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Abstract

Streit in [1] conjectured that the expected value
of the logarithms of the oufput sequence prob-
abilities of Hidden Markov Models (HMMs) can
be calculated from the integer moments of these
output sequence probabilities. Assuming the con-
iecture to be valid, we can show how to calcu-
late a probabilistic distance, the Kullback-Leibler
{KL) number, between Hidden Markov Models in
a simple way from their parameters. Since the
correciness of the conjecture of Sireit is difficuit
10 check for general HMMs, it is specialized to the
case of Bernoulli processes, and the conjecture is
shown to be incorrect. Using the Central Limit
Theorem, the conjecture can be modified and ver-
ified {o-be correct for Bernoulli processes such that
the XI. number for Bernoulli processes can be eas-
ily calculaied indirectly. Unfortunately the exten-
siont of the calculation of the KL number between
- ‘wo general HMMs using the modified conjecture
is still computationally very difficult, nevertheless
the results indicate that there may be an indirect
#ny of calculating the KL number between HMMs.

! Introduction

Ehe Kuilback-Leibler (KL) number known in the
“terature also as the discrimination information,
‘he directeq divergence or the I-divergence, is a
#eful tool in statistics [2) and signal process-
%% (e.g. [3]) as a probabilistic: distance between

HMMs. It can be employed in several areas, for
example the approximation of HMMs by HMMs
which have a lesser number of states. However,
there is no simple way of calculating the KL num-
ber between discrete-time HMMs which have a -
nite number of states and outputs, except by sim-
ulations, as is discussed in [5].

In [1], Streit made the observation that the log-
arithms of the output sequence probabilities of -
HMMs are approximately Gaussian. Based on
this observation, he conjectured that the expected
value of the logarithms of the output sequence
probabilities of HMMSs can be calculated from the
integer moments of these output sequence proba-
bilities, in & manner described below. If his conjec-
ture is true, then, as we show in the next section,
it can be used to calculate the KL number between
HMMSs using a simple formula. Thus it is impor-
tant to check the correciness of this conjecture,
which in turn depends on a second conjecture with
a Central Limit Theorem flavour. This second
conjecture has also not been proven in the litera-
ture. In the third section, in order to check the cor-
rectness of the main conjecture it is specialized to
Bernoulli processes where Central Limit Theorem
ideas are applicable and it is shown that Streit’s

+ conjecture needs modification. The fourth section

“ochastic processes, Hidden Markov Models (HMMs)

-::‘; wide applications [4] and it is desirable to
“1¢ & simple formula for the KL number between
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is devoted to the modification of Streit’s conjec-
ture so that the KL number between Bernounlli pro-
cesses can be calculated indirectly. Although the
extension of this modification to general HMMs is
¢omputationally difficulf, it is still important to
show the possible existence of an indirect way of
caleulating the KL number between HMMs. '

2 The calculation of the KL number between
HMMs using Streit’s conjecture

In this section, we will show that it is possible o
calculate the KL number between HMMs if the



conjecture made in {1} is trwe. For this purpose
we will restate the results of the asympiotic anal-
ysis of Sireit’s algorithm to calculate the integer
momnents of output sequence probabilities, which
is given in [6].

A discrete-fime Hidden Markov Model which
has a finite state set S = {1,..., N} and a finite
output set O = {1,...,M} can be parametrized
by A = (A, B,II} where the entries of the state
transition probability matrix A are given by

ars = P{X(t+1) = s | X(t} = r}
| 2.1)

Here X(t) for £ =1,2,... denotes the state of the
HMM at time f. The output probability matrix
B = [bpe]arxn is defined by

by = P{O(%) = k | X(¢) =1}
r=1,...,N, k=1,....M .(23)
where O(t) for t = 1,2,... is the output of the

HMM at time &. The initial state probability vec-
tor I = [7!',]1,( N is given by

7= P{X(1) =1}

rns=1,...

. (2.3)

H the state transition probability matirix A is

_ irreducible, then the asymptotic behaviour of the

HMM can be analysed by selecting the inifisl state

probability vector I as the left eigenvector of 4

corresponding to the eigenvalue 1 such that the
entries of II add to 1.

Given an sutput.sequence Op = (0(1}),..
such that O(¢) € 1,...,M for t = 1,, , the
probability of this output sequence using the proh-
ability measure P()(.) defined by the parameters

- of the HMM X = (A, B,I) which lias N states
and M outpuis on the set of all output sequences
of length T', can be calculated as

PTN0Or) = OBOW))A...AB0(T-1))
XABOD) Ly (24

where 1y is a N dimensional row vector of ones,

(-) denotes the transpose of (-), and B(O(t)) is a
diagonal matrix defined by

B(O(t)) = diag { bogyy,15--- s bog,v }
for O(t)=1,...,Mand t=1,...,T.

For the sake of simplicity, the superscript (T')
will be dropped in PT)(.) in the following sections,

r=l...

“{2.5)

Given two HMMs A = (4@, B® 1)) and
Aj = (A, BU) 1)) which have the same out-
put set O, and whxch have N; and N; states, re-
spectwely, the KL number Ip{As]A;) Between the

,N.

probability measures of these HMMSs on the set of
all output sequences of length T, is defined by

E: {log (R85} P <<P

Flse
(2.6)
where P; and P are the probability measures de-

Ir(AffA) = {

+o0

- fined by the parameters of the HMM J; and A, re-

- O(T))
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spectively. Here E; is the expectation with respect
to the probability measure P; and P; << P; means
the probability measure P; is absolutely continu-
ous with respect to F. A suﬂiciez.lt condition for
absolute confinuity is that A("),A(J), B@ and BWH
are all positive matrices. In fact, the KL number
IT(JL if]A;) can be expressed as the difference be-

tween the entropy, Hr();), of the HMM J; and
the relative entropy, Hr(A; | A;), of the HMM As
with respect o the HMM i

IT(A"“AJ) = "‘HT(-XJ + BT(A I A.) (2 7)

where the entropy, HT(}\ ), and the rela.twe en-
tropy, HT(A, | i), aze given by

HO) --Z P(Or) og(PA0n)) (23)

Hr(hi [ A} = —z P{Or)log(P;(0r)). (2.9)
Orp

The asymptotic XL number betweenr HMMs );
and A; per sample, which we will simply call the
asymptotic KL number, I(Ai[A;) is defined by

. Ir(AdllAs)
jim TR (2a0)

—HG)+ H(A; | A) (2.11)

where the entropy rate of the HMM X; , H{}\;) is
given by

I(2llAz)

Hp(X)
T

. 1
Il,_lflmi..' P{Or} as. P; (2.13)

lim

T=0co

(%) (2.12)

where a.3. P; means almost sure convergence with
respect to the probability measure P;. Here (2.13)
is known as the Shannon-McMillan-Breiman The-
orem and also as the Asymptotic Equipartition
Property {AEP) [7]. The relative entropy rate of
the HMM J; with respect to the HMM A, is given-

by

Hr(d; | A0)
T

1
=Th_1£° 7 P;(Or) as. P; (2.15)

H(\j | %) = Jim (2.14)



where 2 sufficient condition for the limit in (2.15)
to exist is that the matrices A%, AW, B and
BUY) are positive matrices, as shown in [8].

. In [1], Streit observed that the random variabies
Jog(Pi(Or}):and log(P;{Or)) are asymptotically
Gaussian, and using this observation he comjec-
tured that the expected values of these random
variables can be calculated spproximeately from
any two of the integer moments. of the random
varizbles P;(Or) and P;(Or), for finite T. In
[1], an algorithm fo calculate these integer mo-
ments and some examples whick support the con-
jecture are given. Note that if his conjecture is
true, then the emtropy; Hr{):), and the relative
entropy, Hr(A; | A;), for finite time can be calcu-
lated approximately from (2.8} and (2.9). Then
the XL number between HMMs can be calculated
using the asymptotic analysis of Streit’s algorithm
to calculate the integer moments of the random
variables P;(Or) and. P;(Or) as given in [6].

In [6], the algorithm $o calculate the integer mo-
ments Ml,-,-(k, T) of the random variable P;(O7)

giver in (1], is reformulated in a metrix algebra
framework as :

Mk T) = EA{P(0r)F}  (2.16)

= 1z 21 (2.17)

where N is equal to N;N¥ and zr is computed

from the recursive algorithm

Zipl = Eﬂ(k) Zty £= 2, e ,T (2.13)

where Fj;(k) is a N X N dimensional square matrix

given by
Fii(k) = Cy(k) Az(k)

The matrix Cj;(k) is a diagonal matrix of the same
dimension as Fji{k) and its diagonal entries are
given by I'(r;,7j,...,75, ), Where 7; = 1,...,N;
and 75, = L,...,N; for v = 1,...,k in lexico-
graphic order. T{ri7;,...,7;,) is defined as

(2.19)

M koo
T(risTiyyeesTip) = E bg?‘; { H bgfa?,-,, } .
I=1 r=1
; . (2.20)
The matrix Aj;(k) is defined by
Aji(k) = 4D @ (41l (2.21)

where @ denotes the Kronecker product between
mairices and A denotes the k-fold Kronecker
Product of the matrix A by itself. The algorithm
in (2.18} is initialized by

2 = Cu(k) (II“’ ® (IMH).  (22)
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I the matrices' A®, AU), B® aud BU) are pos-
itive matrices, then, as shown in [6], the moments
M;i(k,T) can be approximated as

| Mji(k,T) = p7(Fii(k) lyzya |

in the sense that 7 log(Mj:(k, T')) goes to p(Fy;(k))
as T goes to infinity. In {2.23), p(Fji(k)) denotes
the eigenvalue of Fj;(k) which has the maximum
modulus and x and y are the corresponding right
and left. eigenvectors of Fj;(k) such that ¢y =1
Under the assumption that the parameter matri-
ces of the HMMs A; and }; are positive the matri-
ces Cji(k) and Aj(k) are positive matrices, hence
the matrix-Fj;(k) is also positive. Thus the eigen-
value p{F;;(k)) and tlie entries of the eigenvec-
tors = and y are positive and real by the Perron-
Frobenius Theorem [9].

Streit conjectured in [1] that the random vari-
able log{P;{Or)) is approximately Gaussian for
finite time and hence the integer moments of
P;(O7) can be used to calculate the expected value
of the random variable log(P;(O7)) =8

Br(y|N). = Ei{log(Pi(0r)) |
~ 2log(M(1,T)) 5 log(M5(2,T)).
(2.24)

|

(2.25)

(2.23)

Then from (2.23) and (2.24), it follows that

By | 3) 7B 1N
{ Tlog ( P(F5(L)’

2(F:(2))
+ constant} ‘

o(Fji(2))

The entropy rate of the HMM A; can be calculated
similarly and the asymptotic KL number between:
the HMMs ); and A; can be found as

]1/2 )

2
J [ p(Fii(2))
(2.26)
using Streit’s conjecture,

p(Fie(2))

The validity of this derivation of the asymptotic
KL number between HMMs depends on the cor-
rectness of Streit's conjecture, However this con-
jecture is a special case of a conjecture which hasa
Central Limit Theorem flavour. However the an-
thors are aware of no Central Limit Theorem style
of results for discrete time HMMs which have a
finite number of states and outpuis. Hence the

= jim
1

—

T

Teroo

p(Fi(L))
p(Fii(1)}

I(dlAs) = '105 ( {



validify of this conjecture can be understood bet-
ter by specializing it to Bernoulli processes where
there are sufficient tools to analyse this conjecture.

3 The analysis of Streit’s conjecture using
Bernoulli processes

Bernoulli processes are a special.class of HMMs
where the state set and the output set are the same
and the state transitions do not depend on the
previous state, This means that all columns of
the msirix A are identical, and the matzix B is
the identity matrix,

Given two Bernoulli processes A; = ()} and
= (1)} where
H,(.i} = Pi{O()=r} 7= SN, W,
ol = p{o@)=r} r= 1,-...,N, Vi,
(3.1)

the integer moments of P;{Op) with respect to the
probability measure P;, are given by

Mj.-(fc_,T) = E{Pi(Or)*} .
= (im"(ﬂiﬂ)") . (3.3)
r=1

Then using (2. 14) and (2.24), the relative entropy
of the Bernoulli process A; derived using Streit’s

conjecture H(}; | X;) can be found as

| 0 ¥ p
(3.4)

which is equivalent to (2.26) for Bernoulli pro-
cesses, If Streit’s conjecture were corzect, then the
direct calculation of the KL number for Bernoulli
processes (which is possible),would have to yield
a result equal to thaf obtained via the indirect
calculation of the KL pumber using Sireit’s con-
jecture given in (3.4). However if the relative en-
tropy is calculated directly from the definition for
Bernoulli processes as

T
HQz L N) % 21 E; {log (F;(0()))}
=

3o (1),

r=1

it

(3.5)

32)

‘To understand why the conjeciure is wrong, we

should look more closely at the Central Limit Ths
orem (CLT) for Bernoulli processes.- This is don@‘
in the next section,

4 Modification of Streit’s conjecture

Although Sireit’s conjecture seems reasonable, ji
yields the wrong answer for the calculation of KT,
number for Bernoulli processes, The CLT fo;‘
Bernoulli processes {10 says that ‘

_log (F; (0r)) = z

(41)-
where z iz & normal random variable with mean
i and variance o2/T such that p and o2 are in-

}:1"8 (o) S

t_-:.l

dependent of T. Here ~= means copvergence in

law, ie. if 27 £, z, then the distribution of zp
converges to the distribution of z asymptotically.
In other words, (4.1} can be interpreted as saying

log (P,(OT)UT) is approximately Gaussian, On
the other hand, Streit’s conjecture was

log (Py(0r)) =y

where 4 is a. Gaussian mdnm varizble whose
mean is T and variance &2 T such that & and
& are independent of T, The problem with this
interpretation of the CLT is that since the mean
of y diverges asymptotically, its mean cannot be
calculated using the integer moments of P;(Or).

(4.2)

A natural question which arises in the light of
these facts, is whether it is possible to calculate

‘the KL number using the moments of P,(O7)Y/T

then » different expression for the relative entropy

is obtained. Thus this shows that Streit’s conjec-
ture is not correct. Hence the formula to caiculate
the XL number between HMMs in (2.26) is wrong,

aad P;(O7)/T. The answer is “Yes”. The integer
moments of the random variable [P;(Or)]H/T with
respect to P; can be found as

Mu(k,T) = E{Pfor)/T}

T

(i‘ﬂ@( ) . (43)
r=1

By virtue of the near log-normality of [P;{Or)]M/T
for finite but large T, it follows that the mean of
log{ P;(Or)HT) can be calculated approximately
as; '
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5 {1o8 (£y(0)7)}
~ 2log(Mu(1,T)) - %log(ﬂj,-@, )

Tl [ 21{[1 II(') (]IS'JJ)UT ]2
a2 Dg == =
V =N, 16 (mid

(4.4)

where the error goes to zero as T goes to infinity.
It can be shown using L'Hopital’s rule that the
right hand side of (4.4} converges to the relative
entropy rate of the Bernoulli process A; as

( RHS of {4.4) )
r=1L

(4.5)
Hence the KL number between Bernoulli processes
can be calculated from the integer moments of
PAOT)YT and P;(O7)/T, but not from the in-
teger moments of P{Or) and P;(Or). Unfortu-
nately, to extend this result for HMMs is compu-
ta.tionally very difficult since the determination of
a recursive formula to calculate the integer mo-
ments of P(OT)"/T and P; (OT)U T does not seem

possible.

& Examples

. In this section, we will consider some Bernoulli
processes to show the difference the between the
relative eniropy rate calculations using Streit’s

- conjecture, the modified conjecture and the ex-
act caiculation. For Bernoulli processes, the Streit
conjecture gives the approximate expression in
(3.4) whereas the modified conjecture gives the
approximate expression in {4.4) and the exact
calculation of the relative entropy is (3.5). For

the Bernoulli processes ) = {0.3,0.4,0.3} and
ow) = [0.7,0.1,0.2], these expressions become

-1.51299, T =35
(3.5) = —-1.51087
(5.1)

For the Bernoulli processes O = [0.3,0.6,0.1)
and I = [0.7,0.1,0.2], they become

~165391, T=5
(3.4) = —1.54999, (4-4)={ ~1.64951, T =100

(3.5) = —1.6495.

5.2
As already remarked, the right hand side of 54.4;
is asymptotically equal o (3.5), so that for a large
T, (44) is very close to (3.5) On the other hand,

~-97-

=P H(A [ M) = 2 I log (1) .

the difference between (3.4) and the exact relative
entropy in (3.5) depends on the para.meters of the
Bernoulli processes.

6 Caﬁdusion

A simple way of calenlating the Kullback-Leibler
number between Hidden Markov Models using
Central Limit Theorem type of results has been in-
vestlgated The motivation was a conjecture made

in {1] which allows the calculation of the KL aum-
ber using the integer moments of the output se-
quence probabilities of HMMs, However by spe-
cializing the conjecture it has been shown that the
conjecture must be modified in order to calculate
the KL number between Bernoulli processes. Un-
fortunately, using the new conjecture the calcula-
tion of the KL number between HMMs appears to
be computationally very difficult.
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