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Abstract: The V i m m b e  metric defining the gap between two plants, or two 
controllers, and its related robust stability results, are used as a tool to understand 
the need for cautious iterations (i.e. small controller modifications and, pobsibly, small 
model adjustments) that has been observed to be useful in iterative identication and 
control design. By the same token, these gap metric results allow one to compute 
controller updates that are smaller than would result from the optimal design based 
on the nominal design, and that guarantee stability of the actual closed loop system. 
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In this paper we attempt to give a theoretical 
justification for the need for caution in iterative 
modeliig and control design. A number of iter- 
ative schemes have been proposed over the last 
few years for model-based iterative eontroller re- 
design. A common feature of these schemes is 
that iterations are performed of model updates 
(by identification with the most recent controller 
applied to the actual plant) and of model-based 
controller updates (the controller design being 

This paper presents research reeults of the Belgian Pr* 
gnvnme on lntuvniversity Pola of Attraction, initiated 
by the Belgian State, Plime Minister's Office for Science. 
Technology and Culture. The scientific responsibility rests 
with i u  authors. The first author aka wishes to acknowl- 
edge the funding of the activities of the C00perati~ Re 
search Centre for Robust and Adaptive Systems by the 
Australian Cornmon~atth Government under the Cooper- 
ative Research Centres Program. US Army Rerursh Office 
hr-East. Tokyo and Office of Naval Research, Washington. 

based on the most recent model). Representative 
examples of these schemes can be found in (Lee 
et al., 1993), (van den Hof et al., 1995), (Zang et 
d, 1995). There is no guarantee in any of these 
schemes that the succession of designed controllers 
stabilizes the actual plant. Experience has shown 
that stability robustness is enhanced by applying 
cautious steps of plant modification and controller 
modification. The first aim of the research re- 
ported in this paper was to provide a theoretical 
justification and understanding for this need for 
caution, by using the robust stability results based 
on the v-gap metric between two plants intre 
duced by G. Vinnicombe (Vicombe ,  1993). In 
pursuing this aim, we have been led to derive some 
useful inequalities between the H, measure of the 
difference between two closed loop transfer func- 
tions, and the v-gap between the corresponding 
plants. The application of these v-gap based sta- 
bility results to iterative model-based controller 
tuning does indeed show why small controller ad- 
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justments may be required to guarantee the closed 
loopstability of the actual closed loopsystem with 
a controller computed from an identified nominal 
model. Using Youla-Kucera parametrizations, we 
propose a practical way to reduce the controller 
modification while satisfying a w-gap based robust 
stability constraint. 

The paper is organized as follows. In Section 2, we 
present the main robust stability results based on 
the V i c o m b e  metric. In Section 3, we establish 
some connections and bounds betwm the H, 
distance between two closed loop systems (P, C) 
and   PI,^), the stabity bounds of these two 
systems, and the V i c o m b e  distance between P 
and PI. These connections and bounds are then 
exploited in the context of iterative model and 
controller design, in view of introducing dosed 
loop stability guarantees. This leads to guidelines 
for cautious controller updates in Section 4. In 
Section 5 we show how the model update step 
may also need to be altered on the basis of the 
robust stability results developed in this paper. 
A numerical example in Section 6 illustrates the 
ideas. 

2. THE VINNICOMBE METRIC AND ITS 
STABILITY RESULT 

We consider the following unity feedback system. 

Fig. 1. The unity feedback closed loop syscem 

The transfer function from 

given by 
( )  ( )  is 

For the actual loop, the transfer function will 
then be T(P, C) and for the design loop T(P, C), 
where is some model of the plant P. We define 
the following generalized stabiity margin for the 
closed loop system (P,C): 

6p.c = IIT(P. C)ll;' if (P, C) is stable, (2) 
= 0 otherwise. (3) 

where llGllm = supUb(G(jw)). We shall also 
use the w-gap metric introduced by V i c o m b e  
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(Vinnicombe, 1993) that defines a distance b e  
tween two plants PI and Pz. For rational plants 
the u-gap is dehed as follows: 

 PI, Pz) = (4) 

/l(I + ~zP;)-l/~(Pz - Pl)(I + P;Pl)-1/211, < 1 - 
if &t(I + P;Pl)(jw) # 0 Vw, and 

wno det(I + PiP1) + q ( 4 )  - ii(P2) = 0 (5 )  

where q(P) denotes the number of open Right 
Half Plane (RHP) poles of P, i(P) denotes the 
number of d d  Right Half Plane (REP) poles 
of P, and wno(g) denotes the winding number 
about the origin of g(s) as "s" follows the standard 
Nyquist contour indented around the imaginary 
axis poles of Pl and Pz. If the condition (5) is not 
satisfied, then 6,(P1, Pz) = I.  

If the condition (5) is fulfilled, this gap metric is 
the gap between the L2 graph spaces of PI and Pz, 
which just depends on their frequency response. 
The stability results of (Vlnniwmbe, 1993) that 
will be of interest t o  us in our study of cautious 
iterations are as follows. 

Proposition 2.1. (I) Given a nominal plant PI 
and a compensator C, then (Pz, C) is stable 
for all plants P2 satisfyimg 6,(P1, Pz) 5 P if 
and only if bp, ,c > 0. 

(2) Given a nominal plant P and a s t a b i i  
compensator Cl, then (P, Cz) is stabie for all 
compensators Cz satisfying 6,(Cl, Cz) 5 0 if 
and only if bp,c,  > 0. 

Part 1 of Proposition 2.1 implies that among the 
plants PZ for which 6,(Pl,Pz) = b p , , ~  one at 
least will not give closed-loop stability. It.does 
not mean that all Pz with 4,;P:. Pz) > bp,.c 
will yield an unstable dosed-loop system. [Indeed, 
V. Blondel has pointed out to us the example 
Pl = s(s + I)-', Pz = (S + l)sdl, both of which 
are s t a b i i  by C = 1, while also &(PI, P2) = I]. 
Thus the sole reliance on such robust stabity 
results for the design of new controllers may lead 
to conservative designs. Using Youla-Kucera para- 
metrization~ amounts to perturbing some initial 
PI with arbitrary large perturbations in a certain 
controller-dependent direction without destroying 
closed loop stability. 

We now derive a number of bounds and inequali. 
ties that will prove useful in establishing the need 
for cautious model and controller adjustments. 

3. CONNECTING VINNICOMBE DISTAWCE 
AND PERFORMANCE MEASURES 

We consider two stable dosed loop sytems (P, C) 
and (P1,C) such that 6,(P, PI) c 1. One coidd, 



for example, view P as the plant controlled by the 
stabilizing controller C, and Pl as a model of P 
obtained by identification with data obtained on 
the (P, C) loop. A classical measure of fit between 
these two closed loop systems is the infinity norm 
of the aerence between the two closed loop 
transfer functions : 

Indeed, the minkahtion of t b  measure over 
some set of parametrized models PI(@ has been 
advocated as an identification criterion in identi- 
fication for control (Schrama, 1992). 
The following result, established in (Vinnicombe, 
1993) relates the pedormance measure (6) to the 
v-gap 6,(Pl, Pz) and to the corresponding stabil- 
ity measures. 

Proposition 3.1. Consider the two dosed loop sys  
tems (P,C) and (P1,C) with 6,(P,Pl) < 1. Then 

If the stability margin of the nominal closed loop 
bp,$ is large (i.e. dose to 1) and the distance 
6,(P,P1) between the model and the plant is 
much smaller than bp,,~, the upper bound can 
be approximated by w. In such case, the 

%.C 
bounds on IIT(P,C) - T(P1,C)IIrn provided by 
Proposition 3.1 are tight. 

We shall also use the dual of Propit ion 3.1, 
expressed as the following corollary. 

Corollary 3.1. Consider the two dosed loop sys- 
tems (P,Cl) and (P,C2) with 6,(C1, Cz) < 1. 
Then 

av(cl,c2) llT(P1,Ci) - T ( P I , C ~ ) I I ~  

We also want to relate the diierence between the 
stability margins of two closed loop systems (P, C) 
and (P1,C) to the Y-gap between P and PI. To 
do so, we first establish the following technical 
Lemma. 

Lemma 3.1. Denote T = T(P,C) and TI = 
T(P1,C) and let IIT - TlII < E .  Then 

IIITII-l - IITIII-'~ < ~IITII-lIIT~II-l (9) 

Proof. The triangle inequality yields 

IIT- TIII 2 IITII - IlTiIl 

and 
IIT - TIII L IITi11 - IlTll. 

Therefore 

IlTll- E < 11T111 < IlTll + E  

Multiplying by IITII-~IITIII-' yields 

which proves the desired result. 

The following theorem is an immediate conse- 
quence of this Lemma. 

Theorem 3.1. Consider the two c l a d  loop sys- 
tems (P, C) and (PI, C). Then 

I b p , , ~  - ~ P . c I  < Jv(P, PI) (11) 

Proof. The proof is an immediate consequence 
of Proposition 3.1 and Lemma 3.1 : substitute 

for E. 

Comment : Exprmions (7) and (11) show that 
the distance between the stability measures bp,c 
and b p , , ~  is always smaller than the distance 
(measured in Hm norm) between T(P, C) and 
T(P1,C). 

4. ITERATIVE DESIGN: CONTROLLER 
ADJUSTMENT 

In an iterative identification and control design 
scheme, one typically designs a succession of 
model-based controllers, and one identifies a suc- 
cession cf models obtained from closed loop data 
with the most recent controller acting on the 
plant. Let, at some stage of the iterations, Ci be 
the acting controller and Pj be the nominal plant 
model. It is a p m x d  that the dosed loop systems 
(P, Ci) and (Pj, Ci) are both stable. Two possible 
situations can arise: 

(1) The model p, is satis£actory, in that the 
closed loops (P, Ci) and (4, Ci) are "close". 
We then want tp make a controller adjust 
ment based on P, from Ci to Ci+l with, pos- 
sibly, stability guarantees for the (P, Ct+l) 
loop. 

(2) The model Pj is no longer satisfactory, in 
that IIT(P, Ci) - T(P~,c~)II ,  is large. We 
then want to compute a new model that will 
allow us to compute a better controller Ci+i. 

In this section, we examine some robust stability 
considerations related to the controller adjust- 
ment step; we shall examine the model adjustment 
step in the next section. 15 



First, by the "closeness" between the loops (P, C,) 
and (P,,C,) we mean that T(P,C,) " T(P,,c) % , 
and hence b p c .  = bp,,,.. The model P, is then 
considered to be suficiently accurate to be used 
for the design of the next controller, C,+l. With- 
out introducing caution, this new controller would 
typically be computed by mipimizing some con- 
trol performance criterion J(P,, C). The resulting 
controller, C,+I, would of course stabilize pj, but 
there would be no guarantee that it stabilizes the 
actual plant P. Assume now that we modify the 
computation of the new controller as follows: 
define C,+I such that 

Ci+l = arg min J(P,, C)  
C 

under the constraint 

where k is a safety constant in (0,l) to account 
for the error between bp,ci and bpj ,ci. Under our 
assumption that b p , ~ ,  = bhSc,, it follows that 
6,(Ci+l, Ci) < bp,ci, and therefore the stability 
of the actual closed loop follows from the dual of 
part 1 of Proposition 2.1. 

Comment: Using the inequalities derived in the 
previous section one can obtaiu a more precise 
- albeit not computable - upper bound on the 
allowable controller movement 6,(Ci+i, Ci) as a 
function of the nominal stability margin bpj,ci 
and of the distance between the actual system and 
the nominal model P. Indeed, by Theorem 3.1, 

I ~ P , c .  - bpjIC. I < U P ,  p;). 

Therefore 6,(Ci+1, Ci) < bp,c, if 

Even though this last quantity depends on the 
unknown system, it provides some interesting in- 
sight. We observe that the larger the nominal 
stability margin bP,,., and the smaller the dii 

tance 6,(P, P,) between the plant and the model, 
the larger a change in controller is allowed with 
guaranteed closed loop stability on the-actual 
system. In the previous discussion, 6,(P, Pj) can 
be replaced by its upper bound IIT(P,C,) - 
T(P,, c,)II,, which is another measure of the 
distance between the two closed loop systems. 
However, this will give a more conservative result, 
since this measure is always larger than 6,(P.P,). 

The inequality (12) tells us what, from the point of 
view of stability, is an acceptable controller Ci+i 
to replace Ci. However, if our goal is to achieve 
a certain closed-loop performance, by minimizing 
a performance index say, then we need to under- 
stand which Ci+, we should choose in a set defined 
like (12). 
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a i d e a s ,  we shall postulate that the design 
goal is to obtain a stabilizing compensator C to 
minimize a perfo-ce index J(P, C), and that 
we have a model P, of P such that T(Pj,ci) - 
T(P, Ci). Let P; have a right coprime realization 
ND-' and Ci a right coprime realization UV-'. 
The set of all stabliziing compensators of Pj is 
given by 

where Q (the Youla-Kucera parameter) is an arbi- 
trary stable proper transfer function. Let us make 
a further assumption that is certainly fultilled in 
the Hz and H, problem. .. 

Assumption 4.1. The performance index 
J(Pj, C(Q)) for C d  depends on Q in a convex 
manner. 

We can then fhd Ci+l in the following way. 
Suppose 

c;, = e g ,  J(P,, c(Q)). (14) 

(When the miuimum has to be replaced by an 
intimum, there is a minor adjustment to these 
calculations.) LetQ' besuch that 

To avoid trivialities, suppose that Q' # 0, i.e. Ci 
does not minimize J(Pj, C). 

with k the constant introduced at the end of the 
last section: choose 

Otherwise, consider the.set 

Observe that a = 0 corresponds to Ci, a = 1 
corresponds to C:+,, and for all ae[O, 11, C ( a V )  
is stabilizing. Choose cre(0,l) so that 

Such an a exists, since 6, is a smooth function of 
a, taking values at a = 0 of 0 and at a = ' l  of 
something in excess of kbpj,c.. -41~0, take 

Evidently, this choice moves the controller in the 
dimtion of CL,, but not necessarily all the way; 
in fact, the movement is such as to retain the 
bound on 6,. In addition, we now show that it 
improves the performance index. 



Theorem 4.1. Suppose that the stable transfer 
fuytion Q' minimizes the performance index 
J(Pj, C(Q))  which satisfies Assumption 4.1. Let 
ae(0,l).  Then 

(where Ci corresponds to a = 0). 

Proof: The left hand inequality follows by optimal- 
ity of Q'. For the right hand inequality observe 
that by the convexity property of J, 

In (Lee et d., 1993) a performance index of the 
type described above was not used to determine 
the controller. Rather, the so called IMC design 
method was used, where one seeics a controller to 
achieve a standard closed-loop t r a d e r  function in 
which a single parameter, the bandwidth, appears. 

This means that the controller which, in conjunc- 
tion with a model P,, achieves a particular band- 
width is parameterisable by that bandwidth. It is 
again straightforward to compute a Vinnicombe 
distance between two such controllers and to set 
a limit on the change of bandwidth, in terms of 
b4.c; 
Let us note that if Ci has been chosen to secure 
a closed-loop bandwidth exceeding that of the 
open loop plant P, the entry C ( l  + PC)-' of 
T(P, C )  will become large, in fact O[IP-'l] outside 
the plant bandwidth, and accordingly bp2,,, will 
be small. This will l i t  the scope ior further 
bandwidch expansion. 

5. ITERATIVE DESIGN: MODEL 
ADJUSTMENT 

In this section we examine the situation where 
the-closed loop transfer functions T(P,C,)  and 
T(Pj ,  Ci) are significantly different. In particular, 
we can no longer assume that bp,c< c: bpj,,'. 
The mismatch between T(P,  C;)  and T ( P j ,  c,) 
indicates that the model P, cannot be used for 
the design of the new controller, and this indicates 
the need for the identification of a new model from 
closed loop data obtained on the present system 
(P:Ci). 

Without consideration for stability robustness, 
this model would be obtaineby minimizing some 
identification criterion V(P,  P(B), Ci) over a para- 
metrized set of models (P(0)) .  We shall assume 

here that tpe dosed loop H, identific-ation crite 
rion V(P,  P(0), C , )  = IIT(P, Ci) - T(P(O),C,)I(, 
has been adopted. Thus, without any mnsidera- 
tion for stabiity robustness, the identification step 
would be 

Pj+l = arg minpV(P, P.Ci)  ( 2 4 )  

with the minimization performed over a parame 
trized set of models. 

We now develop some stability robustness consid- 
erations that may lead us to inject sqme additional 
requirements on the estimation of Pj+t. For sim- 
plicity of notations we shall set j = 1, i.e. PI ,  
is the present model, P 2  is the new model to be 
identified, while P is still used for the true plant 
and Ci for the present controller. We now consider 
the following design objective for the identification 
of P2. 

Design Objective : Estimate a new model & 
that minimizes V(P,Pz,Ci) while at the same 
time increasing the set 6,(Gii, Ci+l) of admissible 
controllers C,+1 = Ci+l(Pz) that guarantee the 
stabiity of the (P,  Ci+l) loop. 

The stabiity of the (P,  Ci+l) loop is guaranteed 
for all controllers Ci+i such that 

Jv(Ci, G + I )  < ~ P , c . -  (25) 
We now derive two alternative lower bounds 

E(P,q ,Ci)  and t (P,Pz,Ci)  for bp,c.  

Observe that 

for j = I:?, and denote 

E(P, P, 3 Ci) 
A 
= [ I I ~ ( P j ~ ~ i ) l l r n  + IIT(P,Ci) - ~ ( ~ j > C i ) l l r n l - ~  
=[b-' + v ( P , P j , c , ) ] - l  j = 1 : 2  P9.c. (27) 

It then follows from (26) and (27) that 

~ P , c .  2 rna~(E(P, P I ,  c i ) , t ( P ,  4,ci)) (28) 
Therefore we have established the following result. 

Theorem 5.1. Consider the plant P,  the present 
controller Ci, and two alternative mpdek the 
present model PI and the new model P2. Then a 
new controller C;+i designed from P2 will deliver 
a stable dosed loop with P if 

JV(Ci+i,Ci) < mm(€(P,  P I , C , ) , € ( P , P ~ , ~ ~ ) ) .  

In order for the new model P2 to allow for a larger 
set of stabiiing controllers 6,(C,, C;+I)  thanf+e 



present model PI, we would thus want the new 
model a to be such that 

A 
V(P, Pl, Ci) - V(P, Pz, Ci) = 

IIT(P. Ci) - T(&, ~i)lI,  - IIT(P,Ci) - T(Pz, ~ i ) l l m  

- by1 2 b2,C; P*,C< (29) 

The examination of (29) leads to some interesting 
observations. 

Comment.$ 
F i  notice that, even though the terms 

V(P, PI, Ci) and V(P, Pz, Ci) are not known, they 
can be estimated. As for the stability margins 
bp,,,, and bp,,,. they can be computed exactly. 

Clearly, if Pz is estimated without any stabi- 
ity robustness consideration (i.e. Pz = argminp 
v ( P , ~ , c ~ ) )  then the lefi hand side (LHS) of 
(29) is positive. It wil l  even be a "largen positive 
number given that the motivation for identifying a 
new model is that the present model Pl has been 
judged to be no longer acceptable. The right hand 
side (RHS) of (29) can have either sign, and we 
therefore examine each case separately. 

Case 1: bfiSc, 2 bpLLLc, 9 RHS(29) < 0. 
The stability margm with the new model is 
larger than the stability margin with the prevl- 
ous model. In such case, the inequality (29) is 
satisfied yith a model Pz obtained by minimiz- 
ing V(P, P, C.), and the new model delivers a 
larger set 6,(C.,-C,+l) of stabilizing controllers 
C,,1 than did PI. Observe that the condition 
bP2,,* 2 bpZ,,' is checkable. Since (a, C,) is doser 
to (P, C,) than ($1, C,), this will typically be the 
case if the achieved stability margin (of the (P, C,) 
loop) is better than the designed stabiity margin 
(of the (PI, C,) loop). 

Case2: bphci 5 b ~ , , ~ ~  ci, RHS(29) 1 0. 
In such case condition (29) will be satisfied if 

To agieve (30) may require a cautious movement 
from PI to Pz. Indeed, observe that, by the proof 
of Lemma 3.1, we have 

Thus, to insure that condition (30) is satisfied, 
it may be required to force P 2  to be close to 
E'1 in the sense of making the diiference between 
the two dosed loop transfer functions T ( a ,  C,) 
and T(PI,c,) small in the H, sense, which is 
also accomplished by making 6,(Pl,Pz) small. 
One way of accomplishing this is to follow the 
procedure of Section 4 for the controller update, 
using a dual Youla-Kucera parametrization to 
move only a fraction of the way from the previous 
model to the model that results from the 
minimization of the unconstrained identification 
criterion V(P, P ,  C,). 

6. EXAMPLE 

We now provide an example that illustrates the 
calculations that are required in an iterative iden- 
ti6cation and controller design in which the sta- 
biity robustness bounds presented in this paper 
are checked at every step of the procedure. .. 

Let the true plant be P(s) = &. We 
consider reduced order models parametrized as 
P(0) = 5. For the control design, we use the 
following LQG regulation criterion: i 

where H(s) = w. 
Initid ealculationr 
Let the initial model be &(s) = ii;. The corre- 
sponding optimal controller is 

With this controller we get the following stabil- 
ity margins: b p , ~ ,  = 0.7835, bA,,, = 0.8248. 
The dmed loop modeling performance measure 
is JIT(P,Cl) - T ( ~ , c , ) ( I ,  = 0.1309. Thus our 
new estimate for the stability margin, based on 
4, is 

Observe that E(P, PI, Cl) is a fist lower bound 
for ~ P , c , .  

First model update 
We first co-mpute the optimal P2 and the? com- 
pute C(P,Pz,Cl) to check whether tkis P2 pro- 
vides a tighter bound for b p , ~ ,  than PI did. 

a = arg minellT(P. C1) - T(P(e), C ~ ) l l i  
0.8135 - - 

s + 0.6676 



With this P2 we get bA,cL = 0.8145 and 
IIT(P,Cl) - T(&, Cl)II, = 0.0999, -yielding 
<(P, P2, C1) = 0.7532. Observethat <(P, Pz, Cl) > 
<(P, PI, CI). Therefore the model l?2 will allow a 
larger movement 6,(C2, CI) between the present 
controller and the "to be designed controller" than 
the model PI. Recall that, by Theorem 5.1, any Cl 
such that 6,(C2, Cl) < <(P, Pz, CI) is guaranteed 
to s t a b b e  the true plant P, since S(P, 6, Cl) < 
bp,cI. 

Pint wntroller update 
The optimal (unconstrained) controller G is 

Cz = arg minc J ( ~ ,  C) 

We compute 6,(Cl,Cz) = 0.0573 < E(P,&,CI). 
Therefore G is guaranteed to s t a b i i  P. With 
the new controller Cz we compute bp,~, = 0.7706, 
b ~ , c ,  = 0.8068, IIT(P, Cz) - T(&, CZ)II, = 
0.1039, and <(P, Pz, G )  = 0.7444. 

Second model update 
The optimal model P3 over the same parametrized 
set is 

This yields ba,c2 = 0.8064 and IIT(P,Cz) - 
T ( q ,  Cz)llm = 0.1035, and<(P,&,Cz) = 0.7443. 
Observe that these values are very dose to those 
optained in the previous iteration. The new model 
Pl yields a slightly improved fit with the true 
dosed loop system (V(P,P,,Cz) = 0.1035 < 
v@,@z,G) = 0.1039), but it does not improve 
on the allowable movement 6,(C3,Cz) between 
C2 and the new controller C3, since we are in a 
situation where ((P, P3,Cz) < ((P,?z,G). How- 
ever, this does not matter, since the unconstrained 
optimal controller computed from is 

C3 = arg minc J(P3, C) 

for which 6,(C2, C3) = 0.0030 << <(P, a, C2) < 
b p , ~ ,  . Thus, controller C3 is guaranteed to stabi- 
l i e  the true P. 

7. SOME FINAL COMMENTS 

tool, we have attempted to rationalize the need 
for small controller adjustments in iterative iden- 
tification and control design. We should warn 
that, even though the stability results of Proposi- 
tion 2.1 are formulated as necessary and su5cient 
conditions, their blind application may lead to 
conservative results. Indeed, in Proposition 2.1 
the set d,(Pl, P2) > P defines a ball of models 
Pz around PI, all of which are s tabbed by C. 
Thus these constraints ate non-directional. By 
using directional information, such as is done in 
the Youla-Kucera parametrization one can easily 
construct models Pz that violate the condition 
6v(P1, Pz) < b p , . ~  and yet are s t a b i e d  by C. 
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