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Abstract

The 4-block H® control problem with infinite and
finite jw-axis is discussed in this paper. Via the eigen-
structures related to the infinite and finite jw-zeros, this
paper extends the DGKF’s approach to the H* control
problem without the constraints on the infinite or finite
Jw-axis zeros. The necessary and sufficient conditions
are proposed for checking its solvability by solving two
reduced-order Riccati equations and examining matrix
norm conditions related to jw-axis zeros.

1 Introduction

Consider a generalized plant described as

HERCIHEEE AN

A| Bi B w
= 1 12 [ u ], (1)

where z € R™, y € R?, w € R" and u € RP are the con-
trolled error, the observation output, the exogenous in-
put and the control input, respectively. The H> control
problem is to find a proper control law u(s) = K(s)y(s)
which internally stabilizes the closed-loop system and
satisfies ||®(s)|]oc < 1, where ®(s) is the closed-loop
transfer function from w to z given by

®(s) = Fi(P; K):= P11+P12K(I—P22K)_1P21. (2)

It is well known that the standard H* control prob-
lems has been solved [1] when plant (1) satisfies the fol-
lowing assumptions:

A1) (A, B, C>) is stabilizable and detectable.

Az) rank Dy; = p, rank D2y = q.

A3z) Pia(s) and Py;(s) have no jw-axis invariant zeros.
The assumption (A;) is necessary for the close-loop

stability. An H control problem is called non-standard

0-7803-4530-4/98 $10.00 © 1998 AACC

or singular if (A;) and/or (A3) do/does not hold. The
above non-standard H°® control problem, which is of-
ten encountered in many practical cases, has attracted
considerable research interests [2]-[9].

In this paper, instead of assumptions (A;) and (A43),
we assume that

(A4) P12(s) and Py (s) have full normal column and row
ranks, respectively.

The above assumption can allow Pj,(s) and/or Py, (s)
to have invariant zeros on jw-axis including the infinity
(denoted as §2.). The purpose of this paper is to extend
the DGKF’s approach [1] to the H* control problem
without the constraints on the infinite or finite jw-axis
zeros and to provide the necessary and sufficient condi-
tions for its solvability in terms of solutions of Riccati
equations or generalized eigenvalue problems. In this pa-
per, §2.-eigenstructure of a tall pencil with full normal
rank discussed in [11] and the lossless factorization for
P(s) similar to [3] and [10] play an important role.

Notations: The open left and right half complex plane
are denoted by C_ and C,, respectively. The jw—axis is
denoted by 2. The set of all m xr constant real matrices
is denoted by R™*". I,. denotes the identity matrix of
size r x r. RH?, . denotes the set of all m x r rational
stable proper matrices, and BHZ,,. denotes the subset

mXr
of RHZ?, . with H*-norm less than 1. 0(A) denotes the

set of all eigenvalues of matrix A. p(X) is the maximum
eigenvalue of X. Im A and Ker A denote the image space
and null space of matrix A, respectively. We denote
G~(s) := GT(—s) and express the star product of M;
and M, by M = M; * M, so that Fi(M,, Fi(M;,K)) =
Fi(M; * M, K) holds.

2 Preliminaries

2.1 Infinite eigenstructures
Denote the system matrix pencils of Pi5(s) and P (s)

as —sPg + P4 and —sPg + Py, respectively, where

N I —| 4 B2
PE.—[O 0], PA.~[01 Dlz]. (3)
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5 I, 0 5 AT T
Pg:=1| " ] , Pg:= [ ] . 4
S ER I P Y A
According to assumption (A4), the above two pencils
has full normal column ranks.

Let (v],- -, v3) be a base of Ker Pg. Then the infinite
eigenvectors are defined by

PE'U;=07 j=17"'»Pa ) (5)

PEv}c+l = PA'U;F, k=1,---,k; -1, (6)

kj . NP .
where v;” is the last one of each infinite elgenvector chain

" ¢ Im Pg. Now construct
Vi=[ Ve Vil (1)

where V;, € R("+P)XP contains all the last infinite eigen-
vectors and V,. are the remainders. Therefore, the com-
plete infinite eigenstructure of —sPg + Py is defined by

(=$Pg + Pa)Veo = PaVoo(~sN + 1), - (8)

where N is a nilpotent matrix. From (6), we know that
[ Ci Dy |V, =0, then decompose

A B - T B
PyV, = [—-Ci---D—fz-—] [ Ve ! Vn ]=: [ 0 ﬁlzz ] ) (9)

which yields
T:=[A B3 |V.,, By:=[ A B |V,
Diz:=[ C1 D2 1V,
Note that Dy is injective [11).

satisfying PA'v

(10)
(1)

Dually consider P};(sl Now arrange all the infinite
eigenvectors of —sPg + P4 as
[ f/"r' vh ]a

Vio 1= (12)

where V3, € R("+9%4 contains all the last infinite eigen-
vectors and V, are the reminders. From PAVOO, define

T:=[AT ¢F 1V, CT:=[AT cf W, (13

DL, :=[ Bf D% 1V, (14)

which follows that D21 is also injective.

2.2 Finite jw-axis eigenstructures

Let the jw-axis eigenspaces of ——sPEj-PA and —sPg+

P, be spanned by real [ g; ] and [ gl
2

It follows that there exist A; and Aj such that o(A;) C Q
and o(A;) C © hold, and

] , respectively.

a ] (=sI+A;), (15)

-
(—sPg + P,) [ [y ] = [ Ty ] (—sI +Aj). (16)

2.3 Stable eigenstructures
Denote the system matrices of P (—s)Pia(s) and

Py (—5)PE (s) as

~-sI+ A 0 B,
W12(8) = [ ——Cchl . AT —ClTDlz , (17)
pf,c, = BY DI,D;,
—sI+ AT 0 ct
W21 (S) = "BIBT —sl—-A —BlD21 . (18)
. Doy BY Cs Dy D
U1 [:Il
Let | Uz | and | U, | spanned stable eigenspace of
Us Us

Wi2(s) and Wai(s), respectively. There exist stable Ajz
and Ay such that

U,
12(s) | Uz | =
W()[U}

3

f_’l ﬁl
Wai(s) [ U, ] = [ U, ] (=8I + Az). (20)
A 0

Uy
Us | (=81 + Aa), (19)

From [11], we can obtain

LEMMA 1 Under the assumptions (A;) and (Ay). Then
S and S are nonsingular, where

S::[U1 T] T], Slz[ﬁl Tl T] (21)

3 Solvability Conditions

We are ready to state the main results of this paper.

THEOREM 1 Under the assumptions (A1) and (As),
the H® control problem for plant P(s) in (1) is solvable
if and only if the following statement holds.

(t) The following Riccati equation has a stabilizing
solution X, > 0,

(Ar — Bo B! DT,Cot)* Xo + X, (A, = Bra By DY, Cra)

+X.(BmBL, —-B2E5'BL) X +CH(I-D12 EL' DT,)C,y =0,

(22)
where Eyq := D D]g, and
A, = L,AU,, B,;:=L;B, (23)
B,y = LBy, Cp:=CiUy, (24)
(27 1 rf ] :=[Us T» T, (25

where T, By are given by (10), Dyy is given by (11), Ty
is given by (15), and Uy is gwen by (19), respectively.
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(¢2) The following Riccati equation has a stabilizing
solution Y, > 0,
Yr(l‘ir -

BrlbglEz—llérz)T + (4‘11' - Brlbg'lEg—llérz)Yr

4+Y(CLC—-CLER Crs)Y +B,y (I—D§E231D21)1?(31 =0,

26)

where Ez]_ = D21D%‘1, and

A, :=UFALT, B, :=UlB,, (27)
é,.z = C’zilg‘, 1'1 = U1 Cl, (28)

[I7 IF iT]":=[0 &, T]', (29

where T, C; are given by (13), Day is given by (14), Ty
is given by (16), and U, is given by (20), respectively.
(#43) p(XY) < 1, where

X:=LfTx.L,, Y:=LTY,L,. (30)

(4v)
UtyiUr2i > X19;Bn1 B X12i, (31)
Us1:Uz1i > X31,CE Cry Xaui, (32)
where X12i; Um,’, th' and Uzu sa.ti.sfy

—jw, I + AT CT Xi2:
[ ol 4 AT G ] [ iz ] =0, (33)

—jwiI + A, Bn Xo1i _
[ Cr2 Ny ] [ Upi | =9 (34)
where A,, By, Bna, Cn1, Cna are deﬁned by the fol-
lowing new plant as:

An ! Bnl Bn2
P.(s) = [ f;nu g"lz ] =] Cu| 0 Ny
n21 n22 an N21 0
(35)
with its matrices defined by

Ap:=A+ B BT X + ZYFZF,, (36)
Bui:=—ZLe, Bnpy:=B;—ZYFIN;,, (37)
Cpi:=—Fyp, Cpy:=(Co—NnLTX2)Z7', (38)
Z:=(I-YX)™, (39)
Fo = —E;'*(BYX + D5C), (40)
Lo := —(YCT + B, DL)E; 2, (41)
le = El_zl/zbszlz, (42)
Ny i= (g " D DR)T. (43)

Moreover, if the H*® control problem for plant P(s) in
(1) is solvable, then (An,Bn2,Cna) is stabilizable and
detectable.

Remark 3.1 Riccati equation (22) is of size n — (N0 —
p) — nj, where ny := Z]_l k; > p and n; are the di-
mensions of {0} and jw-axis eigenspaces of —sPg+ Pa,
respectively. Similar analysis can be given to Riccati
equation (22). Note that w; satisfyin ? 33) and/or (34)
are the invanant zeros of P, ;o (s ) and/or Ppa(s). It can
be shown such w; are also the invariant zeros of Py, (s)
and/or Py;(s). Therefore, all conditions in Theorem 1
can be checked easily by :solving two reduced-order Ric-
cati equations and checking static conditions related to
Jjw-axis zeros of P1,(s) and/or Py (s).

Remark 3.2 If assumption (A2) holds, from (10)
(11), (13) and (14), choose Voo = Vi, = [0 I, ]F
Voo—Vh—[ 0 I ] , We obtain Bz—Bz, D12—D12,
Cy = Cy, Dy = Dyy. If assumption (A3) holds, (As)
holds trivially, and Condition (iv) no longer exists. If
both assumption (A4;) and assumption (A3) hold, we can

choose Ly =U; = f;l = ﬁl = I,. Theorem 1 is reduced
to the results of the standard H* control problems [1].

To establish the relation of Theorem 1 with [3], [9],

in what follows, we obtain the explicit solution to the
QMIs with rank constraints in those papers.

LEMMA 2 Under the assumptions (A;) end (Ag), if
Conditions (:)—(iv) in Theorem 1 hold, then

(?) X, Fo and Niyj in (30), (40) and (42) satisfy

XA+ ATX + XB,BTX +CfC, XB;+CFD,,
Bg‘X + szCl szl)xz
~-FT
=[ | -Fe Malz0 ()
T
rank[ 3I+A;°°BLB X 13122]=n+1’, seCy,

(45)
which implies that Pn12(s) has no invariant zeros in Cy.
Moreover, Pn12(s) and Fi3(s) have the same finite jw-
azis invariant zeros, and (Aﬂ By.;) is stabilizable.

(#) Y, Lo and Nyy in (30), (41) and (43) satisfy

AY +YAT + YCTclY +B,BT YCf + 1911721
C,Y + Day Bl D21D21

= [ N ] [ -LZ, Nf]2>0, (46)
- Te, -
rank [ SI+A32'Y01 2! 1\%2:0 ] =n+p, s€Cy,
(47)
which implies that Py21(s) has no invariant zeros in C...
Moreover, Pni(s) and P31 (s) have the same finite jw-
azis invariant zeros, and (An, Cy2) is detectable.

4 Proof of Necessary Conditions

We briefly introduce the following steps in the proof
of the necessity of Theorem 1:
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Step 1 Prove Condition (¢) via the solvability of the
full information (FI) problem for P(s).

Step 2 Perform lossless factorization P(s) = O(s)
Pyp(s) to get a 2-block plant Pymy(s), where O(s)
is an inner matrix.

Step 3 Prove Conditions (i) and (24%) via the solvabil-
ity of the FI problem corresponding to Pimp(s).
This step is just a copy of Step 1.

Step 4 Perform the lossless factorization Pf,‘,,p(s)
= ¥T(s) * PT(s) to get 1-block plant P,(s). This
step is just a copy of Step 2.

Step 5 Prove Condition (iv) via the static solvability
conditions related to the jw-axis zeros of P,(s).

4.1 FI Problem for P(s)
S(il;ce the H* control problem for the FI case of P(s)
in (1

(48)

1 12

PF1(8)=[ A|B B, ]

is solvable, we have

LEMMA 3 Suppose the 4-block H™ control problem is
solvable. Then the FI H™ control problem for

A1‘ IBTIV Bf'z ] (49)

P, =
Fiv(s) Crll 0 Dy

is solvable, where A,, B,, are defined in (27), B,, is
defined in (24), and D1, is defined (11). Moreover,

A, | B,
Prarlo) 1= [ Cr Dlz ] (%0)

is a stabilizable realization and has no finite jw-axis in-
variant zeros.

Proof of Condition (i) of Theorem 1 is a direct con-
sequence of Lemma 3 and the result of standard H*>
control problem in [1].

Now we can construct the following Riccati equation
of size n, which will be used later.

LEMMA 4 Suppose the {-block H™ control problem is
solvable. Then
(A— BE*DL,C1)TX + X(A ~ BB D5, Ch)

+X(B1BT -B,E; BI)X+CT(I-D12 E* DT,)Cy =0,

(51)
has a solution
X, 0 0
X=ITX, L, =8"T| 0 0 057! (52
0 00
which yields
XT3y =0, XT=0. (53)

4.2 Lossless Factorization of P(s)

LEMMA 5 Suppose the {-block H>® control problem is
solvable. Then P(s) can be factorized as

P(s) = O(s) * Pemp(s), (54)

where

_ (")11 S @12 S
@(5) - [ 92153; @2258; }
Ar +B1‘ZF7' | Brl BrZEl_gl/z
» (85)

Cri+ D2 | 0 D12E1—21]2
-BI X, I. 0

-lep(s) = _Foo 0 N12

C2+DuBfX |Dyy O

where B, := —EZNBLX, + DLC,). And ©(s) = I
is a lossless matriz, i.e., ©~(s)0(s) = I, O(s) € RH™
and ©3;!(s) € RH®. Moreover, (A+ B, B¥ X, B,,Cy +
Dy, BY ) is stabilizable and detectable.

A+B,BTX | B, B,
,  (56)

According to Lemma 15 in [1], the solvability of H>
control problems for P(s) and Pipp(s) is equivalent with
the same controller.

4.3 FI Problem for P, (s)
Now we apply Condition () in Theorem 1 to

AT + XB,Bf | -FT C7 + XB,D§
Phas)= | BT 0 D,
Bj N 0

(57)
To this end, we have to study the 2. eigenstructure of
—SPE + PA with PE = Py

_ T T T T
Pyi= { AT XBB G S ] (58)
1 21
which yields
- SPE -+ PA = [ 'g XIBI ] (—SPE -+ PA), (59)

where Pg and P, are defined in (4). It follows that Vo
in (12) contains all the infinite eigenvectors of —sPg +
P,4. From (13) and (14), we obtain

s« _ [T CF
where Cy := Cy 4+ Dy BT X. From (59) and (16), we get
(—sPg+Pa)| Dl = | T | (<ol 4. (61)
Ty 0
By applying Lemma 4 to Pgnp(s), we know that

W(A+ B:BTX — B\DL, E;*C,)T + (A+ ByBT X
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—B DL, E;'Co)W + W(FL Fy — CTE;1Co)W
+By(I- DLE;Dy)BT =0 (62)
has solution W > 0 with
WT; =0, WT =o. (63)
Consider
Y(A - B, D} E;C,)T + (A- BiDL E;'Cr)Y
+Y(CFC,-CFE*Cy)Y + By(I - DH, E;; D3y )BT = 0.
Let Hy and Hw be the Hamiltonian matrices co(zfsr‘fls2

sponding to Riccati equations (64) and (62), respec-
tively. By direct calculation, we have

HW=[£ _IX]Hy['(I) )I(] (65)

-l W] e

Let

Therefore,

Y=Y ' =W(I+XW) =T +WX)"'W >0
(67)
is a solution of (64). Since I+ WX = (I -YX)™! =
Z >0, we get p(XY) < 1. Thus, Y = Z-'W. It yields
from (63) that Y73 = 0 and YT = 0. Then Y in (67)
can be represented as

5 Y, 0 07 . o
Y=58T| 0 0 0[S '=LTy,I,, (68)
0 00

which follows that Y,. > 0is a solution of (26). Moreover,
we can show that Y. is the stabilizing one. m]

4.4 Lossless Factorization of Pf., (s)
From (62), define G™ corresponding to Fe in (40) as

GL = —E;;*/*(C,W + Dy BY). (69)

which follows that GT, = LT ZT, where LZ is defined in
(41). According to Lemma 5, the lossless factorization

for PL () is
Pip(s) = ¥T(s) x P (), (70)

where U7 (s) is lossless matrix whose explicit form is
omitted for the brevity, and P,(s) is given by (35). Ob-
serve from Lemma 5 that (A, Bn2, Cna) is stabilizable
and detectable. Based on two lossless factorizations (54)
and (70), we have

THEOREM 2 The solvability of H* control problems
for 1)3(5) and P, (s) is equivalent with the same controller
(s).

4.5 Static Conditions Related to Finite jw-axis
Zeros

From Theorem 2, the H™ control problem for 1-block
plant P,(s) in (35) is solvable. Let s = jw; (i =1 ~ k)
be the invariant zeros of Ppi2(s) and/or P,z (s), ie.,
(33) and (34) hold. Condition (iv) is a direct conse-
quence of Theorem 6 in [4]. o

5 Proof of Sufficiency Conditions

We can first prove Lemma 2. Then, since P,(s) is
1-block plant, Pr15(8) and Ppa(s) have no invariant ze-
ros in Cy, according to Theorem 6 in [4], the matrix
norm conditions related to jw-axis zeros are satisfied
and two generalized Riccati equations have solutions of
zero matrices. Therefore, the H*® control problem for
plant P,(s) is solvable, so is for plant P(s) according to
Theorem 2. o

Finally, as to the parameterization of all H*® con-
trollers, it will be reported in [12].
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