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Abstract

H∞ control design is generally performed iteratively. At each itera-
tion, the weights constraining the desired closed-loop transfer functions
are adjusted until satisfactory performance margins are obtained. The
way in which the weights are adjusted is generally heuristic and based
solely on past experience and engineering judgement/intuition. It is
consequently important to understand and provide guidelines on how
weight adjustments directly affect the synthesised controller, and more
importantly, the corresponding closed-loop transfer function matrices.
This article presents a thorough study of this problem based on small
weight adjustments in H∞ control design.

1 Introduction

In recent years, H∞ control design has become a well known
method to design model based controllers satisfying a number
of constraints expressed by amplitude bounds, in the form of
weights, on the “to be designed” closed-loop transfer functions.
This method whose theoretical basis can be found in the works
of [3, 4, 19] has known numerous applications on real life sys-
tems (see [1, 18] and references therein).

It is well known that the design of weights in H∞ control
problems is a non-trivial task. Usually, suitable weights are
obtained via a trial and error process based primarily on en-
gineering judgement and intuition [7]. This trial and error
process becomes increasingly complicated as the number of
weighted channels increase, since it may not be possible to sen-
sibly choose the weights for each channel independently. For
problems involving requirements on both the standard closed-
loop sensitivity and complementary sensitivity functions, for
example, it is not possible to arbitrarily specify weights for each
of these channels, since the two are coupled. Such tradeoffs are
common in control system design. It is consequently impor-
tant to understand and provide guidelines on how weight ad-
justments directly affect the synthesised controller (the central
controller in this paper), and more importantly, the correspond-
ing closed-loop transfer function matrices. Related work that
addresses this problem from a different (from an optimisation)
perspective can be found in [10, 13–15].

Since their inception, H∞ control problems have been
amenable to a variety of solution techniques. The framework
used in this paper to analyse the effect of weight adjustments on
the synthesised controller and the corresponding closed-loop
transfer function matrices is the chain-scattering approach to

H∞ control of [8]. This approach is very similar (and in fact
equivalent in some sense) to the J -spectral factorisation ap-
proach to H∞ control of [5, 6, 9]. We use this framework be-
cause we envisage adjustments of the weighting functions that
may change the McMillan degree of the frequency domain sym-
bol. These adjustments are easily dealt in the frequency domain
operator-theoric framework of chain-scattering, but are more
cumbersome and not easily cast in state-space descriptions.

This paper is an extension of [2] to Multiple Input Multiple
Output (MIMO) systems and to four-block H∞ problems. The
analysis is based on the assumption of “small” weight adjust-
ments (with smallness exactly qualified in the paper). This
assumption is required so as to construct a linear map from
weight adjustments to controller and closed-loop transfer func-
tion modifications. The first contribution of this work is to give
a first-order approximation of the modification of the central
controller due to a small weight adjustment after a successful
H∞ control synthesis step. This approximation is a function of
the weight adjustment and the variables involved in the initial
control design problem, and is therefore computable without
requiring another H∞ control synthesis step (i.e. a new synthe-
sis step involving the adjusted weights). A second contribution
of this paper is that we show that the modification of the cen-
tral controller persists outside the frequency region where the
weight is mainly adjusted. Finally, we analyse the effect of
this controller modification on the corresponding closed-loop
transfer functions.

2 Background Material

2.1 Chain-scattering representation of generalised plants

Consider a generalised plant 6 with two kinds of inputs (w, u)

and two kinds of outputs (z, y) represented as

[

z
y

]

=

[

611 612
621 622

] [

w

u

]

, (1)

where z represents the errors to be reduced [dim(z) = m],
y denotes the measured outputs [dim(y) = q], w represents
the exogenous signals [dim(w) = r ], u denotes the control
inputs [dim(u) = p], and assume that it satisfies the following
assumption:

Assumption (A1): q ≤ r , p ≤ m and rank[621( jω)] = q,
rank[612( jω)] = p for all ω ∈ R ∪ {∞}.

If 6−1
21 exists (i.e. if r = q), then the generalised plant 6 can



be alternatively represented by
[

z
w

]

=

[

G11 G12
G21 G22

] [

u
y

]

,

where

G :=

[

G11 G12
G21 G22

]

=

[

612 − 6116
−1
21 622 6116

−1
21

−6−1
21 622 6−1

21

]

. (2)

This type of representation is usually referred to as a chain-
scattering representation of 6.

Now, let the plant 6 or its chain-scattering equivalent G be con-
trolled by a controller u = K y. Then the closed-loop transfer
function matrix Tzw mapping exogenous inputs w to errors z is
given by

Tzw = Fl (6, K ) := 611 + 612 K (I − 622 K )−1621

= HM(G, K ) := (G11 K + G12)(G21 K + G22)
−1,

where Fl (·, ·) denotes the “lower Linear Fractional Transfor-
mation” frequently used in control theory and HM(·, ·) denotes
the “Homographic Transformation” frequently used in classical
circuit theory.

2.2 Connections to H∞ control

A normalised H∞ control problem can be stated as follows:
“Find a controller K such that the closed-loop system Tzw =

Fl (6, K ) = HM(G, K ) is internally stable and the closed-loop
transfer function Tzw satisfies ‖Tzw‖∞ < 1”. A controller K
is said to be admissible if it solves the normalised H∞ control
problem. We also usually seek to characterise the set of all
admissible controllers. For such a set, a controller Kc is said to
be a central controller if it is achieved by setting a certain free
parameter characterising this set to zero.

The following lemma characterises the set of all admissible
controllers in terms of a solution of a J -cospectral factori-
sation problem when the normalised H∞ control problem is
solvable. Here, Jmr denote the signature matrix, defined by
Jmr := diag(Im,−Ir ).

Lemma 1 ([8]) Suppose that the normalised H∞ control prob-
lem is solvable for a generalised plant 6 ∈ RL∞ given by
equation (1) that satisfies assumption (A1). Then there exists a
unimodular 4 in RH∞ satisfying

4 Jpq 4∼ =
[

Ip 0
622 621

] [

6∼

12612 6∼

12611
6∼

11612 6∼

11611 − Ir

]−1 [

Ip 6∼

22
0 6∼

21

]

. (3)

In this case, all admissible controllers are given by

K = HM(4, S)

for some S ∈ RH∞ satisfying ‖S‖∞ < 1.

The unimodular matrix 4 in RH∞ satisfying equation (3) is
unique up to right multiplication by a constant nonsingular real

matrix 9̂ which satisfies 9̂ Jpr 9̂
T = Jpr (i.e. there are several

different possible unimodular matrices 4 solving equation (3)).
References [11,12] describe in detail how to appropriately select
a particular unimodular matrix4by fixing the choice of4( j∞).
It is very important for the analysis of Section 4 to pin down one
particular unimodular matrix 4 that solves equation (3) because
first order approximations only make sense when considering
the effect of small changes on the same unimodular matrix 4.

3 Considered Problem

As stated in the introduction, the aim of this paper is to analyse
the effect of small adjustments in the weighting functions of an
H∞ design on the central controller Kc (uniquely defined after
4 has been pinned down at infinite frequency) and the resulting
closed-loop transfer function matrices Tzw. Here, the central
controller is defined by

Kc := HM(4, 0) (4)

for a particular choice of unimodular matrix 4 that satisfies
equation (3) and the resulting closed-loop transfer function ma-
trix Tzw is defined by

Tzw :=

[

P
I

]

(I − Kc P)−1 [

−Kc I
]

(5)

where P is the nominal plant model (not the generalised plant
6). Note that Tzw contains all four important transfer function
matrices that ought to be considered in any sensible control sys-
tem design. Weighting functions are assigned to entries in Tzw
in accordance with the design paradigm adopted (e.g. some de-
sign paradigms weight each closed-loop transfer function matrix
individually and others weight the plant P directly).

We suppose that the originally posed H∞ control problem with
a specified weighting function W is solvable and that we have
the unimodular matrix 4 of interest that satisfies equation (3),
the corresponding central controller Kc and the resulting closed-
loop transfer function matrix Tzw . Then we adjust the weighting
function by a small amount 1W to give Wnew := W + 1W .
After solving the new H∞ control problem that results from this
change in weight, the unimodular matrix 4 changes to 4new :=

4 + 14, the corresponding central controller Kc changes to
Kc,new := Kc + 1Kc and the resulting closed-loop transfer
function matrix Tzw changes to Tzw,new := Tzw + 1Tzw. In
order to describe what is meant by a small change in weight, we
assume the following:

Assumption (A2): The change in weight 1W is chosen small
enough to ensure that:

(a) the mapping 1W 7→ 14 7→ 1Kc 7→ 1Tzw is linear,

(b) the H∞ control problem remains solvable after adjust-
ing the weight.

In this work, we will effectively construct a mapping 1W 7→

14 7→ 1Kc 7→ 1Tzw based on first order approximations.
This mapping allows us to understand quantitatively the effects



of changing a weight by a small amount on the closed-loop
transfer function matrices (and it is also a guide to the effects of
a larger change in weight). While the smallness requirements
of assumption (A2) ensures this mapping is linear, we will show
that this mapping is in general not memoryless since 1Kc( jω1)

does not only depend on 1W ( jω1) but on 1W ( jω) for, in
principle, all ω ∈ [0,∞).

3.1 Application to the H∞ loop-shaping design procedure

In order to explicitly study how changes in weights map to
changes in the central controller and the closed-loop transfer
function matrices, we need to choose some H∞ control design
paradigm for the sake of the discussion. In this paper, we use
the H∞ loop-shaping design procedure proposed by [16] to
illustrate the concepts, as it is an effective method for designing
robust controllers and has been successfully used in a variety
of applications. A detailed tutorial on how to design robust
controllers using this design procedure can be found in [18].

In this paradigm, the H∞-norm objective is to synthesise an
internally stabilising controller Kc such that

∥

∥

∥

∥

[

W2 0
0 W −1

1

]

Tzw

[

W −1
2 0
0 W1

]
∥

∥

∥

∥

∞

< γ.

It can be shown that this ‖·‖∞ is always greater than or equal
to unity and hence for a feasible problem γ > 1.

Some algebraic manipulations should convince the reader that
the above H∞-norm objective can be restated as: “Synthesise
an internally stabilising controller K such that
∥

∥

∥

∥

∥

∥

∥

Fl













0 1
γ

W2 PW1
1
γ

W2 P

0 1
γ

I 1
γ

W −1
1

−W −1
2 PW1 P






, K







∥

∥

∥

∥

∥

∥

∥

∞

< 1 (6)

for some γ > 1”.

Consequently, the generalised plant 6 for the H∞ loop-shaping
problem is given by the term in square brackets in equation (6).
From this representation of 6, it is clear that this problem is
a four-block problem since neither 621 nor 612 are square.
Furthermore, since both W1 and W2 are typically chosen to be
units in RH∞, assumption (A1) is trivially satisfied in this case.

Using Lemma 1 and rewriting equation (3) for the H∞ loop-
shaping case, we get

4 Jpq 4∼ = −

[

(W1W ∼

1 ) 0
0 (W ∼

2 W2)
−1

]

+ γ 2
[

I
P

]

[

P∼(W ∼

2 W2)P + (W1W ∼

1 )−1
]−1

[

I P∼

]

. (7)

Since the post-compensator W2 is usually held fixed as a low-
pass filter, we will analyse how a change in the pre-compensator
W1 maps to changes in the central controller Kc and the closed-
loop transfer function matrices Tzw . In this sense, we will derive
linearisations of equations (7), (4) and (5), since equation (7)
relates W1 to 4, equation (4) relates 4 to Kc and equation (5)
relates Kc to Tzw. Note that a similar analysis could have been
performed on W2 instead of W1, if it is so required.

4 The Effects of Small Weight Adjustments

Proofs are omitted for the sake of brevity and they will be pub-
lished elsewhere.

4.1 Effect on the transfer function matrix 4

We will first need to find an approximation for 14 since 4

defines the central controller Kc through equation (4). This
approximation for 14 is given in Theorem 2 below. Recall that
it is very important to pin down one particular unimodular matrix
4 that solves equation (7) because first order approximations
only make sense when considering the effect of small changes
on the same unimodular matrix 4.

Theorem 2 Suppose a number γ > 1, a nominal plant P ∈

RL∞ and some weights W1 and W2 (units in RH∞) are given
for which the normalised H∞ control problem stated in equa-
tion (6) is solvable. Let 4 (unimodular in RH∞) denote the
solution of equation (7) and force uniqueness on 4 by pinning
down 4( j∞) as described in [11, 12].

Then consider the adjustment of weight W1 by some small1

amount 1W1 to give a new weight W1,new := W1 + 1W1. As
a result of this weight change, the selected 4 changes to 4new
and a first order approximation of the change 14 := 4new −4

is given by
14 ≈ 48Jpq , (8)

where 8 is a stable transfer function matrix solving

8 + 8∼ = 4−10(1W1)4−∼ (9)

and 0(1W1) is defined as follows

0(1W1) := −

[

W1 1W1
∼ + 1W1 W∼

1 0
0 0

]

+ γ 2
[

I
P

]

[

(W1W∼

1 )P∼(W∼

2 W2)P+I
]−1[

W1 1W1
∼+1W1 W∼

1
]

×
[

P∼(W∼

2 W2)P(W1W∼

1 ) + I
]−1 [

I P∼
]

. (10)

If we were to consider a different H∞ design paradigm from the
H∞ loop-shaping design procedure, the above theorem would
remain essentially the same with only the definition of 0(1W1)

being different. Similarly, if we consider changes in W2 instead
of W1, only the definition of 0(·) would be different.

The matrix 8 resulting from equation (9) is unique up to an
additive constant “skew-symmetric” matrix. It will be shown
in Theorem 3 that the only part of the stable transfer function
matrix8 that is important in analysing how the central controller
changes for a small weight adjustment is 812 (of dimension
p × q). We will thus choose the corresponding (12)-block of
the above-mentioned additive skew-symmetric matrix such that

812( j∞) = 0.

This is done so that Kc,new( j∞) ≈ Kc( j∞), as should be the
case since 1W1 is typically selected to be strictly proper.

1“Small” in the sense of assumption (A2).



4.2 Effect on the central controller Kc

Theorem 2 gives us an approximation of the difference between
4new and 4. This approximation is a function of 1W1 and
the variables involved in the original (i.e. the one with weights
W1 and W2) problem. This result now allows us to derive an
approximation for the difference between the new central con-
troller Kc,new and the original central controller Kc using the
relation (4) between the object 4 and the central controller Kc.
This expression is given in the following theorem.

Theorem 3 Let the suppositions of Theorem 2 hold with 4 par-
titioned as follows

4 =

[

411 412
421 422

]

}p

}q

} }

p q

and define the central controller as in equation (4).

Then consider the adjustment of weight W1 by some small
amount 1W1 to give a new weight W1,new := W1 + 1W1.
As a result of this weight change, the selected central controller
Kc changes to Kc,new and a first order approximation of the
change 1Kc := Kc,new − Kc is given by

1Kc ≈ −(411 − 4124
−1
22 421)812 4−1

22 , (11)

where 812 and 821 are stable transfer function sub-matrices of
8 in (9) that solve

812 + 8∼

21 =
[

Ip 0
]

4−10(1W1)4−∼

[

0
Iq

]

(12)

and 0(1W1) is defined as in (10). To force uniqueness in the
decomposition of equation (12) require 812 to be also strictly
proper.

It should be clear that the approximation of 1Kc given in (11)
has zero gain at infinite frequency since 812 is selected to be
strictly proper. Furthermore, it can be easily shown that if the
original central controller Kc is (open-loop) stable, then the
approximation to the resulting difference between Kc,new and
Kc is also stable.

4.3 Effect on the closed-loop transfer functions Tzw

Theorem 3 gives us an approximation of the difference between
Kc,new and Kc. This approximation is again simply a function
of 1W1 and the variables involved in the original (i.e. the one
with weights W1 and W2) problem. This result (which is com-
putable prior to solving the modified H∞ control problem) now
allows us to derive an approximation for the difference between
the new closed-loop transfer function matrices Tzw,new and the
original ones Tzw using the relation (5) between Kc and Tzw.
This expression is given in the following theorem.

Theorem 4 Let the suppositions of Theorem 3 hold and define
the closed-loop transfer function matrices of interest Tzw as in
equation (5).

Then consider the adjustment of weight W1 by some small
amount 1W1 to give a new weight W1,new := W1 + 1W1.
As a result of this weight change, the closed-loop transfer func-
tion matrices of interest Tzw change to Tzw,new and a first order
approximation of the change 1Tzw := Tzw,new − Tzw is given
by

1Tzw ≈

[

P
I

]

(I − Kc P)−11Kc (I − P Kc)
−1[−I P

]

(13)

where 1Kc denotes the difference between the new central con-
troller after weight change and the original central controller
Kc, or an approximation of this difference as given in equa-
tion (11).

Equation (13) suggests how the controller Kc should be mod-
ified in order to obtain the desired effects on the closed-loop
transfer functions.

5 Controller Changes outside the Adjusted Fre-
quency Band

In this section, we analyse the relation between the weight
change 1W1 and the strictly proper stable transfer function ma-
trix 812 in equation (12), as this will give us the effect on 1Kc
through equation (11) and in turn the resulting effect on Kc,new.

Typically, the adjustment of weight W1 by 1W1 will mainly
be restricted to the frequency band of interest [ω1, ω2]. Con-
sequently, 1W1 will in general be a pass-band stable filter that
is strictly proper, has a blocking zero at zero frequency and
its maximum singular value is non-negligible only in the fre-
quency band [ω1, ω2]. For illustration, in a SISO setting, 1W1
will have the form

1W1 =
K s

(s + ω1)(s + ω2)

with ω1, ω2 > 0 and K ∈ R. The blocking zero and strict
properness requirements ensure that 1W1( jω) → 0 as ω → 0
and ∞.

The transfer function matrix 812 will generally have a differ-
ent frequency plot from the weight change 1W1 because of the
particular decomposition in equation (12). Indeed, 812( jω)

converges to 0 at high frequencies (see Theorem 3) just like
1W1( jω) converges to 0 at high frequencies, but 812( jω) gen-
erally converges to a non-zero real constant matrix at low fre-
quencies unlike 1W1. This phenomenon is captured by the
following theorem.

Theorem 5 Given a stable strictly proper weight adjustment
1W1 that has a blocking zero at s = 0, define 0(1W1) as in
equation (10).

Then, the stable strictly proper transfer function matrix 812 that
solves equation (12) does not in general have a blocking zero
at s = 0.

Understanding that 812 generally has a different low frequency
behaviour from 1W1 is important because the low frequency



behaviour of 812 determines the low frequency modification
1Kc of the central controller through equation (11) and in turn
it also determines the corresponding low frequency modification
1Tzw of the closed-loop transfer function matrices. Note that
(411 − 4124

−1
22 421) and 422 in equation (11) are bi-proper

transfer function matrices because 4 is a unit in RH∞. Thus,
the low frequency behaviour of 1Kc will be directly determined
by the low frequency behaviour of 812.

In view of Theorem 5, we can assert that the modification of
the central controller Kc (and hence the closed-loop transfer
functions Tzw) due to the weight change 1W1 will not only be
restricted to the frequency band of interest [ω1, ω2] where the
weight change occurs, but will also persist at lower frequencies
than ω1. In this sense, we say that the changes in the central con-
troller (and hence the closed-loop transfer functions) occur in the
frequency range [0, ω2], even though the weight change 1W1 is
only significant in the frequency band [ω1, ω2]. At frequencies
much higher than ω2, there will be no significant changes in Kc
(and correspondingly Tzw) because 812( jω) converges to zero
as ω → ∞.

6 Numerical Example

Consider the following scaled-down model of the High Inci-
dence Research Model constructed at the University of Cam-
bridge in order to study problems associated with the control of
air-vehicles at high angles of attack [17]:

P(s) =















0 1 0 0 0 0
−23.8 −3.36 4.60 −0.239 1.67 0

0 0 0 1 0 0
−16.8 −0.0248 22.8 −0.916 0 1.39

1 0 0 0 0 0
0 0 1 0 0 0















.

The plant P has two inputs (roll and yaw thrusters) and two
outputs (roll and yaw angles).

We want to control this MIMO plant using the H∞ loop-shaping
design procedure. Throughout this example, the weight W2
will be set to the identity matrix I2 in order to simplify the
expressions. Furthermore, we initially select W1 to be of the
form W1 = k I2 where k is some constant. The constant k = 800
is chosen so that the cross-over frequency of the shaped plant
PW1 is approximately 30 rad/s.

The H∞ control design procedure with these weights W1 and
W2 and γ = 5 delivers the central controller Kc whose maxi-
mum singular value is represented in Figure 1. The maximum
singular values of the corresponding closed-loop transfer func-
tion matrices are depicted in Figure 2. Figure 2 shows that the
resulting closed-loop behaviour is satisfactory except for T21
which has a too large resonance peak around ω = 50 rad/s.

A new weight W1,new is now chosen by making a small weight
adjustment 1W1 to the initial weight W1. This adjustment must
decrease the resonance peak of T21 without modifying too much
the other satisfactory features of the initial design (e.g. the cross-
over frequency of PW1,new must be reasonably the same as for
PW1). Following conventional wisdom, we decrease the weight
W1 around the frequency of the resonance peak. That is, we
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Figure 1: σ(Kc( jω)) (dotted), σ(Kc,new( jω)) (dashdot),
σ(Kc,app( jω)) (solid)
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Figure 2: σ(Ti j ( jω)) (dotted), σ(Ti j,new( jω)) (dashdot),
σ(Ti j,app( jω)) (solid)

choose the new weight W1,new as follows:

W1,new = W1 + 1W1 = W1 +

[

−7566s
(s+1)(s+20)

0

0 −7566s
(s+1)(s+20)

]

Figure 3 shows both W1,new and 1W1. From this figure, it
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Figure 3: σ(812( jω)) (solid), σ(1W1( jω)) (dashdot), σ(W1,new)

(dotted)

is clear that 1W1 can be considered a small deviation (in the



sense of Assumption A2) of W1 since it causes simply a 7 dB
change in the magnitude of W1. Furthermore, the new weight
decreases the gain of the shaped plant in the frequency band
[1, 20] rad/s.

We then use the results of this paper in order to get a quantitative
idea of the behaviour that we anticipate as a consequence of the
adjustment 1W1. For this purpose, we first compute 812 using
the decomposition in equation (12). The maximum singular
value of 812 is represented in Figure 3. This figure shows that
812( jω) does not converge to 0 when ω → 0, unlike 1W1.
The quantity 812 is then used to compute an approximation
of the new central controller Kc,new that would be obtained if
we were to perform an H∞ control design with weight W1,new.
The maximum singular value of this approximation of the new
central controller is represented in Figure 1. In this figure, we
note that the change in the controller is not limited to the fre-
quency band [1, 20] rad/s, but persists in the frequency band
[0, 20] rad/s. This is a non-obvious change resulting from
the low frequency behaviour of 812( jω) (see Figure 3). The
approximation of Kc,new can now be used to analyse the conse-
quences of 1W1 on the closed-transfer function matrices. The
maximum singular values of these approximations Ti j,app are
represented in Figure 2. We observe that the chosen adjust-
ment 1W1 in the weight W1 delivers the desired effect, which
is quantifiable with this theory: the resonance peak of T21 is
indeed reduced by about 5 dB.

For the sake of comparison, a new H∞ control synthesis is also
performed using W1,new (and W2, γ ). This delivers a new cen-
tral controller Kc,new and the corresponding new closed-loop
transfer function matrices whose maximum singular values are
also represented in Figures 1 and 2 respectively. In these figures,
we observe that the approximations Kc,app and Ti j,app were re-
liable enough to accurately predict quantitative changes in the
the frequency responses of the new transfer function matrices
Kc,new and Ti j,new when the weight W1 was replaced by W1,new.
This is because the curves representing the approximations and
the actual frequency responses are almost overlapping.

7 Conclusions

In this paper, we have analysed the effects of small weight
adjustments on the synthesised central controller and the cor-
responding closed-loop transfer function matrices in an H∞

control design setting. Only small changes were considered
because this allowed us to construct a linear map from weight
adjustments to controller and closed-loop transfer function mod-
ifications. Approximations to these modifications can be very
easily computed using simple formulae, and without having to
solve a second H∞ synthesis problem for the new problem
with adjusted weights. Thus, in this sense, these approxima-
tions allow us to determine quantitatively the effects of weight
adjustments “a priori”. We show also that the modification in
the central controller persists outside the frequency band where
the weight was is mainly adjusted.

Specific details have been illustrated on the H∞ loop-shaping
design procedure, but different H∞ design paradigms may be
used because the arguments of this paper easily follow through.

This is because the underlying principle is independent of the
design method considered. The results of this paper are also
independent of the structure of the weighting functions. Thus,
adjustments of diagonal and non-diagonal weights are treated
in the same framework with similar ease.
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