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Abstract 

The 4-block H" control problem with infinite and 
finite jw-axis is discussed in this paper. Via the eigen- 
structures related to the infinite and finite jw-zeros, this 
paper extends the DGKF's approach to the H" control 
problem without the constraints on the infinite or finite 
jw-axis zeros. The necessary and sufficient conditions 
are proposed for checking its solvability by solving two 
reduced-order Riccati equations and examining matrix 
norm conditions related to jw-axis zeros. 

1 Introduction 

Consider a generalized plant described as 

[;I = +)[:]=[2: a:][:] 

where z E R", y E Rq, w E RP and U E RP are the con- 
trolled error, the observation output, the exogenous in- 
put and the control input, respectively. The H" control 
problem is to find a proper control law U(.) = K(s)y(s) 
which internal1 stabilizes the closed-loop system and 
satisfies I lc~(s1 I/' oo < 1, where cP(s) is the closed-loop 
transfer function from w to z given by 

q s )  = Fl(P;  K )  := P 1 1 + P 1 2 K ( I - P z z K ) - 1 P z 1 .  (2) 

It is well known that the standard H" control prob- 
lems has been solved [l] when plant (1) satisfies the fol- 
lowing assumptions: 

AZ rank D12 = p, rank DZI = q. I /  As Plz(s) and Pzl (s) have no jw-axis invariant zeros. 

The assumption (AI )  is necessary for the close-loop 
stability. An H" control problem is called non-standard 

AI (A,  B,, C2) is stabilizable and detectable. 

or singular if ( A z )  and/or (A3)  do/does not hold. The 
above non-standard Ha" control problem, which is of- 
ten encountered in many practical cases, has attracted 
considerable research interests [2]-[9]. 

In this paper, instead of assumptions ( A z )  and (As),  
we assume that 

(A4) PlZ(s) and P21(s) have full normal column and row 
ranks, respectively. 

The above assumption can allow P12(s) and/or &(s)  
to have invariant zeros on jw-axis including the infinity 
(denoted as Re). The piir ose of this paper is to extend 
the DGKF's approach [lf to the H" control problem 
without the constraints on the infinite or finite jw-axis 
zeros and to provide the necessary and sufficient condi- 
tions for its solvability in terms of solutions of Riccati 
equations or generalized eigenvalue problems. In this pa- 
per, Re-eigenstructure of a tall pencil with full normal 
rank discussed in 1111 and the lossless factorization for 
P ( s )  similar to [3] and 1101 play an important role. 

Notations: The open lleft and right half complex plane 
are denoted by C- and t7+, respectively. The jw-axis is 
denoted by R. The set of all m x r constant real matrices 
is denoted by Rmx'. I,. denotes the identity matrix of 
size r x T .  RH,"O,, denotes the set of all m x r rational 
stable proper matrices, and BH,OO,, denotes the subset 
of RH,"O,,. with H"-norm less than 1. u(A) denotes the 
set of all eigenvalues of matrix A. p(X) is the maximum 
eigenvalue of X. Im A and Ker A denote the image space 
and null space of matrix A, respectively. We denote 
G"(s) := GT(-s )  and express the star product of MI 
and M2 by M = MI *Adz so that ~ ( M I , ~ ( M z , K ) )  = 

2 Preliminaries 

Fl (Mi * Mz , K) holds. 

2.1 Infinite eigenstriictures 

as -sPz + PA and -s& + PA, respectively, where 
Denote the system matrix pencils of Plz(s) and P$(s) 

P E : =  1 1 ,  PA:= A Bz 1 .  (3) Cl D1z L J L J 
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According to assumption (A4), the above two pencils 
has full normal column ranks. 

. , U:) be a base of Ker PE. Then the infinite Let (v:, 
eigenvectors are defined by 

PEVjl  = 0, j = 1,. . * , p ,  ( 5 )  

(6) PEV:+' = PA$, k = 1,.  . . , kj  - 1, 

where v p  is the last one of each infinite eigenvector chain 
satisfying PAV? e Im PE. NOW construct 

v, := [ v, Vh 1, (7) 

where Vh E R(n+P)xP contains all the last infinite eigen- 
vectors and V, are the remainders. Therefore, the com- 
plete infinite eigenstructure of -SPE +PA is defined by 

(-sPE + P A ) V ~  = PAV,(-SN + I ) ,  (8) 

where N is a nilpotent matrix. From (6), we know that 
[ C1 0 1 2  ] V, = 0, then decompose 

which yields 

T:= [ A B2 ]V,, B2 := [ A B2 ]Vh, (10) 

:= [ c1 D12 ] vh. (11) 

Note that is injective [ll]. 

Dually consider Pz(s ) .  Now arrange all the infinite 
eigenvectors of - s P E  + P A  as 

Vw:= [ v, V h  3 ,  (12) 

where V h  E R("+q)'q contains all the last infinite eigen- 
vectors and VT are the reminders. From P A V ~ ,  define 

T:= [ AT CT 3 V,, CT:= [ AT CT ] V h ,  (13) 

DFl := [ BT D,T, ] V h ,  (14) 

which follows that D& is also injective. 

2.2 Finite jw-axcls eigenstructures 
Let the jw-axis eigenspaces of -sPE_+PA and -sPE+ 

PA be spanned by real [ 2 ] and [ 2 1,  respectively. 

It follows that there exist A, and Aj such that q(Aj )  C Cl 
and o(Aj) c R hold, and 

(-sPE +PA) [ 2 ] = [ 2 ] ( - s I + A j ) ,  (15) 

2.3 Stable eigenstructures 
Denote the system matrices of PZ(-s)&(s) and 

P21(-S)P2T1(S) as: 

r - J + A  0 

Let [ $ ] and [ $ ] spanned stable eigenspace of 

W12(s) and Wzl(s), respectively. There exist stable A12 
and A21 such that 

W12(s) [ $ ] = [ ] (-SI + AI,), (19) 

W2l(s) [ 2 ] = [ $ ] (-SI + 1121). (20) 
0 3  

From [ll], we can obtain 

LEMMA 1 Under the assumptions ( A l )  and (A4) .  T h e n  
S and S are nonsingular, where 

S : = [ U 1  Ti TI, S : = [ V l  T1 21. (21) 

3 Solvability Conditions 

We are ready to state the main results of this paper. 

THEOREM 1 Under the assumptions (AI  
the H m  control problem for  plant P(s) in (I 1 i s  and solvable (A4)7  
i f  and only i f  the following statement holds. 

( i )  T h e  following Riccati equation has a stabilizing 
solution X ,  2 0, 

(A, - B,2EE1BgCr1)'xr + X,(Ar - BT2EE1B:2Crl) 

(22) 

A, := L1AU1, B,1 := L1B1, (23) 

Br2  := L1B2, c,, := c,u,, (24) 

+X, (B,1 B,T, B,T,)X,.+C,T, ( I  - b i z  EA1 byz)Crl = 0, 

where E12 := DT2D12,  and 

[ LT Lzf Lif I T : = [  U1 TI T I - ' ,  ( 2 5 )  

(-&E + PA) [ 2 ] = [ 3 ] ( -SI  + Ai). (16) where T ,  B 2  are given by ( I O ) ,  D 1 2  i s  given by ( I I ) ,  TI 
i s  given by (15), and U1 i s  given by (19), respectively. 
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(ii) The following Riccati equation has a stabilizing Remark 3.1 Riccati equation (22) is of size n- (n, - 
p) - n,, where n, := C::==, k, 2 p and nj are the di- solution Y, 2 0, 

- 2  - - 
mensions of {cm} and jw-axis eigenspaces of -sPE+ PA, 
resDectivelv. Similar andvsis can be given to Riccati Yr ( A r  - Br1 b,,', '%2)T + (A, - Br1 b:1 Cr2)Yr 
eqiation (i2).  Note that & satisfyin r33) and/or (34) 

+Y,(c~c,l-~~E~1C,2)Y+Brl(I-D,,T,E~11j21)B,', = 0, are the invariant zeros of P,lZ(s) and7or Pn21(s). It can 
be shown such wi are alsso the invariant zeros of P12(s) 
and/or P21(s). Therefor(:, all conditions in Theorem 1 
can be checked easily by ;solving two reduced-order Ric- where E21 := D ~ I D ? ~ ,  and 
cati equations and checking static conditions related to 

If assumption (A2)  holds, from (lo), 

(26) 

A, := UTALY, B,.1 := UTB1, (27) jw-axis zeros of PlZ(s) and/or Pzl(s). 

Remark 3.2 

where T ,  C 2  are given by (IS),  D 2 1  i s  given by ( l d ) ,  
i s  given by (16), and U 1  i s  given by (20), respectively. 

81 = ci, D z i  = Dzi. If assumption (A3)  holds, (A4)  
holds trivially, and Condition (iv) no longer exists. If 
both assumption ( A z )  and assumption (A3)  hold, we can 
choose L1 = U1 = L1 = Vl = I,. Theorem 1 is reduced 
to the results of the standard H" control problems [l]. 

To establish the relation of Theorem 1 with [3], [9], 
in what follows, we obtain the explicit solution to  the 
QMIs with rank constraiints in those papers. 

(iii) p ( X Y )  < 1, where 

(30) x := L?X,L~, Y := LTY,~,,. 

where X12i, UIzi, Xz1i and U21i satisfy (i) X ,  F, and N12 i,n (30), (40) and (42) satisfy 

(44) [ - jwgnlAn Bn1 
= [ 

rank [ -SI + A + BlBTX 

which implies that Pn12 (s) has n o  invariant zeros in C+ . 
Moreover, Pn12(s) and f\2(s) have the same finite j w -  

] [ -F, NIZ ] 2 0. 
NZ1 ] [ ] =', (34) 

where A,, B,l, Bn2, Cnl, Cn2 are defined by the for- 
lowing new plant as: -F, 

(45) 

1 = [VI Cnz N21 aais invariant zeros, and (A,,, B,z) i s  stabilizable. 

with i ts  matrices defined by 
(35) 

(ii) Y ,  L ,  and N21 i n  (.?U), (41) and (43) satisfy 

L 

(47) 
which implies that Pn21 (s) has n o  invariant zeros in C+ . 

L - : = - ( Y C , T +  A B 1 DT)E-1/2 21 21 7 (41) Moreover, P,Zl(s) and 1)21(s) have the same finite j w -  
axis invariant zeros, and (A, ,  Cn2) is detectable. 

F, := - E 1 ~ 1 / 2 ( ~ ~ X  + b:2C1), (40) 

(42) 
-1 /2  ^ T  NlZ := E,, D12D12, 

N~~ := (43) 4 Proof of Necessary Conditions 
Moreover, if the H" control problem for plant P ( s )  in 
(1) is solvable, then (An, Bn2, C,2) is stabilizable and 
detectable. 

We briefly introduce the following steps in the proof 
of the necessity of Theorlem 1: 

1967 



Step 1 Prove Condition ( i )  via the solvability of the 4.2 Lossless Factorization of P(s)  

LEMMA 5 Suppose the 4-block H" control problem is 
solvable. Then P( s )  can be factorized as 

P(s )  = @(SI * Ptm*(s), (54) 

full information (FI) problem for P(s). 
* 

Ptmp(s) to get a 2-block plant Ptmp(s), where O(s)  
is an inner matrix. 

Step 3 Prove Conditions (ii) and (iii) via the solvabil- 
ity of the FI problem corresponding to Ptmp(s). 
This step is just a copy of Step 1. 

= QT(s)  * PT(s) to get 1-block plant P,(s). This 
step is just a copy of Step 2. 

Step 2 Perform lossless factorization ~ ( s )  = 

Where 

Step 4 Perform the lossless factorization P:,(s) [TI , (55) - 
Step 5 Prove Condition (iv) via the static solvability - Cr1 +%Fr 

conditions related to the jw-axis zeros of P,(s). -B,',Xr 

4.1 FI Problem for P(s)  

in (1) 
Since the H" control problem for the FI case of P(s)  

is solvable, we have 

LEMMA 3 Suppose the $-block H" control problem i s  
solvable. Then  the FI Hm control problem for 

is solvable, where A,., Brl are defined in (27), B r 2  is 
defined in (24)? and D 1 2  i s  defined (11). Moreover, 

i s  a stabiliizable realization and has no  finite jw-axis in- 
variant zeros. 

Proof of Condition (i) of Theorem 1 is a direct con- 
sequence of Lemma 3 and the result of standard H" 
control problem in [I]. 

Now we can construct the following Riccati equation 
of size n, which will be used later. 

LEMMA 4 Suppose the d-block H" control problem is 
solvable. Then  

( A  - B2EG1DGC1)TX + X ( A  - B2EG1D)T,C1) 

+ X ( B 1  BT-B2E,-,'S,T)X+C,T(I-Di~E~'fiT2)Ci = 0, 
(51) 

has a solution 

x =  L?X,.L~ = s - ~  o o o s-I, (52) [:a a 1  

Ptmp(s) = 1-1 , (56) 
C2 + D 2 1 B T X  D21 

where F,. := -EG'(B,T,X,. + B:C,.l). And 0 ( s )  = I 
is a lossless matrix? i.e., O"(s)O(s) = I ,  0 ( s )  E RH" 
and OG1(s) E RH". Moreover, ( A +  BIBTX,  B2, C2 + 
D21 BT) is  stabilizable and detectable. 

According to Lemma 15 in [l], the solvability of H" 
control problems for P(s )  and Ptmp(s) is equivalent with 
the same controller. 

4.3 FI Problem for P L p ( s )  
Now we apply Condition (i) in Theorem 1 to 

\ -  I 
To this end, we have to study the fie eigenstructure of 
-SPE + PA with PE = PE 

which yields 

- S P E  + P A  = [ 6 xF1 ] ( - S F E  + F A ) ,  (59) 

where PE and PA are defined in (4). It follows that Vm 
in (12) contains all the infinite eigenvectors of -s& + 
PA. From (13) and (14), we obtain 

where c2 := C 2  + & B F X .  From (59) and (16), we get 

( - S ~ E  + P A )  [ 2 ] = [ 9 ] ( - s I+i j ) .  (61) 

By applying Lemma 4 to P&(s), we know that 
which yields 

X T I  = 0, X T  = 0. (53) W ( A  + BIB?X - B1fi;1E;1c?2)T + ( A  + B I B T X  
1968 



-B1DFlEG1C2)W + W ( F 2 F -  - CTE;lC2)W 

+ &(I  - &!?4%)21)B: = 0 (62) 

wT1 = 0, WT = 0. (63) 

has solution W 2 0 with 

Consider 

Y ( A  - B1h&EG1C2)T + ( A  - B1bZEG1C2)Y 

+Y (CT Cl - c; E;%z)Y + B1 ( I  - iy1 E&%21)BT = 0. 
(64) 

Let H y  and Hw be the Hamiltonian matrices corre- 
sponding to Riccati equations (64) and (62), respec- 
tively. By direct calculation, we have 

Let 

(66) 
I X  [ z] = [  0 I ] [ Ct.1. 

Therefore, 

Y = y2YCl = W ( I  + xw)-l = ( I  + W X ) - - 1 W  2 0 
(67) 

is a solution of (64). Since I + W X  = ( I  - Y X ) - I  = 
2 > 0, we get p ( X Y )  < 1. Thus, Y = Z-IW. It yields 
from (63) that Y f 1  = 0 and YF = 0. Then Y in (67) 
can be represented as 

Y, 0 0 

0 0 0  
Y = S-T [ 0 0 0 ] S - ' =  tFYTkl, (68) 

which follows that Y, 2 0 is a solution of (26). Moreover, 
0 we can show that Y, is the stabilizing one. 

4.4 Lossless Factorization of P L p ( s )  
From (62), define G" corresponding to F, in (40) as 

GT, := -E&"'"(C2W + D21BT). (69) 

which follows that G'fk = L L Z T ,  where L'fk is defined in 
(41). According to Lemma 5 ,  the lossless factorization 
for P L P ( s )  is 

Pt',,(.) = W s )  * m s , ,  (70) 

where QT(s)  is lossless matrix whose explicit form is 
omitted for the brevity, and P,(s) is given by (35). Ob- 
serve from Lemma 5 that (An ,  Bn2, C,a) is stabilizable 
and detectable. Based on two lossless factorizations (54) 
and (70), we have 

4.5 Static Conditions Related to Finite j w - a x i s  
Zeros 

From Theorem 2, the H'" control problem for 1-block 
plant P,(s) in (35) is solvable. Let s = j w i  (i = 1 N k) 
be the invariant zeros of Pn12(s) and/or Pn21(s), i.e., 
(33) and (34) hold. Conldition (iv) is a direct conse- 

0 quence of Theorem 6 in [4]. 

5 Proof of SuflBiciency Conditions 

We can first prove Lemma 2. Then, since Pn(s) is 
1-block plant, Pnl2(s) and P,zl(s)  have no invariant ze- 
ros in C+, according to Theorem 6 in [4], the matrix 
norm conditions related t,o jw-axis zeros are satisfied 
and two generalized Riccati equations have solutions of 
zero matrices. Therefore, the H" control problem for 
plant P,(s) is solvable, so is for plant P(s)  according to  
Theorem 2. 0 

Finally, as to the parameterization of all H" con- 
trollers, it will be reported in [12]. 
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