Solvability Conditions for 4-block H^{∞} Control Problems with Infinite and Finite $j\omega$ -Axis Zeros

Tsutomu Mita[†] Xin Xin[†] Brian D. O. Anderson[‡] † Department of Control and Systems Engineering Tokyo Institute of Technology 2-12-1, Ohokayama, Meguro-ku, Tokyo, 152, Japan Email: xxin@ctrl.titech.ac.jp, mita@ctrl.titech.ac.jp ‡ Research School of Information Sciences and Engineering Australian National University Canberra, ACT, 0200, Australia Email: brian.anderson@anu.edu.au

Abstract

The 4-block H^{∞} control problem with infinite and finite $j\omega$ -axis is discussed in this paper. Via the eigenstructures related to the infinite and finite $j\omega$ -zeros, this paper extends the DGKF's approach to the H^{∞} control problem without the constraints on the infinite or finite $j\omega$ -axis zeros. The necessary and sufficient conditions are proposed for checking its solvability by solving two reduced-order Riccati equations and examining matrix norm conditions related to $j\omega$ -axis zeros.

1 Introduction

Consider a generalized plant described as

$$\begin{bmatrix} z \\ y \end{bmatrix} = P(s) \begin{bmatrix} w \\ u \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \begin{bmatrix} w \\ u \end{bmatrix}$$
$$= \begin{bmatrix} A & B_1 & B_2 \\ C_1 & 0 & D_{12} \\ C_2 & D_{21} & 0 \end{bmatrix} \begin{bmatrix} w \\ u \end{bmatrix}, \tag{1}$$

where $z \in \mathbb{R}^m$, $y \in \mathbb{R}^q$, $w \in \mathbb{R}^r$ and $u \in \mathbb{R}^p$ are the controlled error, the observation output, the exogenous input and the control input, respectively. The H^{∞} control problem is to find a proper control law u(s) = K(s)y(s)which internally stabilizes the closed-loop system and satisfies $||\Phi(s)||_{\infty} < 1$, where $\Phi(s)$ is the closed-loop transfer function from w to z given by

$$\Phi(s) = F_l(P; K) := P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}. (2)$$

It is well known that the standard H^{∞} control problems has been solved [1] when plant (1) satisfies the following assumptions:

- (A_1) (A, B_2, C_2) is stabilizable and detectable.
- (A_2) rank $D_{12} = p$, rank $D_{21} = q$. (A_3) $P_{12}(s)$ and $P_{21}(s)$ have no $j\omega$ -axis invariant zeros.

The assumption (A_1) is necessary for the close-loop stability. An H^{∞} control problem is called non-standard or singular if (A_2) and/or (A_3) do/does not hold. The above non-standard $H^{\circ\circ}$ control problem, which is often encountered in many practical cases, has attracted considerable research interests [2]-[9].

In this paper, instead of assumptions (A_2) and (A_3) , we assume that

 (A_4) $P_{12}(s)$ and $P_{21}(s)$ have full normal column and row ranks, respectively.

The above assumption can allow $P_{12}(s)$ and/or $P_{21}(s)$ to have invariant zeros on $i\omega$ -axis including the infinity (denoted as Ω_e). The purpose of this paper is to extend the DGKF's approach [1] to the H^{∞} control problem without the constraints on the infinite or finite $j\omega$ -axis zeros and to provide the necessary and sufficient conditions for its solvability in terms of solutions of Riccati equations or generalized eigenvalue problems. In this paper, Ω_e -eigenstructure of a tall pencil with full normal rank discussed in [11] and the lossless factorization for P(s) similar to [3] and [10] play an important role.

Notations: The open left and right half complex plane are denoted by C_{-} and C_{+} , respectively. The $j\omega$ -axis is denoted by Ω . The set of all $m \times r$ constant real matrices is denoted by $R^{m \times r}$. I_r denotes the identity matrix of size $r \times r$. $RH_{m \times r}^{m}$ denotes the set of all $m \times r$ rational stable proper matrices, and $BH^{\infty}_{m\times r}$ denotes the subset of $RH^{\infty}_{m \times r}$ with H^{∞} -norm less than 1. $\sigma(A)$ denotes the set of all eigenvalues of matrix A. $\rho(X)$ is the maximum eigenvalue of X. Im A and Ker A denote the image space and null space of matrix A, respectively. We denote $G^{\sim}(s) := G^T(-s)$ and express the star product of M_1 and M_2 by $M = M_1 * M_2$ so that $F_l(M_1, F_l(M_2, K)) =$ $F_l(M_1 * M_2, K)$ holds.

2 Preliminaries

2.1 Infinite eigenstructures

Denote the system matrix pencils of $P_{12}(s)$ and $P_{21}^{T}(s)$ as $-sP_E + P_A$ and $-s\tilde{P}_E + \tilde{P}_A$, respectively, where

$$P_E := \left[\begin{array}{cc} I_n & 0 \\ 0 & 0 \end{array} \right], \quad P_A := \left[\begin{array}{cc} A & B_2 \\ C_1 & D_{12} \end{array} \right]. \tag{3}$$

$$\tilde{P}_{E} := \begin{bmatrix} I_{n} & 0 \\ 0 & 0 \end{bmatrix}, \quad \tilde{P}_{A} := \begin{bmatrix} A^{T} & C_{2}^{T} \\ B_{1}^{T} & D_{21}^{T} \end{bmatrix}. \quad (4)$$

According to assumption (A_4) , the above two pencils has full normal column ranks.

Let (v_1^1, \dots, v_p^1) be a base of Ker P_E . Then the infinite eigenvectors are defined by

$$P_E v_i^1 = 0, \quad j = 1, \cdots, p,$$
 (5)

$$P_E v_i^{k+1} = P_A v_i^k, \quad k = 1, \dots, k_j - 1,$$
 (6)

where $v_j^{k_j}$ is the last one of each infinite eigenvector chain satisfying $P_A v_i^{k_j} \not\in \operatorname{Im} P_E$. Now construct

$$V_{\infty} := [V_r \quad V_h], \tag{7}$$

where $V_h \in R^{(n+p) \times p}$ contains all the *last* infinite eigenvectors and V_r are the remainders. Therefore, the complete infinite eigenstructure of $-sP_E + P_A$ is defined by

$$(-sP_E + P_A)V_{\infty} = P_A V_{\infty}(-sN + I), \tag{8}$$

where N is a nilpotent matrix. From (6), we know that $\begin{bmatrix} C_1 & D_{12} \end{bmatrix} V_r = 0$, then decompose

$$P_{A}V_{\infty} = \begin{bmatrix} A & B_{2} \\ C_{1} & D_{12} \end{bmatrix} \begin{bmatrix} V_{r} & V_{h} \end{bmatrix} =: \begin{bmatrix} T & \hat{B}_{2} \\ 0 & \hat{D}_{12} \end{bmatrix}, \quad (9)$$

which yields

$$T := [A \quad B_2 \mid V_r, \quad \hat{B}_2 := [A \quad B_2 \mid V_h, \quad (10)]$$

$$\hat{D}_{12} := [C_1 \quad D_{12}] V_h. \tag{11}$$

Note that \hat{D}_{12} is injective [11].

Dually consider $P_{21}^T(s)$. Now arrange all the infinite eigenvectors of $-s\tilde{P}_E + \tilde{P}_A$ as

$$\tilde{V}_{\infty} := \left[\begin{array}{cc} \tilde{V}_r & \tilde{V}_h \end{array} \right], \tag{12}$$

where $\tilde{V}_h \in R^{(n+q)\times q}$ contains all the *last* infinite eigenvectors and \tilde{V}_r are the reminders. From $\tilde{P}_A\tilde{V}_{\infty}$, define

$$\tilde{T} := \begin{bmatrix} A^T & C_2^T \end{bmatrix} \tilde{V}_r, \quad \hat{C}_2^T := \begin{bmatrix} A^T & C_2^T \end{bmatrix} \tilde{V}_h, \quad (13)$$

$$\hat{D}_{21}^{T} := \begin{bmatrix} B_{1}^{T} & D_{21}^{T} \end{bmatrix} \tilde{V}_{h}, \tag{14}$$

which follows that \hat{D}_{21}^{T} is also injective.

2.2 Finite $j\omega$ -axis eigenstructures

Let the $j\omega$ -axis eigenspaces of $-sP_E+P_A$ and $-s\tilde{P}_E+\tilde{P}_A$ be spanned by real $\left[\begin{array}{c} T_1\\ T_2 \end{array}\right]$ and $\left[\begin{array}{c} \tilde{T}_1\\ \tilde{T}_2 \end{array}\right]$, respectively. It follows that there exist Λ_j and $\tilde{\Lambda}_j$ such that $\sigma(\Lambda_j)\subset\Omega$ and $\sigma(\tilde{\Lambda}_j)\subset\Omega$ hold, and

$$(-sP_E + P_A) \begin{bmatrix} T_1 \\ T_2 \end{bmatrix} = \begin{bmatrix} T_1 \\ 0 \end{bmatrix} (-sI + \Lambda_j), \quad (15)$$

$$(-s\tilde{P}_E + \tilde{P}_A) \begin{bmatrix} \tilde{T}_1 \\ \tilde{T}_2 \end{bmatrix} = \begin{bmatrix} \tilde{T}_1 \\ 0 \end{bmatrix} (-sI + \tilde{\Lambda}_j).$$
 (16)

2.3 Stable eigenstructures

Denote the system matrices of $P_{12}^T(-s)P_{12}(s)$ and $P_{21}(-s)P_{21}^T(s)$ as:

$$W_{12}(s) := \begin{bmatrix} -sI + A & 0 & B_2 \\ -C_1^T C_1 & -sI - A^T & -C_1^T D_{12} \\ D_{12}^T C_1 & B_2^T & D_{12}^T D_{12} \end{bmatrix}, \quad (17)$$

$$W_{21}(s) := \begin{bmatrix} -sI + A^T & 0 & C_2^T \\ -B_1B_1^T & -sI - A & -B_1D_{21}^T \\ D_{21}B_1^T & C_2 & D_{21}D_{21}^T \end{bmatrix} . (18)$$

Let
$$\left[egin{array}{c} U_1 \\ U_2 \\ U_3 \end{array}
ight]$$
 and $\left[egin{array}{c} ilde{U}_1 \\ ilde{U}_2 \\ ilde{U}_3 \end{array}
ight]$ spanned stable eigenspace of

 $W_{12}(s)$ and $W_{21}(s)$, respectively. There exist stable Λ_{12} and Λ_{21} such that

$$W_{12}(s) \begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \\ 0 \end{bmatrix} (-sI + \Lambda_{12}), \tag{19}$$

$$W_{21}(s) \begin{bmatrix} \tilde{U}_1 \\ \tilde{U}_2 \\ \tilde{U}_3 \end{bmatrix} = \begin{bmatrix} \tilde{U}_1 \\ \tilde{U}_2 \\ 0 \end{bmatrix} (-sI + \Lambda_{21}). \tag{20}$$

From [11], we can obtain

LEMMA 1 Under the assumptions (A_1) and (A_4) . Then S and \tilde{S} are nonsingular, where

$$S := \begin{bmatrix} U_1 & T_1 & T \end{bmatrix}, \quad \tilde{S} := \begin{bmatrix} \tilde{U}_1 & \tilde{T}_1 & \tilde{T} \end{bmatrix}. \quad (21)$$

3 Solvability Conditions

We are ready to state the main results of this paper.

THEOREM 1 Under the assumptions (A_1) and (A_4) , the H^{∞} control problem for plant P(s) in (1) is solvable if and only if the following statement holds.

(i) The following Riccati equation has a stabilizing solution $X_r \geq 0$,

$$(A_r - \hat{B}_{r2}E_{12}^{-1}\hat{D}_{12}^TC_{r1})^TX_r + X_r(A_r - \hat{B}_{r2}E_{12}^{-1}\hat{D}_{12}^TC_{r1})$$

$$+X_{r}(B_{r1}B_{r1}^{T}-\hat{B}_{r2}E_{12}^{-1}\hat{B}_{r2}^{T})X_{r}+C_{r1}^{T}(I-\hat{D}_{12}E_{12}^{-1}\hat{D}_{12}^{T})C_{r1}=0, \tag{22}$$

where $E_{12} := \hat{D}_{12}^T \hat{D}_{12}$, and

$$A_r := L_1 A U_1, \quad B_{r1} := L_1 B_1, \tag{23}$$

$$\hat{B}_{r2} := L_1 \hat{B}_2, \quad C_{r1} := C_1 U_1, \tag{24}$$

$$\begin{bmatrix} L_1^T & L_2^T & L_3^T \end{bmatrix}^T := \begin{bmatrix} U_1 & T_1 & T \end{bmatrix}^{-1}, \qquad (25)$$

where T, \hat{B}_2 are given by (10), \hat{D}_{12} is given by (11), T_1 is given by (15), and U_1 is given by (19), respectively.

(ii) The following Riccati equation has a stabilizing solution $Y_r \geq 0$,

$$Y_r(\tilde{A}_r - \tilde{B}_{r1}\hat{D}_{21}^T E_{21}^{-1}\hat{C}_{r2})^T + (\tilde{A}_r - \tilde{B}_{r1}\hat{D}_{21}^T E_{21}^{-1}\hat{C}_{r2})Y_r$$

$$+Y_r(\tilde{C}_{r1}^T\tilde{C}_{r1}-\hat{C}_{r2}^TE_{21}^{-1}\hat{C}_{r2})Y+\tilde{B}_{r1}(I-\hat{D}_{21}^TE_{21}^{-1}\hat{D}_{21})\tilde{B}_{r1}^T=0,$$
(26)

where $E_{21} := \hat{D}_{21} \hat{D}_{21}^T$, and

$$\tilde{A}_r := \tilde{U}_1^T A \tilde{L}_1^T, \quad \tilde{B}_{r1} := \tilde{U}_1^T B_1,$$
 (27)

$$\hat{C}_{r2} := \hat{C}_2 \tilde{L}_1^T, \quad \tilde{C}_{r1} := \tilde{U}_1^T C_1, \tag{28}$$

$$\begin{bmatrix} \tilde{L}_1^T & \tilde{L}_2^T & \tilde{L}_3^T \end{bmatrix}^T := \begin{bmatrix} \tilde{U}_1 & \tilde{T}_1 & \tilde{T} \end{bmatrix}^{-1}, \quad (29)$$

where \tilde{T} , \hat{C}_2 are given by (13), \hat{D}_{21} is given by (14), \tilde{T}_1 is given by (16), and \tilde{U}_1 is given by (20), respectively.

(iii)
$$\rho(XY) < 1$$
, where

$$X := L_1^T X_r L_1, \quad Y := \tilde{L}_1^T Y_r \tilde{L}_1. \tag{30}$$

$$U_{12i}^* U_{12i} > X_{12i}^* B_{n1} B_{n1}^T X_{12i}, (31)$$

$$U_{21i}^* U_{21i} > X_{21i}^* C_{n1}^T C_{n1} X_{21i}, (32)$$

where X_{12i} , U_{12i} , X_{21i} and U_{21i} satisfy

$$\begin{bmatrix} -j\omega_{i}I + A_{n}^{T} & C_{n1}^{T} \\ B_{n2}^{T} & N_{12}^{T} \end{bmatrix} \begin{bmatrix} X_{12i} \\ U_{12i} \end{bmatrix} = 0, \quad (33)$$

$$\left[\begin{array}{cc} -j\omega_{i}I+A_{n} & B_{n1} \\ C_{n2} & N_{21} \end{array}\right]\left[\begin{array}{c} X_{21i} \\ U_{21i} \end{array}\right]=0, \qquad (34)$$

where A_n , B_{n1} , B_{n2} , C_{n1} , C_{n2} are defined by the following new plant as:

$$P_n(s) = \begin{bmatrix} P_{n11} & P_{n12} \\ P_{n21} & P_{n22} \end{bmatrix} = \begin{bmatrix} A_n & B_{n1} & B_{n2} \\ \hline C_{n1} & 0 & N_{12} \\ C_{n2} & N_{21} & 0 \end{bmatrix}$$
(35)

with its matrices defined by

$$A_n := A + B_1 B_1^T X + Z Y F_{\infty}^T F_{\infty}, \tag{36}$$

$$B_{n1} := -ZL_{\infty}, \quad B_{n2} := B_2 - ZYF_{\infty}^T N_{12}, \quad (37)$$

$$C_{n1} := -F_{\infty}, \quad C_{n2} := (C_2 - N_{21}L_{\infty}^T XZ)Z^{-1}, \quad (38)$$

$$Z := (I - YX)^{-1}, \tag{39}$$

$$F_{\infty} := -E_{12}^{-1/2} (\hat{B}_{2}^{T} X + \hat{D}_{12}^{T} C_{1}), \tag{40}$$

$$L_{\infty} := -(Y\hat{C}_2^T + B_1\hat{D}_{21}^T)E_{21}^{-1/2},\tag{41}$$

$$N_{12} := E_{12}^{-1/2} \hat{D}_{12}^T D_{12}, \tag{42}$$

$$N_{21} := (E_{21}^{-1/2} \hat{D}_{21} D_{21}^T)^T. \tag{43}$$

Moreover, if the H^{∞} control problem for plant P(s) in (1) is solvable, then (A_n, B_{n2}, C_{n2}) is stabilizable and detectable.

Remark 3.1 Riccati equation (22) is of size $n-(n_{\infty}-p)-n_j$, where $n_{\infty}:=\sum_{j=1}^p k_j\geq p$ and n_j are the dimensions of $\{\infty\}$ and $j\omega$ -axis eigenspaces of $-sP_E+P_A$, respectively. Similar analysis can be given to Riccati equation (22). Note that ω_i satisfying (33) and/or (34) are the invariant zeros of $P_{n12}(s)$ and/or $P_{n21}(s)$. It can be shown such ω_i are also the invariant zeros of $P_{12}(s)$ and/or $P_{21}(s)$. Therefore, all conditions in Theorem 1 can be checked easily by solving two reduced-order Riccati equations and checking static conditions related to $j\omega$ -axis zeros of $P_{12}(s)$ and/or $P_{21}(s)$.

Remark 3.2 If assumption (A_2) holds, from (10), (11), (13) and (14), choose $V_{\infty} = V_h = \begin{bmatrix} 0 & I_p \end{bmatrix}^T$ and $\tilde{V}_{\infty} = \tilde{V}_h = \begin{bmatrix} 0 & I_q \end{bmatrix}^T$, we obtain $\hat{B}_2 = B_2$, $\hat{D}_{12} = D_{12}$, $\hat{C}_1 = C_1$, $\hat{D}_{21} = D_{21}$. If assumption (A_3) holds, (A_4) holds trivially, and Condition (iv) no longer exists. If both assumption (A_2) and assumption (A_3) hold, we can choose $L_1 = U_1 = \tilde{L}_1 = \tilde{U}_1 = I_n$. Theorem 1 is reduced to the results of the standard H^{∞} control problems [1].

To establish the relation of Theorem 1 with [3], [9], in what follows, we obtain the explicit solution to the QMIs with rank constraints in those papers.

LEMMA 2 Under the assumptions (A_1) and (A_4) , if Conditions (i)-(iv) in Theorem 1 hold, then

(i)
$$X$$
, F_{∞} and N_{12} in (30), (40) and (42) satisfy

$$\begin{bmatrix} XA + A^{T}X + XB_{1}B_{1}^{T}X + C_{1}^{T}C_{1} & XB_{2} + C_{1}^{T}D_{12} \\ B_{2}^{T}X + D_{12}^{T}C_{1} & D_{12}^{T}D_{12} \end{bmatrix}$$

$$= \begin{bmatrix} -F_{\infty}^{T} \\ N_{12}^{\infty} \end{bmatrix} [-F_{\infty} \quad N_{12}] \ge 0.$$
 (44)

rank
$$\begin{bmatrix} -sI + A + B_1B_1^TX & B_2 \\ -F_{\infty} & N_{12} \end{bmatrix} = n + p, \quad s \in C_+,$$
(45)

which implies that $P_{n12}(s)$ has no invariant zeros in C_+ . Moreover, $P_{n12}(s)$ and $P_{12}(s)$ have the same finite $j\omega$ -axis invariant zeros, and (A_n, B_{n2}) is stabilizable.

(ii)
$$Y$$
, L_{∞} and N_{21} in (30), (41) and (43) satisfy

$$\left[\begin{array}{cc} AY + YA^T + YC_1^TC_1Y + B_1B_1^T & YC_2^T + B_1D_{21}^T \\ C_2Y + D_{21}B_1^T & D_{21}D_{21}^T \end{array}\right]$$

$$= \begin{bmatrix} -L_{\infty} \\ N_{21} \end{bmatrix} \begin{bmatrix} -L_{\infty}^T & N_{21}^T \end{bmatrix} \ge 0, \tag{46}$$

rank
$$\begin{bmatrix} -sI + A + YC_1^T C_1 & -L_{\infty} \\ C_2 & N_{21} \end{bmatrix} = n+p, \quad s \in C_+,$$
(47)

which implies that $P_{n21}(s)$ has no invariant zeros in C_+ . Moreover, $P_{n21}(s)$ and $P_{21}(s)$ have the same finite $j\omega$ -axis invariant zeros, and (A_n, C_{n2}) is detectable.

4 Proof of Necessary Conditions

We briefly introduce the following steps in the proof of the necessity of Theorem 1:

- Step 1 Prove Condition (i) via the solvability of the full information (FI) problem for P(s).
- Step 2 Perform lossless factorization $P(s) = \Theta(s) * P_{tmp}(s)$ to get a 2-block plant $P_{tmp}(s)$, where $\Theta(s)$ is an inner matrix.
- Step 3 Prove Conditions (ii) and (iii) via the solvability of the FI problem corresponding to $P_{tmp}(s)$. This step is just a copy of Step 1.
- Step 4 Perform the lossless factorization $P_{tmp}^{T}(s)$ = $\Psi^{T}(s) * P_{n}^{T}(s)$ to get 1-block plant $P_{n}(s)$. This step is just a copy of Step 2.
- Step 5 Prove Condition (iv) via the static solvability conditions related to the $j\omega$ -axis zeros of $P_n(s)$.

4.1 FI Problem for P(s)

Since the H^{∞} control problem for the FI case of P(s) in (1)

$$P_{FI}(s) = \begin{bmatrix} A & B_1 & B_2 \\ \hline C_1 & 0 & D_{12} \end{bmatrix}$$
 (48)

is solvable, we have

LEMMA 3 Suppose the 4-block H^{∞} control problem is solvable. Then the FI H^{∞} control problem for

$$P_{FIr}(s) = \begin{bmatrix} A_r & B_{r1} & \hat{B}_{r2} \\ \hline C_{r1} & 0 & \hat{D}_{12} \end{bmatrix}$$
 (49)

is solvable, where A_r , B_{r1} are defined in (27), \hat{B}_{r2} is defined in (24), and \hat{D}_{12} is defined (11). Moreover,

$$P_{12r}(s) := \begin{bmatrix} A_r & \hat{B}_{r2} \\ \hline C_{r1} & \hat{D}_{12} \end{bmatrix}$$
 (50)

is a stabilizable realization and has no finite $j\omega$ -axis invariant zeros.

Proof of Condition (i) of Theorem 1 is a direct consequence of Lemma 3 and the result of standard H^{∞} control problem in [1].

Now we can construct the following Riccati equation of size n, which will be used later.

LEMMA 4 Suppose the 4-block H^{∞} control problem is solvable. Then

$$(A - \hat{B}_2 E_{12}^{-1} \hat{D}_{12}^T C_1)^T X + X(A - \hat{B}_2 E_{12}^{-1} \hat{D}_{12}^T C_1)$$

$$+X(B_1B_1^T - \hat{B}_2E_{12}^{-1}\hat{B}_2^T)X + C_1^T(I - \hat{D}_{12}E_{12}^{-1}\hat{D}_{12}^T)C_1 = 0,$$
(51)

has a solution

$$X = L_1^T X_r L_1 = S^{-T} \begin{bmatrix} X_r & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} S^{-1},$$
 (52)

which yields

$$XT_1 = 0, \quad XT = 0.$$
 (53)

4.2 Lossless Factorization of P(s)

LEMMA 5 Suppose the 4-block H^{∞} control problem is solvable. Then P(s) can be factorized as

$$P(s) = \Theta(s) * P_{tmp}(s), \tag{54}$$

where

$$\Theta(s) = \begin{bmatrix}
\Theta_{11}(s) & \Theta_{12}(s) \\
\Theta_{21}(s) & \Theta_{22}(s)
\end{bmatrix}
= \begin{bmatrix}
A_r + \hat{B}_{r2}\hat{F}_r & B_{r1} & \hat{B}_{r2}E_{12}^{-1/2} \\
C_{r1} + \hat{D}_{12}\hat{F}_r & 0 & \hat{D}_{12}E_{12}^{-1/2} \\
-B_{1}^{T}X_r & I_r & 0
\end{bmatrix}, (55)$$

$$P_{tmp}(s) = \begin{bmatrix} A + B_1 B_1^T X & B_1 & B_2 \\ -F_{\infty} & 0 & N_{12} \\ C_2 + D_{21} B_1^T X & D_{21} & 0 \end{bmatrix}, \quad (56)$$

where $\hat{F}_r:=-E_{12}^{-1}(\hat{B}_{r2}^TX_r+\hat{D}_{12}^TC_{r1}).$ And $\Theta(s)=I$ is a lossless matrix, i.e., $\Theta^\sim(s)\Theta(s)=I,\ \Theta(s)\in RH^\infty$ and $\Theta_{21}^{-1}(s)\in RH^\infty.$ Moreover, $(A+B_1B_1^TX,B_2,C_2+D_{21}B_1^T)$ is stabilizable and detectable.

According to Lemma 15 in [1], the solvability of H^{∞} control problems for P(s) and $P_{tmp}(s)$ is equivalent with the same controller.

4.3 FI Problem for $P_{tmp}^{T}(s)$

Now we apply Condition (i) in Theorem 1 to

$$P_{tmp}^{T}(s) = \begin{bmatrix} A^{T} + XB_{1}B_{1}^{T} & -F_{\infty}^{T} & C_{2}^{T} + XB_{1}D_{21}^{T} \\ B_{1}^{T} & 0 & D_{21}^{T} \\ B_{2}^{T} & N_{12}^{T} & 0 \end{bmatrix}.$$
(57)

To this end, we have to study the Ω_e eigenstructure of $-s\bar{P}_E + \bar{P}_A$ with $\bar{P}_E = \tilde{P}_E$

$$\bar{P}_{A} := \begin{bmatrix} A^{T} + XB_{1}B_{1}^{T} & C_{2}^{T} + XB_{1}D_{21}^{T} \\ B_{1}^{T} & D_{21}^{T} \end{bmatrix}, (58)$$

which yields

$$-s\bar{P}_E + \bar{P}_A = \begin{bmatrix} I & XB_1 \\ 0 & I \end{bmatrix} (-s\tilde{P}_E + \tilde{P}_A), \quad (59)$$

where \tilde{P}_E and \tilde{P}_A are defined in (4). It follows that \tilde{V}_{∞} in (12) contains all the infinite eigenvectors of $-s\bar{P}_E + \bar{P}_A$. From (13) and (14), we obtain

$$\bar{P}_{A}\tilde{V}_{\infty} = \begin{bmatrix} \tilde{T} & \bar{C}_{2}^{T} \\ 0 & \hat{D}_{21}^{T} \end{bmatrix}, \tag{60}$$

where $\bar{C}_2 := \hat{C}_2 + \hat{D}_{21}B_1^T X$. From (59) and (16), we get

$$(-s\bar{P}_E + \bar{P}_A) \begin{bmatrix} \tilde{T}_1 \\ \tilde{T}_2 \end{bmatrix} = \begin{bmatrix} \tilde{T}_1 \\ 0 \end{bmatrix} (-sI + \tilde{\Lambda}_j).$$
 (61)

By applying Lemma 4 to $P_{tmp}^{T}(s)$, we know that

$$W(A + B_1B_1^TX - B_1\hat{D}_{21}^TE_{21}^{-1}\bar{C}_2)^T + (A + B_1B_1^TX)^T$$

$$-B_1 \hat{D}_{21}^T E_{21}^{-1} \bar{C}_2) W + W (F_{\infty}^T F_{\infty} - \bar{C}_2^T E_{21}^{-1} \bar{C}_2) W$$

+
$$B_1 (I - \hat{D}_{21}^T E_{21}^{-1} \hat{D}_{21}) B_1^T = 0$$
 (62)

has solution $W \geq 0$ with

$$W\tilde{T}_1 = 0, \quad W\tilde{T} = 0. \tag{63}$$

Consider

$$Y(A - B_1\hat{D}_{21}^TE_{21}^{-1}\hat{C}_2)^T + (A - B_1\hat{D}_{21}^TE_{21}^{-1}\hat{C}_2)Y$$

$$+Y(C_1^TC_1 - \hat{C}_2^TE_{21}^{-1}\hat{C}_2)Y + B_1(I - \hat{D}_{21}^TE_{21}^{-1}\hat{D}_{21})B_1^T = 0.$$
(64)

Let H_Y and H_W be the Hamiltonian matrices corresponding to Riccati equations (64) and (62), respectively. By direct calculation, we have

$$H_{W} = \begin{bmatrix} I & -X \\ 0 & I \end{bmatrix} H_{Y} \begin{bmatrix} I & X \\ 0 & I \end{bmatrix}. \tag{65}$$

Let

$$\left[\begin{array}{c} Y_1 \\ Y_2 \end{array}\right] = \left[\begin{array}{cc} I & X \\ 0 & I \end{array}\right] \left[\begin{array}{c} I \\ W \end{array}\right]. \tag{66}$$

Therefore,

$$Y = Y_2 Y_1^{-1} = W(I + XW)^{-1} = (I + WX)^{-1}W \ge 0$$
(67)

is a solution of (64). Since $I + WX = (I - YX)^{-1} = Z > 0$, we get $\rho(XY) < 1$. Thus, $Y = Z^{-1}W$. It yields from (63) that $Y\tilde{T}_1 = 0$ and $Y\tilde{T} = 0$. Then Y in (67) can be represented as

$$Y = \tilde{S}^{-T} \begin{bmatrix} Y_r & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \tilde{S}^{-1} = \tilde{L}_1^T Y_r \tilde{L}_1, \tag{68}$$

which follows that $Y_r \ge 0$ is a solution of (26). Moreover, we can show that Y_r is the stabilizing one.

4.4 Lossless Factorization of $P_{tmp}^{T}(s)$

From (62), define G^{∞} corresponding to F_{∞} in (40) as

$$G_{\infty}^T := -E_{21}^{-1/2} (\tilde{C}_2 W + \hat{D}_{21} B_1^T). \tag{69}$$

which follows that $G_{\infty}^T = L_{\infty}^T Z^T$, where L_{∞}^T is defined in (41). According to Lemma 5, the lossless factorization for $P_{tmp}^T(s)$ is

$$P_{tmn}^{T}(s) = \Psi^{T}(s) * P_{n}^{T}(s), \tag{70}$$

where $\Psi^T(s)$ is lossless matrix whose explicit form is omitted for the brevity, and $P_n(s)$ is given by (35). Observe from Lemma 5 that (A_n, B_{n2}, C_{n2}) is stabilizable and detectable. Based on two lossless factorizations (54) and (70), we have

THEOREM 2 The solvability of H^{∞} control problems for P(s) and $P_n(s)$ is equivalent with the same controller K(s).

4.5 Static Conditions Related to Finite $j\omega$ -axis Zeros

From Theorem 2, the H^{∞} control problem for 1-block plant $P_n(s)$ in (35) is solvable. Let $s = j\omega_i$ $(i = 1 \sim k)$ be the invariant zeros of $P_{n12}(s)$ and/or $P_{n21}(s)$, i.e., (33) and (34) hold. Condition (iv) is a direct consequence of Theorem 6 in [4].

5 Proof of Sufficiency Conditions

We can first prove Lemma 2. Then, since $P_n(s)$ is 1-block plant, $P_{n12}(s)$ and $P_{n21}(s)$ have no invariant zeros in C_+ , according to Theorem 6 in [4], the matrix norm conditions related to $j\omega$ -axis zeros are satisfied and two generalized Riccati equations have solutions of zero matrices. Therefore, the H^{∞} control problem for plant $P_n(s)$ is solvable, so is for plant P(s) according to Theorem 2.

Finally, as to the parameterization of all H^{∞} controllers, it will be reported in [12].

References

- [1] J. C. Doyle, K. Glover, P. P. Khargonekar and B. A. Francis. *IEEE Trans. Automat. Contr. AC*, vol.34, pp.831-847, 1989.
- [2] M. Sampei, T. Mita, and M. Nakamichi. System & Control Letter, vol. 14, pp. 13-24, 1990.
- [3] A. A. Stoorvogel. SIAM J. Control Optim., vol. 29, pp. 160-184, 1991.
- [4] S. Hara, T. Sugie and R. Kondo. Automatica, vol. 28, pp.55-70, 1992.
- [5] C. Scherer. SIAM J. Control and Optim., vol. 30, pp. 143-166, 1992.
- [6] B. R. Copeland and M. G. Safonov. In C.T. Leondes (Ed.), Advances in Robust Control Systems Techniques & Applications, 1992.
- [7] T. Iwasaki and R. E. Skelton. Automatica, vol. 30, 1307-1317, 1994.
- [8] X. Xin and H. Kimura. In U. Helmke, R. Mennicken and J. Saurer (Ed.), Systems and Networks: Mathematical Theory and Applications. vol. I, pp. 183-208. Akademie Verlag, Berlin, 1994.
- [9] A. A. Stoorvogel. Int. J. Control, vol. 63, 1029-1053, 1996.
- [10] T. Mita. H^{∞} Control. Shyokoudo Pub. Co., Tokyo, 1994.
- [11] X. Xin and T. Mita. Inner-outer factorization for non-square proper functions with infinite and finite $j\omega$ -Axis zeros. To appear in *Int. J. of Control*.
- [12] B. D. O. Anderson, X. Xin, and T. Mita. The parameterization of all controllers for 4-block H^{∞} control problems with infinite and finite $j\omega$ -axis zeros, *Proc. of ACC*, Philadelphia, USA, 1998.