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State and Parameter Estimation in Non-Linear Systems

By B. D. O. Anpersox, B.Sc., B.E,, Pu.D., MIEAUST.

Summary,~The paper examines the estimation of state variables and
parameters for non-linear, noisy, dJscrete-tzme systems. The estimation
problem is formulated as one requiring the calculation of probability
damty functions of the states and parameters, with these density functions
being * conditioned ” on the plant measurements in the sense that they
reflect all knowledge about the plant. Formulas dre developed for updating
the probability densities as further measurements become available.

Using the probability densities, certain parameters, e.g., mean and
variance, of a plant state or trajectory could be. estimated. However,
computation of the probability densities can present practical d1ﬁiculues,
and a dynamic programming procedure avoiding their computation is
presented which derives the modal trajectory, that is, the most likely .tra-
jectory, which maximizes the associated probability "density.

1.

The control engineer is often faced with the problem of wishing
to measure certain variables in a plant, but he is preveated by various
practical considerations from doing so.” Thus knowledge of the
state-variables -of a plant, so -often apparently required for imple~
-mentation of & controller, may be missing, while variables are avail-
able representing transformations of these state-variables. Often
any plant measurements are noisy, i.e., the measured variable is
some transformation of the state-variables together with a random
variable. The natural question then arises as to how the state
variables of the plant may be estimated from the measured variables.

Beginning with the noiseless case and a linear plant, theories
have become available outlining techniques for the recovery of
the state-variable. The work of Kalman on linear system observ-
ability is well known (Ref. 1), and hardly less well known is the
work of Kalman and Bucy (Ref. 2), dealmg w1th state estlmanon
in a IlOISY CIIVII'OIIII].CI]I

Extensions to non-linear systems are clearly djﬂicult. -Among
such we note the work of Albrekht and Krasovskii (Ref. 3) for
deterministic systems and Ref. 4, which discusses the application of
the Kalman-Bucy filter to noisy non-linear systems.

Whilst it is certainly a sensible policy to seck the state estimates
of a linear plant subjected to Gaussian noise, the case where the
plant is non-linear or the noise non-Gaussian should cause a re-
thinking of the aim of estimation, As described in Ref, 5 and
applied in Ref. 6, the problem of optimal control given noisy
measurements is best solved wusing, not a state estimate, but the
information- stare of the plant, i.e., a probability density function of
the plant state, wheve this function is conditioned (in the technical
sense of probability theory) on a knowledge of all available measure-
mients of the planr. The reasons for this are thar (i) the information
state truly sums up all available knowledge about the state of the
plant, and (ii) the information state can normally be calculated, at
least in principle,

Unfortunately, all too often the calculation of the information
state is prohibitive in its consurnption of computer tme. In a few
situations, e.g., linear plant and Gaussian noise, this is not so, but
in general bardly any continuous plants can be considered; nor is
it true that information states can always be calculated in practice
for discrete plants. Interest therefore may be centred around
using certain quantities associated with the information state which
(i) can be more easily computed, and (ii) can be used to generate
a control strategy.
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The idea of using such quantities arises also in optimal filtering
problems, as distinct from optimal control problems; knowledge
of the information state may be excessive, in the sense that know-
ledge of, e.g., only the state mean and variance may be desired.

Another class of problems centres around developing an esti-
mate of the trajectory (i.e., sequence of states over a time mterval).
of a plant, rather than the state of the plant at some particular time.
Of course, the estimation is based on knowledge of certain (noisy)
measurements. Just as a conditional probability density can be
defined for the siate of a plant, so can a conditional probability
density for its trajectory be found, and we may regard estimation
problems as including the problem of determining this conditional
probability density, and of determining certain associated relevant
quantities which can more easily be computed.

In this paper, we consider discrete-time plants; there are noisy
inputs and noisy outputs, i.e., in addition to a deterministic or
known input there is a stochastic or unknown input, and the mea-
sured outputs are not merely functions of the plant state, but also
of some random wvariable. The state at time %2 + 1 will be defined
as a non-linear function of the state and input (deterministic and
random) at time %, and the measured .output at time % as a non-
linear function of the state at time % and the random output noise.’

We shall derive equations describing the evolution of the prob-
ability density of the system trajectory with time; thus these deter-
rinistic equations may be used to describe the system rather than
the original stochastic equation describing the evolution of the state
with time.

Section 2 presents the precise plant equations, and exphmtly
defines the estimation problems to be considered, also indicating
the currently available results. In Section 3, calculations are
presented for the conditional probability density functions of the
various estimation problems; of particular interest is the connection

-between trajectory (sequence of states} estimation and (single)

state estimation.

Section 4 is concerned with showing how a predicted modal
(i.e., most likely) trajectory can be found by dynamic programming
methods, while in Section 5 there is a brief discussion of the results,
in terms of the computational problems involved in their applica-
tion.

The significance of Section 4 is that it suggests a possible
computational saving. As remarked earlier, actual computation, of
the conditional probability density functions may prove impossible
in practice; Section 4 bypasses this calculation, giving an alternative
route to calculating the state or trajectory which maximizes the
associated probability density functions, The modal trajectory is
thus one “ quantity” associated with the probability density
function whose computation is not as difficult as that of the probabi-
lity dens1ty function.

2—SYSTEM AND PROBLEM DESCRIPTIONS

We consider discrete-time dynamical systems with noisy inputs
and noisy outputs. Since the systems are not restricted to being
time-invariant, deterministic inputs are readily incorporated by
appropriate time-variation of the system equations.

The evolution of the state vector is described by

Xpsy = Ry s Wy 5 B)
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where x, denotes the state vector at time %, and @, is the noisy,
i.e., random, input ar time k,

The initial value of the state, x,, is assumed to be a random
variable with known probabﬂxty density function p(x,).

The statistics of @, that is, the probability density functions
), i=0,1,2,... are also assumed known, ard the random
variables e, and @; for { # j are assumed independent.

The formulation of Eq. (1) has the advantage of possibly in-
cluding in the vector x,., entries more closely representing plant

parameters than true plant state variables.

. A :
plant with state vector x and a set of unknown parameters repre-
: ,\ .
sented by a vector . The plant equations are then of the form

A Y A
o Xy = flega pywy s k)

to which may be adjoined
Prn =Du

By defining x through 3= [x}] f)’] , and with a sujtable
definition of f, Eq. (1) is recovered, and estimation procedures
developed for ‘Eq. (1) yield state and parameter estimation proce-
dures for Eq. (2).

The measurable output of the system at time % is

z = Mxy , 0p 5 B)

where the dimension of z, need not be the same as that of x, .
Measurement noise is represented by the random variable o, .
We assume as for @; that each p(v;), the probability density func-
tion of v, , is known and that the random variables v, and ; for
i # j are independent. Finally, we assume the random variables
»; and ; are independent for all 7 and j.

‘Problems such as the following then arise:

(1) Given the set of measurements 2, , &5 5 . » » 5 25 determine for some
i the conditional probability density p(x;|2; , #2 5 - - . » )3 here s may
be less than k, (state smoothing problem), equal to &, (state filtering
problem), or greater than % (state prediction problem).

- (2) Given the set of measurements 2y, %s,..., %5, determine for
some i the conditional probability density p(x, » #;... %|3; 5 Zaee 21)5
for i less than %, we have the trajectory smoothing preblem, for
7 equal to % the trajectory filtering problem, and for ¢ greate: than %
the trajectory prediction problem.

(3) Given the set of measurements z,;,%a,.. ., 2z, determine- for
some § the conditional probability density p(og, Xpi1 5+« 5 Xpgd
21382040525 {(Problem 3 differs from the third part of prob-
lem 2 by requiring only prediction of the trajectory, rather than

) simultancous prediction and smcothing.)

In all problems, a technique is desired for incorporating the
knowledge that one new measurement gives. . Thus in problem 2,
some hopefully simple procedures should be available for com-
Puting plxy» %y 5.« 5 %:l20 5 205+ ¢ 5 Bepn) OF P(Hys Xa s - Xpa]2rs
F- 2 .,z,:“) wh_en L ETI R E A AR A I knpr

. Associated with each of the above problems are modal estima-
tion problems, where the aim is to find that estimate of the state
or the trajectory which will maximize the associated cond1t1ona1
probability density.

Results in the non~Gauss1an, non-linear case defined by
Egs. (1) and (4) are not common. Among the principal references
we fiote the work of Lee (Ref. 7) and Ho and Lee (Ref. 8), and that
of Larson and Peschon (Ref. 9). The former two references re-
strict consideration to the state filtering and smoothing problems.
The approach is to obtain equations for the relevant probability
densities which .are recursive in 7, the index of the appropriate
state, or in &, the index of the final measurement. The last refer-
ence is concerned with developing a recursive equation for the
trajectory filtering problem, and then applying a dynamic program-
ming technique to this equation to deduce the medal trajectory by
a sequence of minimizations.

Cox (Ref. 10) formulates trajectory estimation problems for
non-linear systems with addirive Gaussian noise at the input and
output; his equations are thus modified versions of Egs. (1) and (4).
He too uses dynamic programming techniques to obtain modal
trajectories.

- 'This paper extends an earlier report (Ref. 11).
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3.—TRAJECTORY ESTIMATION—FILTERING,
SMOOTHING AND PREDICTION

We shali adopt the notation

K=o 3% 3003 X} einiinriieareenrenane

and

Zi={z1:22,5...,5)

3.1 Filtering :
Ref. 9 establishes the following equation.—

P ZraXpen) P Ral%)
p(zk+llzk)

The ﬁrst point to note is that Eq. (7) is a recursive formu
in the sense that the filtering problem when given measureme
Zysa Is solved using the solution of the filtering problem wh
given Z, , always assuming that the three densities p(zk+1lxk+
P(xpaalxy) and p(zc,1|Z;) are known. Of course, the starti
point for the iteration is

(Xkﬂ.lzkﬂ.} = P{Xk[Zk)

plzfxs) plxyxo)
pEN)

The densities plzp.)xpr) abd plxp,[x,) required to
Egq. (7) ate in theory derivable from Egs. (1) and (4} and knowlec
of the densities p(e;) and p(wy). In practice the calculation i
be difficult, though there are easy cases, for example, linear pla
with Gaussian noise,

The derivation of p(z;.,|Z;) in Bq. (7) is naturally more di
cult. This density can however be related to the state probabil
density function p(x|Z;) or the trajectory probability density fim
tion p(X;|Z.). Certainly the latter will be formed in the iterat
process, and thus all terms in Eq. (7) may be considered known.

The precise relations may be derived as follows:
Observe that, ' :

P(xkq-l. ] zk+1) = P(zkfllxk-%l) P(ka-u)

= f Plpal¥r) p(Xeial ) plxz) ds

HXZ) = p(x)

"~ This equation remains valid when each probability dens
function is conditioned onZ; . Noting that from Eq. {2) knowled

“of x; and z;, is no more use than knowledge of merely x;, in est

ating x;,, , we have

Pl X » Z1) = Pl %)
Likewise, from Eq. (4), knowledge of xz; and Z; is of no m«
use than knowledge of merely xy;, in estimating 23+, , and thus

(zk+1{xi+1 PRANES (zk+1lxk+1)
Consequently,

Btksn > BralZ) = [ Plenabtins) prenls0 20 Z0)
Now ' B
PEenlZ) = [ P s 5nlZ3) drvn
and thus we deduce
plzenlZy) = f f PEraal ) Pl ale) (120 xk i

As before, the probabilities p(Zpiq|¥4s.) and p(xk+l|;
follow from Eqgs. (1) and (4). We have as yet not indicated h
2(x:]Z;) may be found, but this is related to p(X;|Z;) simply b

R AR _f f J'p(X,Jzk) iy iy . © dx,,_l' e
so that '

P(zk+1!Zl;) =7 '[f

Actually, this equation also follows directly from Eq. (7)
observmg that the integral of the left hand side with respect
(X9 s %15+« s %) Must be unity, by the normalization propc
of probablhty densities.

In summary, we have. found the following:

f P(znﬂ Fran) Plxrsa|x) P(Xk}-zk) X
X dag dxy .. A%y
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(@) Eq. (7) allows recursive calculation of p(X,.,1|Zy..) as & increases,

&) To carry out the recursive calculation two of the probability
density functions are computable from the system Egs. {1) and (4).
The third is given by Eq. (11) and its computation requires p(X, L)
as well as densities derived from Egs. (1) and (4).

(). Eq. (11) really reflects the normalization property of p (X1 %1,
and, as such, is not of fundamental significance. Thus there may
be situations where the calculation of Eg. {11) need not be carried
out. For example, as p(z;,,|Z;) is a function of 21, 2,5 .. ., Zpey
but not explicitly of x5, x, , . .. or %;, then the modal trajectory
Xy 5 €., arg min {p(X;]Z,3}, is also from Eq. (7) arg min {p(z.|x5)
Pelp-1) p(X ] Zr- D) ’ : C

(d) Given the probability density function p(X,|Z.) applicable o
trajectory -filtering, the probability density function Pl Z)
applicable 1o state filtering follows simply, using Eq. (10).

(¢) One interpretation of Eq, (7) is that it is a deterministic equation
replacing the stochastic BEa. (1). The sqlutions of Eqg. (1), i.e.,
the members of the sequence x; , %, . .., are random variables;
the solutions ¢f Eq. (7}, i.e., the members of the sequence p(X,|Z,),

- p(X|Z,), . . ., are definite functions. Unfortunately, the number
of arguments in p(X,|Z,);, viz. 2k + 1, increases with 2 in general.

Just as there is a recursive formula for p(X,}Z,), so there is

one for p(x;|Z,). The derivation may be found in Ref. 8, for
completeness we include the result.—

| 2enlses) stz sl 7 d,

ParalZy

Note that the evaluation of p(24Z;) in terms of p(x,|Z;,) has
already been discussed. Note also that the numerator in Eq. (12)
is very similar to that in Eq. (7), the corresponding trajectory result,
but that an integration is required (and thus further calculation)
for Eq. (7).

P(ialZpy) =

3.2 Trajectory Smoothing : .

In the trajectory smoothing problem interest centres around
P(X,|Zy), for § < k. Here one is trying to estimate the behaviour
of a plant up till some critical time in the past. Behaviour beyond
this time is unimportant, but some measurements are available,
Clearly these measurements contain information concerning earlier
behaviour, -and thus p(X,|Z,) should be more useful than say
PXINZ). '

If p(X;|Z,) is available it is immediate that

2z = [ [ oo [ 606020 deirs di ..

However, assuming this is not the case, we are led to con-
sidering the derivation of a recursive formula for (X,|Z;). First,
observe that

(X2 play) = plzal X) p(X)
and so, conditioning each probability on a knowledge of Z,_, ,
DX Z3) planl Zey) = pl2el Zimy » Xo) XA Z0y)
Immediately,
Dl Ze-y , X))
2zl Zi-0)

which should be compared with the corresponding result for state
smoothing, see Ref. 7: :

PXZ) = PXZ1) i (14)

D] Zp—y 5 %)
w)zy = Pl X
22D = ey

The evaluation of the probability density function p(z,|Z;._, , X))
in terms of simpler density functions appears very complex, and
will not be discussed here. (Even in the linear plant, Gaussian
noise case when the density functions can be characterized by a
mean and covariance, the extension of the filtering and prediction
theory of Ref. 2 to smoothing theory, see Refs. 7 and 12, occurred
several years after Ref, 2. The density function p(z;|Z;_,) in the
denominators of Egs. (14) and (15) has already been discussed.)

Eq. (14) is suited to dealing with the situation where the
measurement data are increasing, Alternatively, of course, it may

simply be used in the situation where the measurement data are
fixed. Then iteration of Eq. (14) yields

Pl Zy—)
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PE 0 s X oo Pl |2, X,
[ LCA VAT PN P9 Ay

which is also véry similar to the corresponding state estimatio
formula (Ref. 7) 3

P(lezk) =

) o420

~ P(zklzi.:—l : x,-j o (20l %)
| ) =
Pl ' » PEdZy) - P2l Z) -
A recursive formula for generating p(X;|Z;) from p(X, |7,
is also available, ~ To obtain this, observe first that :
PXNZ) = ps » Xia|Z3)
= p(%| Kims 5 Zi) (X 0] Z)
‘ o= P(xiixi“‘l + Z) p(X 1|22
and thus, using Eq. (14) .
Plslni—y . Z)) p(zk.lx‘{*1 s Zi)
P(zfalzk—l)
The point of this result is that it allows estimation of the tr:
jectory up to a point in the past for which the time interval betwee
this point and the present is constant. When more measuremet

data become available, the trajectory is estimated further forwar
in time. .

blx,|Z)

X Z:) = (X5 Zi)

3.3 State Prediction, Trajectory Prediction with Smoothin
and Pure Trajectory Prediction :

The prediction of the future behaviour of a system on the bas
of certain available ‘measurements is clearly of great interest. W
distinguish between three cases:

(i) Estimating the system state at some future time;

(ii} Estimating the system trajectory, from some starting time in tl
past through to some future time;

(iif) Bstimating the system trajectory in future time.

It turns out that the ‘calculation of p(x;|Z,), p(X,|Z;) an
Pxy ... x]Z) for £ > k can be easily described in iterative term

Observe that

7 Plx]Z) = fP(xrlxtﬂ 3 Z3) Pl Z) dxi—l.

- f POvl%i-0) PG| Z3) ey

which is an immediate formula for predicting the state recursivel
As before, p(x;|x; ;) follows from the fundamental system Eq. (1
and knowledge of p(w, ,). The corresponding formula for tr:
jectory prediction is even simpler:

PHXZy) = p(x)| Xy 5 Z) PIX | Z0)

= p(at| 61 F 10O 4% SO vevnenn(2
Similarly,
Py e 2| Z) = Pl o v s Xem1 s Z0) Pk v+ v 5 %imt| Z)
= p(x D plxs . . . 5 X2y e (2

Eq. (20) can be iterated to yield
X Z) = Plrdoei) < o Pkl ) HEXZR) i (2
and similarly for Eq. (21). Further iteration is best based on rela
ing p(X|Z;) to P(Xk—_llzk—l) via Eq. (7).
Eq. (7) also permits the relating of p(X;.4|Z;.,) to p(X|Z
fori> kor p(xgss... x;alZp) to p(xs, . . . x|Z,). Thus if inte
est centres around predicting the trajectory, a fixed time interv

into the future, and further measurements arrive, this relationsh
is the appropriate one to use. '

From Eq, (22),

P il Zea) = plecral®)e o o0l %000) P 1| Zrepa)
P(Zral¥rrn) P%ra %)

= plxeial®d. o PlErsnlXrgs) 2l Z0) (X Z
from Eq. (7). Now use Eq. (22) in reverse, to get
Xl Zias) = plralxs) P——;?::i’lcz*:)) PXNZD e, (2
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" A simifar result of course holds when pure prediction of the
trajectory is being considered. Here we observe that from Eq. (21)

_ ..?l'(xkﬂ PR x:"+1|Zk+1) = P(xi-)-ll'.xi) B T WY ..pl(xk+]jzlc+1}_
and using Eq. (12)
. LI )

= Pl %
P(zlwlizk) +1| )

% [ Bl prinln) pIZ) d

P(Zppy]%ras)

= plxs4q|x
C 1?L1_| D] P(EealZe)

f?(xk 3o X4l Zy) dxy,
............... (24)

Despite the simplicity of some of the above relations, it is
evident that the question © What is the most likely trajectory X,
given a knowledge of Z,?” is not easily answered. ~The probability
density function p{X;|Z,) is a function of the ({ + 1) variables
Xys %15 ... %; and k& variables 2,, 2,,...,2,, and is thus a function

of ¢ -+ & 4 1 variables in all*, To find the most likely trajectory -

" via the methods of differential calculus, (7 - 1) differential coeffi-
cients would be required, and the non-linear equations resulting
from equating these differential coefficients to zero would need
to be solved.

In the next section, an alternative approach using dynamic
programming is presented.

~4—MODAL TRAJECTORY PREDICTION VIA
DYNAMIC PROGRAMMING

The computational difficulties inherent in computing PX|Z
in Eq. (20) are worsened by the fact that in carrying through the
iterative procedure, we are forced to terminate at p(X,]Z,); at this
point, for explicit computation of p(X,|Z,) the procedure suggested
by Eg. (7) must then be applied. Recognizing this difficulty in
the filtering as distincr from prediction case, Ref. 9 exhibits
a technique for computing the trajectory X, which will maximize
P(XilZy), ie, the modal trajectory; the technique has far less
severe computational requirements than those associated with
obtaining p(XZ,) explicitly, Knowledge of the modal trajectory
alone, rather than the probability density function of all trajec-
tories, will often be sufficient for some applications.

In this section the result of Ref. 9 is improved.-to the extent
of prescribing a procedure for predicting the modal trajectory,
as well as estimating it up to the present time. In other words,
we give a procedure for determining the trajectory X, which
maximizes the value of the function p(X,|Z,) for i > k.

Full appreciation of the extension presented here depends

- upon a good knowledge of Ref. 9 and the associated dynamic
programming principles.
Forj > k, define

Kx;,f) = Xy ()| Z)
and for j < &, define

Iy ) = R5 00X\ 2))
{Observe that Egs. (25) and (26} agree when j = 2) The final

(j-th) state on the modal trajectory will be the value of x; which

maximizes I(x; ,f).
From Egs. (20) and (25), it follows that for j > &
Kty sd + 1) = %5 (plxyanl) (X200}
=% (plesnals) Bomy p(X) 20}
=% Pl Xty 1)
Tor j < &, from Eq. (7),

v (2T

max

x5+ 1D = X; {p(zﬂlixﬁe-])?(xﬁﬂx,)

P(zfﬂ |Z:)

#X )20}

*Each variable may itself be a vector also.
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o max Pl ia)%s2) Pl P
=% e 1, 2}

Our aim is of course to find the X; maximizing p(X;i:
rather than the value of p(X;|Z,) for this maximizing X,
equivalently, to find the X; maximizing I(x;,7) and then ali t
earlier states of the trajectory. Define the funcdons '

. ) max - . .
I* (xi+1‘s] + 1)_ = % {p(otylxy) I* (s :J)_}: 1=k

I Gonsd + 1) =% emaleind Deanld I (5,700 < kG

which differ from Eqs. (28) and (30) by the omission of the tet
2(2;441Z;).  The functions I, are proportional to I, so that the sas
values of x; maximize Eqs. (29) and (30) as maximize Egs. (3
and (28). Note that although p(z,,|2;) does not appear in Eq. (2
this equation must still be altered, because the starting point 1
ierating Eq. (27), namely j = % requires the end part of the iter
tions associated with Eq. (28). Ry changing this from I(x; , &)
Eq. (28) to I, {x; , k) in Eq. (30), we are forced.to change Eq. (2
accordingly.

It is now clear that Eq. (29) is really a specialized version
Eq. (30), corresponding to a situation where P(2;41|%;41) is consta
in fact unity, though the value is immaterial, as a scaling has be
introduced. S :

. Now the dynamic programming procedure of Ref. 3, not
be discussed here, revolves around the use of the iterative equati

i ax . .
I* &g sd + 1) = x5 {plesales ) D(53]%5) I* 0 s (:

Consequently, rhis procedure may be carried over directly
our estimation problem, by equating P(Zp40]%;541) to umity for § >

It should be evident from the preceding and a study of Ref.
that the part of the modal trajectory associated with instants
to time %, i.e., the sequence of states x;, %,,..., %, rather th
X13Xs5...5%;, will not in general be the same as the modal t
jectory obtained in the smoothing problem, where i = . TI
means that there is no simple procedure for extrapolating the mo
trajectory obtained in the smoothing problem to yield a mo
trajectory for the prediction problem, though undoubtedly in ma
situations such an extrapolation would be of significance.

5.—SIGNIFICANCE OF THE RESULTS

The definitive collection of formulas presented, even thou
they suggest computational problems- of enormous magnitus
still have considerable potential for practical application.
have some formulas is better than having none, and, as Section
shows, the computational problems are indeed capable of reductic
certainly too, as time passes such reductions will become less 2
less necessary as the available computers improve.

It is worth pointing out that there are other cases of inter
besides the determination of the modal trajectory by dynan
programming where computational simplifications are possib
Such cases occur when the probability densities are simple types
functions. Thus the Cox assumption (Ref. 10) of Gaussi
additive noise without plant linearity guarantees that many densit
of interest are exponentials and are thus easily computable; th
are presumably a number of other densities with as pleasant prop:
ties as the exponential ones, though perhaps not so many with
associated . physical origin.

Another class of densities for which all formulas simplify :
those which are not continuous functions but rather a class
generalized functions, namely delta functions. Such depbsit
correspond to the situation where only discrete values of the st
are permitted, certainly the case in some physical systems.
such instances the methods of dynamic programming for mos
trajectory determination prove very efficient, see e.g., Refs. 8 and
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