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Information Structures 
to Control Formation Splitting and Merging 

Tolga Eren Brian D. 0. Anderson A. Stephen Morse Walter Whiteley Peter N. Belhumeur 

Abstract- This paper focuses on developing techniques and 
strategies for the analysis and design of sensor and network 
topologies required to achieve rigid formations of mobile 
autonomous agents for cooperative tasks. These strategies 
ensure minimum number of changes in the set of sensing 
and communication links between agents during splitting and 
merging operations. That is, in splitting, all the limks between 
agents in the same post-split sub-formation are preserved and 
a minimum number of links are inserted into each post-split 
sub-formation to regain minimal rigidity. In merging, all the 
links in each pre-merged rigid sub-formation are preserved 
and a minimum number of links are inserted between sub- 
formations to create one single post-merged minimally rigid 
formation. 

A formation is defined as a group of mobile agents 
moving in real 2- or 3-dimensional space. This paper 
addresses "rigid formations." A formation is rigid if the 
distance between each pair of agents does not change 
over time, at least under ideal conditions. In the context 
of this paper, "agents" are considered to be autonomous 
vehicles such as autonomous underwater vehicles (AUVs), 
microsatellites, uninhabited air vehicles (UAVs), mobile 
ground-based robots. 

A key element in all future multi-agent systems will 
be the role of sensor and communications networks as an 
integral part of coordination. In a rigid formation, distances 
between agents are held fixed by measurements and in- 
formation gathered through "sensing and communication 
links" between agents. One of the challenges in building 
sensor and communications networks between agents is 
the "topology" of the network. By topology, we mean 
the interconnection structure of sensing and communication 
links among agents. Two networks have the same topology 
if the interconnection structure is the same, although the 
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networks may differ in physical interconnections, distances 
between agents, transmission rates, and signal types. Rigid 
formations with the minimum number of sensing and com- 
munication links required to achieve rigidity are called 
minimally rigid formations. We refer the reader to the 
companion paper by Eren et al. [5] for an introduction to 
rigid formations. 

Formations of autonomous agents usually operate under 
time-varying conditions where sensor and network topolo- 
gies need to be restructured. Such conditions can be changes 
in the environment, obstacles along the trajectories of agents 
or departures of agents from formation. In this paper, we 
focus on such topological changes during "operations" on 
formations. By an operation, we mean missions and maneu- 
vers that include agent departures, splitting, and merging, 
which result in changes in agent set and/or interconnection 
structure of sensing and communication links. 

First, we consider the problem of splitting rigid forma- 
tions. By splitting, we mean creating two or more rigid 
post-split sub-formations from a rigid pre-split formation. 
When a formation encounters an obstacle, splitting may be 
useful to maneuver around the obstacle. Instead of all agents 
moving to the same side of the obstacle, it might be more 
efficient in terms of trajectory lengths of agents, if some 
agents move to one side of the obstacle and the others move 
to the other side. 

One strategy to solve the splitting problem would be 
determining entirely new sets of links for the post-split 
sub-formations. Olfati-Saber and Murray present such a 
strategy [7]. When splitting a rigid formation, it is necessary 
to break the links between agents belonging to different 
post-split sub-formations. However we can preserve a link 
between two agents belonging to the same sub-formation. 
Generating entirely new sets of links for post-split sub- 
formations is impractical when we can preserve the links 
that can be maintained. Such a strategy achieves splitting 
with a minimum number of changes in the topology of 
sensing and communication links. Our goal is to find such 
a strategy by inserting a minimum number of links in post- 
split non-rigid sub-formations to make each of them rigid 
while preserving the links between agents belonging to the 
same sub-formations. To motivate our discussion of splitting 
a rigid formation, we have the following example: 

Example: Consider a rigid formation as shown in Figure 
1 in 3-dimensional space. We would like to split the forma- 
tion in such a way that agents with labels {1 ,2 ,3 ,4 ,5)  be- 
long to one post-split sub-formation and agents with labels 
{6,7,8,9,10) belong to the other post-split sub-formation. 
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Fig. 1. A rigid formation is split into two sub-formations by removing the 
links shown with dashed edges, i.e., (1,6), (3,6), (4,6), (4,7), (4,8), (5,6), 
(5,7), (5,10), which results in two non-rigid sub-formations. The splitting 
problem is to find the new links that need to be inserted into each non- 
rigid post-split sub-formation so that each post-split sub-formation regains 
rigidity. In this example, the new links are ( 3 3 ,  (6,lO) shown with double 
lines. 

Splitting can be achieved by removing the links between 
agents belonging to different post-split sub-formations while 
preserving the links between agents belonging to the same 
post-split sub-formations. In this example, the links (1,6), 
(3,6), (4,6), (4,7), (4,8), (5,6), (571, (5,101 (shown with 
dashed lines) are removed. This results in two non-rigid 
post-split sub-formations. The splitting problem is to find 
new sets of links to insert into each non-rigid post-split sub- 
formation resulting in rigid post-split sub-formations. In this 
example, those new links are (3 ,5)  and (6,lO) shown with 
double lines. 

Second, we address merging rigid sub-formations. By 
merging, we mean inserting links between these rigid sub- 
formations which results in a single post-merged rigid for- 
mation. During a merging operation, it is a natural starting 
point to preserve the links in each pre-merged rigid sub- 
formation. Hence a reasonable goal is to create a new post- 
merged rigid formation by inserting a minimum number of 
links between sub-formations. A merging operation, for ex- 
ample, can be used to create one single rigid formation after 
split sub-formations pass around an obstacle. To motivate 
our discussion of merging a rigid formation, we have the 
following example: 

Example: Consider two rigid sub-formations in 3- 
dimensional space as shown in Figure 2. We would like 
to merge these two formations resulting in a single rigid 
formation in such a way that all pairs of links in each 
formation are preserved and a minimum number of links 
is inserted between these two sub-formations. 

Merging rigid bodies has been studied in rigidity theory. 
We refer the reader to Whiteley [8] for a detailed expla- 
nation. Here, we use a different approach to find the new 
links for merging formations. This approach can be used 
for both splitting and merging formations. 

The approach in this paper is based on the strategies 
developed in Eren et al. [4]. Olfati-Saber and Murray gave 
an approach to merging sub-formations in 2-dimensional 
space so that the resulting formation is rigid [7]. The 

Fig. 2. Two rigid sub-formations are merged to form one single 
rigid formation. Finding the new links to be inserted between these two 
formations, which will make the whole formation rigid, is the merging 
problem. 

approach we develop here allows us to merge two rigid sub- 
formations with different types of combinations of inserting 
links including their strategy. Furthermore the approach in 
this paper also solves the merging problem in 3-dimensional 
space. 

The splitting and merging problems can be considered as 
special cases of the "minimal cover problem." The minimal 
cover problem is basically to find new links to insert into a 
non-rigid formation so that it becomes rigid. To solve the 
minimal cover problem, we develop a novel procedure. This 
procedure can be used for creating minimally rigid post-split 
sub-formations from non-rigid post-split sub-formations and 
also for creating a minimally rigid post-merged formation 
from rigid pre-merged sub-formations. 

The paper is organized as follows: We address the min- 
imal cover problem in $11. Splitting rigid formations and 
merging rigid sub-formations are addressed in $111 and $IV, 
respectively. 

Before giving the definition of the minimal cover prob- 
lem, we state our assumption: 

Assumption: Let G = (V, L) represent the underlying 
graph of each post-split formation in the splitting problem 
in d-space (d=2,3), and the union of the underlying graphs 
of pre-merged sub-formations in the merging problem in 
d-space (d=2,3). In splitting, we assume that G = (V, C) C 

= (V ,L) ,  where c = ( V , L )  is a graph created by 
a Henneberg sequence in d-space (d=2,3) as explained in 
the companion paper [5]. In splitting, c refers to the pre- 
split rigid formation created by a Henneberg sequence. In 
merging, we assume that each pre-merged rigid subgraph is 
created by a Henneberg sequence. 

We note that the assumption is not a limitation on pre- 
split and pre-merged graphs in 2-dimensional space since 
there is a Henneberg sequence for all minimally rigid 
graphs in 2-dimensional space. However, the assumption 
is a limitation on pre-split and pre-merged graphs in 3- 
dimensional space since it is currently unknown whether 
there is a Henneberg sequence for all minimally rigid graphs 
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in 3-dimensional space as explained in the companion paper 
[5]. The minimal cover problem is to find a set of new edges 
to be inserted into graph 6 = ( V ,  C )  so that the resulting 
graph G* = ( V , L * )  after insertions, is minimally rigid. 
Note that G and G* have the same vertex set. We have the 
following lemma. 

Lemma 1. The edge set of a graph G = ( V ,  C )  that satisfies 
the assumption of the minimal cover problem is a set of 
independent edges. 

We refer the reader to Eren [2] and Eren et al. [3] for the 
proofs of the lemmas and theorems in this paper. 

The minimal cover problem can be posedusing concepts 
from lattice theory. Let B denote the set of all simple 
graphs G = (V,&)  with vertex set V including the graph 
with empty edge set which is called the edgeless graph. 
Containment, denoted by C, is a relation on B such that 
6 1  = ( V , C l )  is contained in 6 2  = ( V , L z )  if C1 c C2. 
Containment is a partial ordering on 8, and the complete 
graph and edgeless graph are B's largest and smallest 
elements with respect to this ordering (see for example 
MacLane and Birkhoff [6]). Every graph G in B is contained 
in at least one rigid graph. We are interested in minimally 
rigid graphs in B that contain 6, and we call such a 
minimally rigid graph a minimal cover. The set of edges 
we want to preserve is represented by C. 

We can define the minimal cover problem in terms of 
partial ordering and graph rigidity. Suppose that a graph 
G = ( V ,  C )  E 8 ,  which satisfies the assumption of 
the minimal cover problem, is given. The minimal cover 
problem is to find some G* = ( V ,  C*) E B such that 
G c G* and G* is minimally rigid. In other words, we 
want to find a set of new edges, namely C,,,, between the 
vertices of V to add to the set C such that the resulting graph 
G* = ( V ,  C*) is minimally rigid, where C* = L U C,,,. 
Note that G* is not necessarily unique. 

Generic rigidity is directly related to the rank of a matrix 
[5]. As such, it has all the "exchange properties" associated 
with the independence of rows of a matrix [S]. For example, 
we note that minimally rigid graphs are also maximally 
independent graphs, corresponding to bases in vector spaces 
as minimal spanning sets and maximal independent sets. 
Given any independent set of edges Z which is a subset of 
a basis (maximally independent set of edges) B for a vertex 
set V ,  a set of edges 3 is a minimal cover of 1, if the union 
of Z and 3 is a (new) basis B' for V .  

One crude approach to solve the minimal cover problem 
is based on the "generate and test" method. It is as follows: 
Given a graph G = ( V ,  C )  E B, we test whether with 
the addition of a new edge e, the graph G = ( V ,  C  U 
{ e ) )  is independent or not. If it is then we add e to C. 
For testing independence, one could contemplate picking 
coordinate positions for the vertices at random, and forming 
a numerical rigidity matrix and testing additional rows of 
it. We repeat adding such new edges until we have a set 
of 2n - 3 independent edges in 2-dimensional space, and 

3n-6 independent edges in 3-dimensional space, where n is 
the number of vertices. The resulting graph with the vertex 
set V and those independent edges is the minimal cover 
of 6 .  This approach works based on random trials. If a 
new randomly generated edge gives us a set of independent 
edges then it turns out to be a success, otherwise it is a 
failure. 

A. Planar Case 

We present a systematic strategy to solve the planar 
minimal cover problem. We note that the knowledge of 
the original Henneberg sequence (i.e. the sequence used to 
create = ((V, E))  is needed to solve the minimal cover 
problem in 3-dimensional space. The resulting algorithm 
has linear time complexity. On the other hand, this infor- 
mation is not needed in 2-dimensional space. If we use 
this information of the original Henneberg sequence in 2- 
dimensional space, we have a linear time algorithm. If we 
do not use it, we have an exponential time algorithm. In 
this section, which is on planar case, we present the strategy 
that does not use the information of the original Henneberg 
sequence. In the next section, which is on spatial case, we 
present the strategy that uses the information of the original 
Henneberg sequence. First, we state the following lemma, 
then we introduce two types of reduction steps that will be 
used in the sequel. 

Lemma 2. Let G  = ( V ,  L )  denote a graph satisfying the 
assumption of the minimal cover problem in 2-dimensional 
space. Then there exists a vertex of degree 3 or less in (6. 

Reduction Step - Type I: Let G = ( V , C )  be a graph 
satisfying the assumption of the minimal cover problem in 
2-dimensional space. Let i  be a vertex of degree p(i), where 
p(i) E {0,1,2).  Suppose that we create a set of 2  - p(i) 
new edges incident to i  and denote this set of new edges by 
Cine,. Let G' = ( V ,  L') denote this new graph where C' = 
C U Cine,. We register Cine, to use in subsequent steps. 
It can be easily verified that C' is independent. Now let us 
remove i and all the edges incident to i in 6' = ( V ,  C'). 
Let G'' = (V' ,  C") denote this reduced graph where V' = 
V \ { i )  and L" = C' \ {all edges incident to i ) .  It can 
again be verified that the edge set of 6" = (V', C") is also 
independent. Therefore there exists a vertex of degree 3 or 
less in (6'' by Lemma 2. 

Reduction Step - q p e  11: Let G = ( V ,  C )  be a graph 
satisfying the assumption of the minimal cover problem in 
2-dimensional space. Let i  be a vertex of degree 3 and 
adjacent to a set of vertices denoted by Ni. We remove i 
and its three edges and create a new edge (precisely one 
edge) between arbitrary vertices in Ni forming a reduced 
graph 6' = (V', L') where V' = V \ { i )  and L' = C \ { all 
edges incident to i )  U { a new edge between the vertices in 
N i )  such that C' is a set of independent edges. ' Therefore 
there exists a vertex of degree 3 or less in 6' by Lemma 2. 

'The existence of such a new edge can be seen from the proof of the 
edge splitting operation in Whiteley [8]. 



Now we present a reduction sequence in which the 
two types of reduction steps previously described are used 
as main steps. This sequence is used to reduce a set of 
independent edges down to a set of two vertices connected 
by an edge. 

Reduction Sequence: Suppose that a graph G = (V ,  C)  
satisfying the assumption of the minimal cover problem in 
2-dimensional space is given. From Lemma 2 it follows that 
there exists a vertex of degree 3 or less in 6. Hence, at least 
one of the reduction steps (type I or type 11) can be applied 
to G. Note that the reduced graphs we obtain after applying 
any one of these reduction steps are also independent. We 
apply these two types of steps repeatedly until we are left 
with only two vertices. While we apply the reduction steps 
to the vertices, we number those vertices in a descending 
order as n, n - 1, n - 2, . . . , 4, 3. For example, we number 
the vertex removed in the first reduction step with n, we 
number the vertex removed at the second reduction step 
with n - 1  and so on until we are left with two vertices. 
The last vertex on which a reduction step is applied is 
numbered with 3. Then the very last two remaining vertices 
are numbered with indices 2 and 1. Each time we apply the 
reduction step type I on a vertex i ,  we keep registering its 
new set of edges Cine, as described in reduction step type 
I. Depending on the initial set of independent edges, there 
may or may not be left an edge between the last two vertices 
after the execution of the reduction sequence. If there is no 
edge between them at the end of the reduction sequence, 
we create such an edge and register it as Cznew. If there is 
already an edge between vertices indexed by 1 and 2, then 
we register = 0. The union of the registered sets of 
the new edges is L,,, = Ui  Cine, where i  denotes the 
label of the vertices removed with a type I reduction step 
and the vertex with index 2. 

Theorem 3. (Planar Minimal Cover Theorem) Let G  = 
(V ,  C)  be a graph satishing the assumption of the minimal 
cover problem in 2-dimensional space. Suppose that we 
apply the reduction sequence described above on G  and 
find L,,,. Then G* = (V ,  C  U C,,,) is a minimal cover 
of G. 

Note that C,,, obtained in the reduction sequence is not 
unique because the edges in C,,, depend on the choice of 
the order of vertices in the reduction sequence. We will not 
consider algorithmic complexities in this paper. But one can 
argue that each time the reduction step type I1 is applied, 
there are up to three possible insertions for a new edge. This 
results in an exponential time algorithm for the reduction 
sequence. To overcome this problem, as we explained at 
the beginning of this section, the approach for the spatial 
case presented in the sequel can be easily applied to the 
planar case. This approach gives a linear time algorithm. 
Alternatively one can use a polynomial time algorithm 
called "the pebble game" for the planar case. There is a 
recent paper by Berg and Jordan [I ]  which addresses this 
kind of algorithms. 

B. Spatial Case 

The approach in the Planar Minimal Cover Theorem can 
be translated to 3-dimensional space with an additional 
condition in the order of the reduction sequence. The reason 
behind this condition is that if a reduction sequence similar 
to the planar case is applied then there is a possibility of 
reaching a graph with a set of vertices all of which are of 
degree 5. If the conjectures for adding a 5-valent vertex 
to minimally rigid graphs that we explain in the companion 
paper [5] are proven, then the reduction sequence presented 
for the planar case can be easily extended to 3-dimensional 
space. Since this is a long-standing unsolved problem, to get 
around those difficulties, we present an alternative reduction 
sequence with an additional condition in the ordering of 
reduction sequence. We have the following lemma in 3- 
dimensional space. 

Lemma 4. Let G  = (V ,  C)  denote a graph satisfying the 
assumption of the minimal cover problem in 3-dimensional 
space. Then there exists a vertex of G  of degree 4 or less. 

The two reduction steps presented for the planar case can 
be directly extended for 3-dimensional space. 

Reduction Step - Type I: Let G = (V ,  C)  be a graph 
satisfying the assumption of the minimal cover problem in 
3-dimensional space. Let i  be a vertex of degree p(i), where 
p(i) E {0,1,2,3).  Suppose that we create a set of 3 - p ( i )  
new edges incident to i  and denote this set of new edges by 
Cine,. Let 6' = (V ,  L') denote this new graph where L' = 
C U Cine,. We register Gin,, to use in subsequent steps. 
It can be easily verified that L' is independent. Now let us 
remove i  and all the edges incident to i  in 6' = (V ,  C'). Let 
G" = (V', C") denote this reduced graph where V' = V \ 
{ i )  and C" = C'\ {all edges incident to i ) .  It can be easily 
verified that 6" = (V', C") also satisfies the assumption of 
the minimal cover problem. Therefore there exists a vertex 
of degree 4 or less in (6'' by Lemma 4. 

Reduction Step - Type 11: Let G = (V ,  C)  be a graph 
satisfying the assumption of the minimal cover problem in 
3-dimensional space. Let i  be a vertex of degree 4 and 
adjacent to a set of vertices denoted by Ni. We remove i  
and its four edges and create a new edge (precisely one 
edge) between arbitrary vertices in Ni forming a reduced 
graph 6' = (V', C') where V' = V \ {i) and C' = C \ { all 
edges incident to i )  U { a new edge between the vertices in 
N i )  such that G' satisfies the assumption of the minimal 
cover problem. Therefore there exists a vertex of degree 
4 or less in 6' by Lemma 4. 

Now we present the modified reduction sequence, in 
which the two types of reduction steps previously described 
are used as main steps. This sequence is used to reduce 
a graph satisfying the assumption of the minimal cover 
problem in 3-dimensional space down to a set of three 
vertices. It makes use of the order of vertices in the 

2 ~ h e  existence of such an edge will become clear in the special reduction 
sequence presented in the sequel. 



Henneberg sequence that was used to create the original 
graph = ( V ,  C). 

Reduction Sequence: Let (6 = ( V ,  2)  be a minimally 
rigid graph created by the vertex addition and edge split- 
ting operations in 3-dimensional space, where vertices are 
indexed {1,2, .  . . , n) with respect to their order of addition 
in the Henneberg sequence. If i  denotes a vertex added by 
the edge splitting operation, then let e, denote the edge 
removed in this operation. Let the graph G = (V,  C)  be 
created by removing some of the edges and vertices of the 
graph (6 = ( V ,  C) .  To complete G = (V ,  C)  to a minimally 
rigid graph, we do the following. Starting from the vertex 
with the highest index, we apply reductions steps type I 
and I1 repeatedly on the vertices with descending order of 
indices. For example, let i  denote the vertex with the highest 
index in the remaining graph at some step in the reduction 
sequence. If i is of degree p(i), where p(i) < 3, we apply 
reduction step type I. Each time we apply the reduction step 
type I on a vertex i ,  we keep registering its new set of edges 
L,,,, as described in reduction step type I. If the vertex i  
is of degree 4, we then apply reduction step type I1 by 
inserting the edge e,. We continue this until three vertices 
are left. Depending on the initial set of independent edges, 
there may or may not be three edges left between the last 
three vertices after the execution of the reduction sequence. 
If there are not three edges between them at the end of the 
reduction sequence, we complete the number of edges to 
three and register them as C3,,, . If there are already three 
edges between vertices labelled 1 , 2  and 3, then we register 
C3,,, = 0. The union of the registered sets of the new 
edges is Cnew = U, L,,,, where i  denotes the label of the 
vertices removed with a type I reduction step and the vertex 
with index 3. 

Lemma 5. At each reduction step, the vertex with the 
highest index is of degree 4 or less. 

Theorem 6. (Spatial Minimal Cover Theorem) Let G = 
(V ,  C)  be a graph satisfying the assumption of the minimal 
cover problem in 3-dimensional space. Suppose that we 
apply the reduction sequence described above on G and 
jind C,,,. Then G* = (V ,  C U Cnew) is a minimal cover 
of G. 

As in the planar case, Lnew obtained in the reduction 
sequence is not unique because the edges in Lne, depend 
on the choice in the reduction sequence. 

To find a strategy for splitting a rigid formation into two 
rigid post-split sub-formations, it is convenient to introduce 
a suitable definition of the splitting problem in terms of 
graph rigidity. Let G = (V ,  C)  be a minimally rigid graph. 
Let V1 and Vz represent the two subsets of V such that 
V1 U V2 = V and V1 n V2 = 0. Let C1 c I: be the set of 
all edges whose both end-vertices are in V1 and C2 c C be 
the set of all edges whose both end-vertices are in V2. Let 

C, = C \ (C1 U L2) be the set of all edges whose one end- 
vertex is in L1 and the other end-vertex is in C2. Let 6 1  = 
(V1, C1) and G2 = (V2, C2 )  When the graph 6 = (V,  C)  
is split into G1 = (V1, C1) and G2 = (VZ, C2), all edges in 
C, are removed. The splitting problem is to find new sets 
of edges C1,,, to insert into G1 and C2,,, to insert into 
G2 such that the resulting graphs GT = (V1, C1 U Ll,,,) 
and GE = (V2, C, U C2,,,) are minimally rigid. 

With the minimal cover problem in mind as defined in 
the previous section, the splitting problem reduces to finding 
the minimal covers of G1 = (V1, C I )  and 6 2  = (V2, C2). 
As detailed in the analysis in the previous section, the 
underlying graphs of the resulting post-split sub-formations 
determined by the reduction sequences are minimally rigid 
by Theorem 3 and Theorem 6. 

IV. MERGING FORMATIONS 

As we did in the case of the splitting problem, we 
introduce a suitable definition of the merging problem in 
terms of graph rigidity. Let G1 = (V1, C1) and 6 2  = 
(V2, Cz )  be two minimally rigid graphs representing the 
underlying graphs of two minimally rigid point formations. 
The merging problem is to find a new set of edges Cnew 
to insert between G1 and G2 by choosing one end-vertex 
in V1 and the other end-vertex in V2 such that the resulting 
graph G* = (Vl U Vz ,  C1 U Cz U Cnew) is minimally rigid. 
As in the case of splitting, the merging problem reduces to 
finding the minimal cover of 6' = (V1 U V2, C1 U C2). We 
exemplify this in the sequel. 

Example: Let G1 = (V1, C1)  and G2 = (V2, C2) be two 
minimally rigid graphs in 2-dimensional space. Suppose that 
we apply the reduction sequence first on G2 = (V2, C2) 
as described in $11-A. Since G2 is minimally rigid, we 
obtain two vertices connected by an edge at the end of 
the reduction sequence on G2 without inserting any new 
edges. We denote this remaining edge by ( i ,  j ) .  At this 
intermediate step, we are left with G1 = (V1, C1) and the 
edge ( i ,  j )  on which we continue applying the reduction 
sequence. Suppose that we apply the reduction step type I 
on i ,  by inserting an edge ( i ,  k )  where k E V1.  Then we 
apply the reduction step type I on j  by inserting the edges 
( j ,  k ) ,  ( j ,  1 )  or by inserting the edges ( j ,  1 ) ,  ( j ,  r )  where 
k ,  1 ,  r E V1. After applying those reduction steps on i ,  j ,  we 
are left with the graph G1 = (V1, C1) only, and we apply 
the reduction sequence on GI without inserting any new 
edges. Therefore the two possible combinations of merging 
G1 and G2 create the set of edges ( i ,  k ) ,  ( j ,  k ) ,  ( j ,  1 )  or 
(i, k ) ,  ( j ,  l ) ,  ( j ,  r ) .  We depict these two different strategies 
of merging two rigid sub-formations in Figures 3a and b. 
G1 and G2 denote the underlying graphs of these two rigid 
point formations. 

We can pursue a different strategy. Let G1 = (V1, C1) 
and G2 = (V2, C z )  be two minimally rigid graphs in 2- 
dimensional space. Suppose that we apply the reduction 
sequence first on G2 = (V2, C2) as described in $11-A until 
we are left with three vertices i ,  j ,  k connected by three 
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edges (i, j ) ,  ( i , k ) ,  ( j , k ) .  Since G2 is minimally rigid, we 
obtain these three vertices connected by three edges at the 
end of the reduction sequence on 6 2  without inserting any 
new edges. First, let us insert a new edge (i, r )  where r  E 
V1. Now, i is of degree 3. Then, we can apply the reduction 
step type I1 on i  by inserting ( j , r ) .  Note that while ( i , r )  
is a new inserted edge which needs to be registered in the 
reduction sequence process, ( j ,  r )  is not. ( j ,  r )  is simply a 
result of reduction step type 11: Now let us insert a new edge 
( j ,  s )  to make j  of degree 3 where s  E V1. Then we can 
apply the reduction step type I1 on j  by inserting an edge 
( k ,  s). Note again that ( j ,  s )  is a new edge which needs to 
be registered in the reduction sequence process but ( k ,  s )  
is not. Then we apply the reduction step type I on k  by 
inserting a new edge ( k ,  t )  where t E V1. At this stage, 
we are only left with G I .  Then we continue the reduction 
sequence on G I .  Since G1 is minimally rigid, the reduction 
sequence can be applied without inserting any other extra 
edges. Therefore another strategy for merging G1 and G2 
creates the set of edges (i, r ) ,  ( j ,  s ) ,  ( k ,  t ) .  We depict this 
strategy in Figure 3c. 

It can be verified that six links are needed in 3- 
dimensional space to merge two minimally rigid sub- 
formations to form a minimally rigid post-merged formation 
provided that we use at least three points in each sub- 
formation as an end-point of these six new links. Here, we 
use the solution of the minimal cover problem to determine 
these new links. We depict three possible strategies to 
determine these six links (Figures 4a, b, c) and explain 
one of them in detail (Figure 4a). One can find different 
strategies by using a modified version of the idea presented 
here by selecting a different combination of vertices and 
reduction steps type I and 11. Here, we do not go into each 
such combinations because the idea is essentially similar to 
the planar version. 

Let 6 1  = (V1, C1) and G2 = (V2, C2) be two minimally 
rigid graphs in 3-dimensional space. Suppose that we apply 
the reduction sequence first on G2 = (V2, L2)  as described 
in $11-A. Since Gz is minimally rigid, we obtain three 
vertices connected by three edges at the end of the reduction 
sequence on G2 without inserting any new edges. Let 
us denote this remaining vertices by i ,  j, k  and edges by 
( i ,  j ) ,  ( i ,  k ) ,  ( j ,  k ) .  At this intermediate step, we are left with 

Fig. 3. Merging rigid sub-formations in Zdimensional space. 

Fig. 4. Three different strategies of merging rigid sub-formations in 3- 
dimensional space. 

6 1  = (Vl ,  L1) and the edge ( i ,  j ) ,  ( i ,  k ) ,  ( j ,  k )  on which 
we continue applying the reduction sequence. Suppose that 
we apply the reduction step type I on the vertex i ,  by 
inserting an edge ( i ,  1 )  where 1 E V1. Then we apply 
the reduction step type I on the vertex j  by inserting the 
edges ( j ,  r), ( j ,  s )  where r,  s  E V1. Then we apply the 
reduction step type I on the vertex k  by inserting the edges 
( k ,  t ) ,  ( k ,  u ) ,  ( k ,  v )  where t ,  u ,  u E V1.  After applying those 
reduction steps on vertices i ,  j, k ,  we are left with the graph 
G1 = (V1, C1)  only, and we apply the reduction sequence 
on (61  without inserting any new edges. Therefore the two 
possible combinations of merging G1 and 6 2  create the set 
of edges (i,L), ( j , r ) ,  ( j ,  s ) ,  ( k t ) ,  (k, .u),  ( k , ~ ) .  We depict 
this strategy of merging two rigid sub-formations in Figure 
4(a). G1 and 6 2  denote the underlying graphs of these two 
rigid point formations. 

First, we note that the reduction strategies developed 
in this paper can be extended to include other types of 
operations such as vertex splitting. Second, solving the 
minimal cover problem for rigid formations, which are not 
necessarily minimally rigid, is an open problem. 
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