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Abstract: The Vinnicombe metric defining the gap between two plants, or two
controliers, and its related robust stability results, are used as a tool to understand
the need for cautious iterations {i.e. small controller modifications and, possibly, small
model adjustments) that has been observed to be useful in iterative identification and
control design. By the same token, these gap metric results allow one to compute
controlier updates that are smaller than would result from the optimal design based
on the nominat design, and that gnarantee stability of the actual closed loop system.
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1. INTRODUCTION

In this paper we attempt to give a theoretical
justification for the need for caution in iterative
modeling and control design. A number of iter-
ative schemes have been proposed over the last
few years for model-based iterative controller re-
design. A common feature of these schemes is
that iterations are performed of model updates
{by identification with the most recent controller
applied to the actual plant) and of model-based
controller updates (the controller design being
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based on the most recent model). Representative
examples of these schemes can be found in (Lee
et al., 1993), (van den Hof et al., 1995), (Zang et
al., 1995). There is no guarantee in any of these
schemes that the succession of designed controliers
stabilizes the actual plant. Experience has shown
that stability robustness is enhanced by applying
cautious steps of plant modification and controller
modification. The first aim of the research re-
ported in this paper was to provide a theoretical
justification and understanding for this need for
caution, by using the robust stability results based
on the ¥-gap metric between two plants intro-
duced by G, Vinnicombe {Vinnicombe, 1993). In
pursuing this aim, we have been led to derive some
useful inequalities between the H., measure of the
difference between two closed loop transfer func-
tions, and the v-gap between the corresponding
plants. The application of these v-gap based sta-
bility results to iterative model-based controiler
tuning does indeed show why small controller ad-
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justments may be required to guarantee the closed
loop stability of the actual closed loop system with
a controller computed from an identified nominal
model. Using Youla-Kucera parametrizations, we
propose a practical way to reduce the controller
modification while satisfying a v—gap based robust
stability constraint.

The paper is organized as follows. In Section 2, we
present the main robust stability results based on
the Vinnicombe metric. In Section 3, we establish
some connections and bounds between the Ho,
distance between two closed loop systems (P, C)
and (P,,C), the stability bounds of these two
systems, and the Vinnicombe distance between P
and P;. These connections and bounds are then
exploited in the context of iterative model and
controller design, in view of introducing closed
loop stability guarantees. This leads to guidelines
for cautious controller updates in Section 4. In
Section 7 we show how the model update step
may also need to be altered on the basis of the
robust stability results developed in this paper.
A numerical example in Section 6 illustrates the
ideas. :

2. THE VINNICOMBE METRIC AND ITS
STABILITY RESULT

We consider the following unity feedback system.

Fzr

Fig. 1. The unity feedback closed loop system

The transfer function from (::) to (y) is

u
given by
PC P
1+ PC 1+ PC
I(PC}= - Q)
C 1
1+PC 14 PC

For the actual loop, the transfer function will

then be T(P, C) and for the design loop T(P,C),
where P is some model of the plant P. We define
the following generalized stability margin for the
closed loop system (P, C):

bpe=T(P.CMl% U (P,C) isstable, (2)
=0 otherwise, (3}

where |Gl = sup,¢(G(jw)). We shall also
use the v-gap metric introduced by Vinnicombe

{Vinnicombe, 1993} that defines a distance be-
tween two plants P; and P;. For rational plants
the v-gap is defined as follows:

6y (P1, Pz) = (4)
I+ P By M3 (P = P + PP o < 1
if det(I + P; P)(jw) # 0 Yw, and

wno det(l + P;P;)‘+ (P} - 7(Pz) =0 (6)

where 7(P) denotes the number of open Right
Half Plane (RHP) poles of P, #(P) denotes the
number of closed Right Half Plane (RHP) poles
of P, and wno(g) denotes the winding oumber
about the origin of g(s) as "s" follows the standard
Nyquist contour indented around the imaginary
axis poles of P; and F». If the condition (5) is not
satisfied, then §,(P, P2) = 1.

If the condition (5) is fulfilled, this gap metric is
the gap between the £, graph spaces of F; and Pz,
which just depends on their frequency response.
The stability results of (Vinnicombe, 1993) that
will be of interest to us in our study of cautious
iterations are as follows.

Proposition 2.1. (1) Given a nominal plant P
and a compensator C, then (P2, C) is stable
for all plants P, satisfying 6,(P1, P2) < 8 ;,f, _
and only if bp, ¢ > 8.

(2) Given a nominal plant P and a sta.bﬂmng
compensator C;, then (P, Cz) is stable for all
compensators C, satisfying 8,(C,,C3) £ 8 if
and only if bpe, > 8.

Part 1 of Propesition 2.1 implies that among the
plants P for which 4.(P;, Ps) = bp, ¢ one at
least will not give closed-loop stability. [t does
not mean that all P with §.{P,. P2} 2 bp ¢
will yield an unstable closed-loop system. [Indeed,
V. Blondel has pointed out to us the example
Py =s(s+ 1)1, P, = (s+1)s™}, botk of which
are stabilized by C = 1, while also 6,.(P,, P2} = 1].
Thus the sole relia.nce on such robust stability
results for the design of new controllers may lead
to conservative designs. Using Youla-Kucera para-
metrizations amounts to perturbing some initial -
Py with arbitrary large perturbations in a certain
controller-dependent direction without destroying
closed loop stability.

‘We now derive a number of bounds and inequali.
ties that will prove useful in establishing the need
for cautious model and controller adjustments.

3. CONNECTING VINNICOMBE DISTANCE
AND PERFORMANCE MEASURES

‘We consider two stable closed loop sytems (P, C)
and (P, C) such that §,(P, F1} < 1. One coigd,



for example, view P as the plant controlled by the
stabilizing controller C, and P, as a model of P
obtained by identification with data obtained on
the (P, C) loop. A classical measure of fit between
these two closed loop systems is the infinity norm
of the difference between the two closed loop
transfer functions :

[P, C) = T(Pr, C)lleo (6)

Indeed, the minimization of this measure over
some set of parametrized models P;(6) has been
advocated as an identification criterion in identi-
fication for control (Schrama, 1992).

The following result, established in (Vinnicombe,
1993) relates the performance measure {6) to the
v-gap &,.( Py, P2) and to the comresponding stabil-
ity measures.

Proposition 3.1. Consider the two closed loop sys-
tems (P, C) and (P, C) with §,(P, P;) < 1. Then

5V(Pa Pl) < “T(P,C) -T(Ph C)HOO
< 8. (P, Py)
~ bpchp,c

@)

H the stability margin of the nominal closed loop
bp, ¢ is large (i.e. close to 1) and the distance
&.(P, P,) between the model and the plant is
muchk smaller than bp, o, the upper bound can

be approximated by %f_’,ﬂ),_ In such case, the

Py, C
bounds on ||T(P,C) — T{P;,C)|| provided by
Proposition 3.1 are tight.

We shall also use the dual of Proposition 3.1,
expressed as the following corollary.

Corollary 3.1. Consider the two closed loop sys-
tems {P,C;) and (P,C2) with 6,(C,,C2) < 1.
Then
5;,.(01,02) < ”T(Ph Cl) - T(Phc?)!lw
8(C,C)
= bpeibpc,

(8)

We also want to relate the difference between the
stability margins of two closed loop systems (P, C)
and (P,,C) to the v-gap between P and P;. To
do so, we first establisk the following technical
Lemma.

Lemma 3.1. Denote T = T(P,C) and T} =
T(P,C) and let |IT — 71|} < &. Then

NI = HDN = < eiTN T (9)

Proof. The triangle inequality yields
1T =Tl 2 i1 = 1Tl

and

1T = Tall z I3 = {ITH-

Therefore

T - & < Tl < 1T +¢
Multiplying by {IT1I=H|T1]|7? yields

T = el T T

< il

ST + el T TS (10)
which proves the desired result.

The following theorem is an immediate conse-
quence of this Lemma.

Theorem 8.1. Consider the two closed loop sys-
tems (P, C) and (P, C). Then

lbp,,c = bre| < 6u(P, P1) (11)

Proof. The proof is an immediate consequencé
of Proposition 3.1 and Lemma 3.1 : substitute

Comment : Expressions (7) and (11) show that
the distance between the stability measures bpc
and bp, ¢ is always smaller than the distance
(measured in Hy norm) between T'(P,C) and
T(P 1, c)'

4. ITERATIVE DESIGN: CONTROLLER
ADJUSTMENT

In an iterative identification and control design
scheme, one typically designs a succession of
model-based controllers, and one identifies a suc-

-cession of models obtained from closed loop data

with the most recent controller acting on the
plant. Let, at some stage of the iterations, C; be
the acting controller and P; be the nominal plant
model. It is assumed that the closed loop systems
(P, C;) and (P;, C;) are both stable. Two possible
situations can arise:

(1) The model P; is satisfactory, in that the
closed loops (P, C:) and (P, C;) are "close".
We then want to make a controller adjust-
ment based on P from C; to Ci4y with, pos-
sibly, stability guarantees for the (P, Cis1)
loop.

(2) The model B; is no longer satisfactory, in
that ||T(P, C;) - T(P},Ci)lleo is large. We
then want to compute a new mode} that will
allow us to compute a better controller Ciyy.

In this section, we examine some robust stability
considerations related to the controiler adjust-
ment step; we shall examine the model adjustment
step in the next section. 15
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7 _5&' (ng. 1y

First, by the "closeness" between the loops (P,C;) —To fix ideas, we shall postulate that the design

and (P;,C;) we mean that T(P,C;) =~ T(P,,C ),
and hence bp o, = bﬁj,c.v The model P, is then
considered to be sufficiently accurate to be used
for the design of the next controller, C;y ;. With-
out introducing caution, this new controller would
typically be computed by minimizing some con-
trol performance criterion J(5;, C). The resulting
controller, Ciy,, would of course stabilize Pj, but
there would be no guarantee that it stabilizes the
actual plant P. Assume now that we modify the
computation of the new controller as follows:

define Ciy 1 Su(‘.h that
Cip1 = argngnj(ﬁj,C)

under the constraint

5(Cis1, Gi) < kbp’.,c‘. * (12)

where k is a safety comstant in (0,1) to account
for the error between bp g, and b B,.Cu Under our
assumption that bpc, = bp, o, it follows that
C:) < bpc,, and therefore the stability
of the actual closed loop follows from the dual of
part 1 of Proposition 2.1.

Comment: Using the inequalities derived in the
previous section one can obtain a more precise
- albeit not computable - upper bound on the
allowable controller movement 8,(Ci+1,C;) as a
function of the nominal stability margin bp .
and of the distance between the actual system and
the nominal model P. Indeed, by Theorem 3.1,

lop.c; ~ bP,-,c.-i < d.(P, PJ)

Therefore §,{Ci1, Ci) <bpg; U

§u(Civ1. C) < bp, ¢, — 8AP, Py).

Even though this last quantity depends on the
unknown system, it provides some interesting in-
sight. We observe that the larger the nominal
stability margin bf",-.c.A and the smaller the dis-

tance 6,(P, P;) between the plant and the model,
the larger a change in controller is allowed with
guaranteed closed loop stability on the actual
system. In the previous discussion, §,(P, Pj) can
be replaced by its upper bound ||T(P,C;) —

T(P,-,C,-)Ilw, which is another measure of the
distance between the two closed loop systems.
However, this will give 2 more conservative result,
since this measure is always larger than §, (P, P; 5)-

The inequality {12) tells us what, from the point of
view of stability, is an acceptable controller Cii
to replace C;, However, if our goal is to achieve
a certain closed-loop performance, by minimizing
a performance index say, then we need to under-
stand which C;.; we should choose in a set defined
like (12).

goal is to obtain a stabilizing compensator C to
minimize a performance index J{P, C), and that
we have a model P of P such that T(#;,C;) ~
T(P,C:). Let P; have a right coprime realization
ND-! and C; a right coprime realization UV =1,
The set of all stablizing compensators of P; is
given by

¢={C(@):C(Q) = (U -DQ)(V + NQ)™'},

(13)
where Q (the Youla-Kucera parameter) is an arbi-
trary stable proper transfer function. Let us make

a further assumption that is certainly fu].ﬁlled in
the Hz and H,, problems.

Assumption {.1. The performance index
J(P;,C(Q)) for CeC depends on Q in a convex
manner.

We can then find Ciy; in the following way.
Suppose

1 = a-l‘gm(q) J(B;, C(Q))- (14)

{(When the minimum has to be replaced by an
infimum, there is a minor adjustment to these
calculations.) Let Q* be such that

G = (U - D)V +NQ" )™ (15)
To avoid trivialities, suppose that Q* # 0, i.e. C; -
does not minimize J(FP;, C).
jid
6,ACi, C71y) S kbp, s (16)

with & the constant introduced at the end of the
last section, choose

Ciy1 = t+1 (17)

Qtherwise, consider the set

ClaQ") = (U —aDQ" )V +aNG")™!, o, 1]

(18)

QObserve that & = 0 corréponds toCi,a=1
corresponds to C7,,, and for all e¢[0,1], C(aQ")
is stabilizing. Choose (0, 1) so that

8,(Ci, C(aQ")) = kbp, c.- (19)

Such an o exists, since 4, is a smooth functipn of
@, taking values at & = 0 of 0 and at @ =1 of
something in excess of kb 5o Also, take

Jg+1 C(O.’Q ) . (2.0)

Evidently, this choice moves the cont.roller in the
direction of Cl_,, but not necessarily all the way;
in fact, the movement is such as to retain the
bound on 4,. In addition, we now show that it
improves the performance index.



Theorem 4.1. Suppose that the stable transfer
function Q" minimizes the performance index
J(P;,C(Q)) which satisfies Assumption 4.1. Let
a€{0,1). Then

J(P;,C@7) < J(B;,C(eQ") < J(B5.Cu),
(where C; corresponds to & =0).
Proof: The left hand inequality follows by optimal-

ity of Q*. For the right hand inequality observe
that by the convexity property of J,

J(P5,C(aQ)) < (1 - a)J(p:, Gi) +aJ(F;, C(Q))

(21)
<{1- a)J'(Pj, C;) +aJ(Pj, G

(22)
= J(B;, Cy). (23)

In (Lee et al., 1993) a performance index of the
type described above was not used to determine
the controller. Rather, the so called IMC design
method was used, where one seeks a controller to
achieve a standard closed-loop transfer function in

which a single parameter, the bandwidth, appears. -

This means that the controller which, in conjune-
tion with 2 model P;, achieves a particular band-
. width is parameterisable by that bandwidth. It is
again straightforward to compute a Vinnicombe
distance between two such controllers and to set
a limit on the change of bandwidth, in terms of
l.’P:'-C-”

Let us note that if C; has been chosen to secure
a closed-loop bandwidth exceeding that of the
open loop plant P, the entry C(1 + PC)™! of
T (P, C) will become large, in fact O[|P~!|] outside
the plant bandwidth, and accordingly b PG will
be small. This will limit the scope for further
bandwidih expansion.

5. ITERATIVE DESIGN: MODEL
ADJUSTMENT

In this section we examine the situation where
the closed loop transfer functions T'(P,C;) and
T(.F{,,C } are significantly different. In particular,
we can 1o longer assume that bpe; = bp ¢ .

The mismatch between T(P,C;) and T(ﬁ',-, Ci)
indicates that the model 13,- cannot be used for
the design of the new controlier, and this indicates
the need for the identification of a new model from

closed loop data obtained on the present system
(P H Ci)‘

Without consideration for stability robustness,
this model would be obtained by minimizing some
identification criterion V'(P, P(8),C:) over a pata-
metrized set of models {P(6)}. We shall assume

here that the closed loop Ho. identification crite-
rion V(P, P(8)}, C;) = |T(P.C:) — T(P(8), Ci)lleo
has been adopted. Thus, without any considera-
tion for stability robustness, the identification step
woulid be

Pjr1 = arg mingV(P, B.Cy) {24)

with the minimization performed over a parame-
trized set of models.

We now develop some stability robustness consid-
erations that may lead us to inject some additional
requirements on the estimation of Pj.;. For sim-
plicity of notations we shall set 7 = 1, i.e. B,
is the present model, P; is the new model to be
identified, while P is still used for the true plant
and C; for the present controller. We now consider
the following design objective for the identification-
of Pz.

Design Objective : Estimate a new model B
that minimizes V{P, B c ;) while at the same
time increasing the set 8,(C;, Ci+1) of admissible
controllers City = Ciya1(F2) that guarantee the
stability of the (P, Ci+1) loop.

The stability of the {P,Cis1) loop is guaranteed
for all controllers C;+) such that

8,(Ci,Cip1) < bpc;- (25)
We now derive two alternative lower bounds
&(P, P, Gi) and £(P, P2, ) for bpc,
Observe that
IT(P, Ci)lleo < IIT(P5: Cidlloo
+ | T(P.C:) = T(8;, Cilleo  (26)

for j = 1,2, and denote

‘E(Ps ﬁ: y Cz)
& IT(B;, Co)lleo + IT(P.Cs) = T(P;, Ci)lloo]
=1b;;c_ +V(P,B.CH™t j=1.2 (27)

It then follows from (26) and (27) that
b, 2 maz(é(P, P, Ci), (P, P2,Cy))  (28)
Therefore we have established the following resuit.

Theorem 5.1. Counsider the plant P, the present
controller C;, §.nd two alternative models: the
present model P; and the new model P,. Then a
new controller C;+, designed from Py will deliver
a stable closed loop with P if

0;,(0,4.1,0} <mw(§(P Pl' ) (P Pz, ))

In order for the new model P, to allow for a larger
set of stabilizing controllers 8,(C;, Ci+1) thanhe
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present model 151, we would thus want the new.

model 2, to be such that
&P, P,,Gi) 2 (P, By, C).

Alternatively:

V(P, }51,05) - V(P: }32, Ci) g

IT(P, C:) = T(Pr, Cllloo = IT(P, Ci) = T(P2, Ci)ljco

-1 -

>bﬁc bP;.C-‘. (29)
The examination of (29) leads to some interesting
observations.

Comments :

¢ First notice that, even though the terms
V(P, P, C;) and V(P, 152,0 ;) are not known, they
can be estimated. As for the stability margins
bp, ¢, and bp, o they can be computed exactly.

» Clearly, if P; is estimated without any stabil-
ity robustness comsideration (i.e. P» = argminp
V(P, P»,G;)) then the left hand side (LHS) of
(29) is positive. It will even be a "arge" positive
number given that the motivation for identifying a

new model is that the present model P has been

judged to be no longer acceptable. The right hand
side (RHS) of (29) can have either sign, and we
therefore examine each case separately.

Case 1: bPz,C. e bﬁ;.C¢ = RHS(29) <0.

The stability margin with the new model is
larger than the stability margin with the previ-
ous model. In such case, the inequality (29) is
satisfied with a model P, obtained by minimiz-
ing V(P, P,C;), and the new model delivers a
larger set éy(C“-Cp.-l) of stabilizing controllers
C;+1 than did P;. Observe that the condition
bp, . 2 bp, ¢, is checkable. Since (P, C;) is closer
to (P,C;) than (2, C;), this will typically be the
case if the achieved stability margin (of the (P, C;)
loop) is better than the designed stability margin

{of the (PI,C } loop).

Case2: bp, o < bp, o + RHS(29) 2 0.
In such case condition (29) will be satisfied if
7 o, = 03l 6l < V(P PI,C,) V(P, P;,Cy).
(30)
To achieve (30) may require a cautious movement

from P, to Ps. Indeed, observe that, by the proof
of Lemma 3.1, we have

167, ¢, = b5 e SIT (P2, C) = T(Br, Ci)lloo
< av(p11p2) (31)

bf’1 © 6.5:.0-

* Thus, to insure that condition (30) is satisfied,

it may be required to force P2 to be close to
P, in the sense of making the difference between
the two closed loop transfer functions T(P;, C;)
and T(PI,C' ) small in the Ho, sense, which is
also accomplished by making 3. (P:l,Pg) small.
One way of accomplishing this is to follow the
procedure of Section 4 for the controller update,
using a dual Youla-Kucera parametrization to
move only a fraction of the way from the previous
model Py to the model P; that results from the
minimization of the unconstrained identification
criterion V(P, P, G;).

6. EXAMPLE

We now provide an example that illustrates the
calculations that are required in an iterative iden-
tification and controller design in which the sta-
bility robustness bounds presented in this. paper
are checked at every step of the procedure. ..

Let the true plant be P(s) = mm’. We
consider reduced order models parametrized as

P(6) = £ For the control design, we use the
following LQG regulation criterion: .

(14 X|CJ?
swo)= [~ B0 mpa

where H(s) = $3&H,

Initial calculations
Let the initial model be P;(s) =
sponding optimal controller is

—~L—. The corre-

Ci=arg mincJ(Pl, C)
_ 0.0054s + 0.0654
~ 0.01s2 +0.1141is + 0.0076 -

With this controller we get the following sta.bll-

ity margins: bpo, = 0.7835, bp.c, = 0.8248.

The closed loop modeling performance measure

is [IT(P,C1) — T(Py, C1)lleo = 0.1309. Thus our

r}zaew estimate for the stability margin, based on
1, 18

£(P1 pla Cl) = [b-l

.t 0.1309]"! = 0.7444

Observe that é(P P;,Cl) is a first lower bound
for bp O -

First model update

We first compute the optimal P, and then com-
pute £(P, Pz,Gl) to check whether this P, pro-
vides a tighter bound for bp ¢, than P did.

- Py=arg ming||T(P,C,) — T(P(9), Cl)”oo
0.8135
= 5+0.6676



With this P, we get by o = 08145 and
IT(P,C)) - T(P, Ci)ilo = 0.0999, yielding
§(P, P2, C1) = 0.7532. Observe that £(P, P, C1) >
&(P, Py, C). Therefore the model P, will allow a
larger movement §,(C;, C1) between the present
controller and the "to be designed controller” than
the model £;. Recall that, by Theorem 5.1, any C;
such that 6,(Cz, C1) < £(P, P2, Cy) is guaranteed
to stabilize the true plant P, since £(F, Pa, Cy) <
bp'(_'h .

First controller update
The optimal (unconsirained) controller C is

Cy =arg mingJ(B;, C)
_ 0.0699s + 0.0467
T 0.01s% + 0.11055 +0.0484

We compute 6,(C, C;) = 0.0573 < &(P, &, C)).

Therefore C is guaranteed to stabilize P. With
the new controller Cz we compute bp.c, = 0.7706,

bp g, = 0.8068, |IT(P,C;) — T(£,Co)lle =
0.1039, and £(P, Py, C;) = 0.7444.

Second model update
The optimal model P; over the same parametrized
set is ! :

Py =arg mingl|T(P,C;) — T(P(6), C2llleo

_ 08148

T 540.6624
This yields by, ,, = 0.8064 and ||T(P,C3) —
T(Ps, C2)llos = 0.1035, and £(P, P3, Cz) = 0.7443.
Observe that these values are very close to those
obtained in the previous iteration. The new model
P3 yields a slightly improved fit with the true
. ¢losed loop system (V(P,P5,C;) = 0.1035 <
V(p, Pz, C2) = 0.1039), but it does not improve
on -the allowable movement 6.(Ci,Cz} between
C, and the new controller Cs, since we are in a
situation where (P, P3,C,) < £(P, P;, C3). How-
ever, this does not matter, since the unconstrained
optimal controller computed from Fj is

Cy=arg mz‘ncJ(}%,C)
_ 0.0701s + 0.0465
"~ 0.015% 4+ 0.1105s + 0.0479

for which 5,(Cz, C3) = 0.0030 << &(P, B, C2) <
bp,c,. Thus, controller Cs is guaranteed to stabi-
lize the true P.

7. SOME FINAL COMMENTS

Using the Vinnicombe gap metric and its cor-
responding robust stability result as our major

tool, we have attempted to rationalize the need
for small controller adjustments in iterative iden-
tification and control design. We should warn
that, even though the stability results of Proposi-
tion 2.1 are formulated as necessary and sufficient
conditions, their blind application may lead to
conservative results. Indeed, in Proposition 2.1
the set 0,(Py, P2) = § defines a ball of models
P around P, all of which are stabilized by C.
Thus these constraints are mon-directional. By
using directional information, such as is done in
the Youla-Kucera parametrization one can easily
construct models B that violate the condition
8.(Pi, P;) < bp, c and yet are stabilized by C.
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