations on the achievable
closed-loop performance and may be difficult to
handle (Freudenberg and Looze, 1985). Suppose
the plant P has closed-right-half-plane poles at pi

and closed-right-half-plane zeros at zi, in which
case T = PC

1+PC
will have to satisfy the following

analytic constraints

T (pi) = 1 and T (zi) = 0 . (10)

These constraints ought to be at least roughly
reflected in the choice of filter F since we wish
to have T close to PaF in an H∞ sense 5 .

Letting F have the form

F (s) = (bk−1sk−1 + ... + b1s + b0)

(

λ

s + λ

)n+k−1

(11)

where n is at least equal to the relative degree
of P , the coefficients b0, b1, ..., bk−1 can be chosen
such that

[PaF ]s=pi
= 1 and [PaF ]s=zi

= 0 .

Notice that PaF is automatically zero at the open
right half-plane zeros of P since Pa contains the
open right half-plane zeros of P . Thus the second
condition reduces to simply requiring

[PaF ]s=jωi
= 0

where jωi are the jω-axis zeros of P , if any.

Furthermore, in a typical design we will gener-
ally wish zero steady-state error for a unit step
response. This corresponds to requiring

T (0) = 1 .

Hence, in summary we shall select the filter F
as in equation (11) with coefficients b0, b1, ..., bk−1

chosen such that

[PaF ]s=pi,0
= 1 and [PaF ]s=jωi

= 0 .

5 In fact, we can have PaF precisely satisfy the constraints
in (10) if we wish, though |PaF | may not then be of an
attractive shape.

For these sets of constraints to be solvable, one
needs to introduce as many coefficients bj as
constraints. Hence we select k in equation (11)
to be equal to the number of analytic constraints.

3.2 Design of weighting functions ε1(s) and ε2(s)

Weighting functions ε1(s) and ε2(s) were intro-
duced as a part of the H∞ index in Equation (9)
to achieve the desired effect detailed below. We
will have different objectives in different frequency
regions based upon the particular application
specifications and also the characteristics of the
plant. Let us now set out our design objectives, as
specified in the index in Equation (9):

i. Let α be the desired closeness between
PC/(1 + PC) and PaF in an H∞ sense. That
is, we require ‖PC/(1 + PC) − PaF‖∞ ≤ α .

ii. Let βi
p be the maximum tolerable gain in the

appropriate frequency region for the transfer
function Tyr2

= P/(1+PC) . That is, we require
σ̄ [P/(1 + PC)(jω)] ≤ βi

p ∀ω ∈ [ωi
1, ωi

2] .

iii. Let βi
c be the maximum tolerable gain in the

appropriate frequency region for the transfer
function Tur1

= C/(1 + PC) . That is, we re-
quire σ̄ [C/(1 + PC)(jω)] ≤ βi

c ∀ω ∈ [ωi
3, ωi

4] .

Now, we have one number, α, and two sets of
different numbers, namely βi

p and βi
c, that repre-

sent our objectives. These numbers will be used
to specify ε1(s) and ε2(s) as we discuss next.
Once ε1(s) and ε2(s) are specified, we just need
to check the number γ to determine whether the
design was successful in achieving our objectives
or not. Towards this end, note that the index in (9)
certainly guarantees that

σ̄
[

PC
1+PC

− PaF
]

≤ γ ∀ω , (12)

σ̄
[

P
1+PC

(jω)
]

≤ γ
|ε2(jω)|

∀ω , (13)

σ̄
[

C
1+PC

(jω)
]

≤ γ
|ε1(jω)|

∀ω (14)

are achieved. Consequently, choosing

|ε1(jω)| ≥ α
βi

c

∀ω ∈ [ωi
3, ω

i
4]

and
|ε2(jω)| ≥ α

βi
p

∀ω ∈ [ωi
1, ω

i
2]

will do the trick since γ ≤ α will mean that our
three objectives above are satisfied.

3.3 Specifying ε1(jω) and ε2(jω)

We shall outline four different scenarios that sim-
ply specify how ε1(jω) and ε2(jω) ought to be
chosen.

If ε1(jω) = 0 and ε2(jω) = 0, then the H∞ index
specified in (9) reduces to

γ = min
C ∈C

‖PC/(1 + PC) − PaF‖∞

Hence C will be exactly the IMC controller de-
scribed in Section 2, provided that P is stable and
has no jω-axis zeros and all other assumptions of
the IMC design method outlined in Section 2 are
fulfilled (i.e. γ = 0 for such a case).



If ε1(jω) = 0 and ε2(jω) 6= 0, then the H∞ index
specified in (9) reduces to

γ = min
C ∈C

∥

∥

PC
1+PC

− PaF ε2(s)
P

1+PC

∥

∥

∞

It was earlier discussed in Section 2 that if P
had for example lightly-damped poles in the
closed-loop bandwidth, then an IMC controller
would result in a transfer function, P/(1 +
PC), that has large gain near the frequency
of the lightly-damped poles. It was also ex-
plained that this is highly undesirable in a sen-
sible design. Consequently, we choose |ε2(jω)| ≥
α/βi

p near the frequencies of the lightly-damped
poles of P , as this will then limit the size of
P/(1 + PC) and we are free to let |ε2(jω)| be-
come small at frequencies far away from the
lightly-damped poles of P . Hence γ ≤ α will
imply σ̄ [P/(1 + PC)(jω) − PaF (jω)] ≤ α ∀ω and

σ̄ [P/(1 + PC)(jω)] ≤ βi
p ∀ω : |ε2(jω)| ≥ α/βi

p. There-
fore, the closeness of PC/(1 + PC) to PaF is
traded-off with limiting the size of P/(1 + PC)
at the problematic frequencies.

It is now clear how ε1(jω)and ε2(jω) can also be
specified for the other two cases where (ε1(jω) 6= 0,

ε2(jω) = 0) and (ε1(jω) 6= 0, ε2(jω) 6= 0).

4. THE PROPOSED H∞ CONTROL DESIGN
PROCEDURE

Let us now summarize the proposed H∞ control
design method.

• Step 1. Given a model of the true plant P ,
do the decomposition in Equation (8);

• Step 2. Choose an appropriate transfer func-
tion for the filter F according to the model
P and the discussions in Section 3.1;

• Step 3. Find the critical frequency regions
where P has lightly-damped poles, lightly-
damped zeros or frequencies above the band-
width of P but below the bandwidth of
F . Based on the desired closed-loop objec-
tives and specifications, set the positive num-
bers α, βi

p and βi
c according to the discussions

in Section 3.2;

• Step 4. Design the frequency weights, ε1(s)
and ε2(s), according to the rules given in
Sections 3.2 and 3.3, using the specified val-
ues α, βi

p and βi
c in Step 3, for the appropriate

frequency regions;

• Step 5. Solve the H∞ controller design
problem given in Equation (9) and obtain γ
and the admissible controller C;

• Step 6. If γ ≤ α, the obtained controller C
achieves the desired performance objectives
specified in Step 3.

In the following section we shall use the above-
stated procedure to show the effectiveness and
easy-to-use features of our proposed H∞ design
method.

5. NUMERICAL EXAMPLE

We shall consider an example in order to illustrate
the advantages and effectiveness of the proposed
design method. This example illustrates the dif-
ficulty with the IMC approach discussed in Sec-
tion 2 where we argued that if the plant model P
has lightly-damped stable/unstable zeros within
the closed-loop passband, then the (2,1) entry of
H(P, C) in (1) will grow large near the frequencies
of those zeros and hence the control signal in Fig. 1
will be large.

Consider a plant model which has the form

P1 =
1/9(s2 + 0.01s + 9)

(s + 1)3

with lightly-damped zeros at s = −0.005± j3.

Following the standard IMC design procedure for
stable plants discussed in Section 2, the controller
that achieves a closed-loop transfer function with
bandwidth of 0.3 rad/s is C1 = 2.7(s+1)3/s(s2 +
0.01s+9). Notice that the (2,1) entry of H(P1, C1)
in (1), Tyr1

= C1/(1+P1C1), has a maximum gain
of 712 (' 57dB) near the frequency of the lightly-
damped zeros (3 rad/s) as shown in Fig. 2. This
is undesirable for a sensible design.

Given that the lightly-damped zero is at 10× the
closed-loop bandwidth, it is unfortunately clear
that sensible design should be readily achievable.
All the damage is being caused by the IMC
method, as oppose to a plant that is intrinsically
difficult to control.

With this difficulty in mind, let us employ our new
H∞ algorithm and show how we fix this drawback
of the IMC design method. Following the algo-
rithm outlined in Section 3, P1 is decomposed into
[P1]a = 1 and [P1]m = (s2 + 0.01s + 9)/9(s + 1)3

and we set our closed-loop performance objectives
as in Step 3 of our proposed controller design
procedure. We seek to: (a) have the closeness
between P1C1/(1 + P1C1) and [P1]aF1 in an H∞

sense below 0.1 (α = 0.1); (b) keep Tyr1
below

βc = 18 (≈ 25 dB). Here we assume that the
actuators can pump up a maximum gain of 18,
which is by a factor of 40 less than the gain (712)
the actuators have to pump up if C1 is used.

Based on the rules stated in Section 3.2 and
the aforementioned objectives, the frequency cost
ε1(jω) is designed (Fig. 2) and ε2(jω) is set to
zero. Solving the H∞ index in (9) with the same
F1 = 0.3/(s + 0.3) as the desired filter transfer
function we find

C̃∞
1 (s) = 827.075

∏6

i=1
(s − zi)

∏7

i=1
(s − pi)

with its zeros and poles given in Table 1.

Table 1. Poles and Zeros of C̃∞
1

zi pi

−1.796 −306.12
−1.056 −0.005

−1.5860 ± j0.257 −1.825
−0.9719 ± j0.0473 −0.29 ± j3.045

−1.57 ± j0.266
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Fig. 2. Magnitude Responses

The norm γ1 = 0.098 < α which means that our
desired closed-loop objectives (α = 0.1, βc = 18)
have been achieved (Section 3.2). We employ the
closed-loop controller reduction method detailed
in Section 4.3 (pp 137–140) of reference (Obinata
and Anderson, 2001) and assume that the Han-
kel singular values of the graph symbol of the
controller are decreasingly ordered (σ1 > σ2 >
σ3 > .... > σ7). We perform balanced realization
and the result is truncated to retain all Hankel
singular values greater than 0.01 σ1. The resulting
controller after truncation is

C∞
1 =

827.07(s + 0.935)(s2 + 2.066s + 1.07)

(s + 306.1)(s + 0.0055)(s2 + 0.581s + 9.361)

The frequency responses of C1 and C∞
1 , P1, ε1(jω)

and F1, and H(P1, C1) and H(P1, C
∞
1 ) are plotted

in Fig. 2.

The above example showed one of many attributes
of our proposed design procedure. Furthermore,
there are situations (see Section 2) for which it
is possible to design an IMC controller, but the
designed controller leads to poor performance,
unlike in our proposed H∞ criterion.

Our proposed H∞ design method provides assur-
ance and reliability that the controller obtained
meets the pre-specified performance specifications
and objectives through checking our simple flag γ.

6. CONCLUSIONS

In this paper, we have introduced a new controller
design method which inherits the desirable fea-
tures of the IMC but extends its applicability.
Section 2 reaffirms that there exist distinct pro-
cedures for stable and unstable plants; each with
its own limitations and restrictive assumptions.
The proposed method uses an H∞ control design

method, in which the shortcomings and deficien-
cies of the previously used IMC design meth-
ods (Morari and Zafiriou, 1989), are addressed.
Moreover, this H∞ design method can be used for
stable or unstable plants or plants with jω-axis ze-
ros. In addition, it handles well plants with lightly-
damped poles and zeros and situations where the
bandwidth of F is orders of magnitude greater
than that of P . This algorithm also gives us one
number, γ, that easily flags whether the desired
performance specifications have been achieved.
An extension of this research is underway to deal
with MIMO systems.
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