IDENTIFICATION OF DYNAMIC SYSTEMS FROM NOISY DATA: THE CASE $M^* = N - 1$

B.D.O. Anderson², M Deistler³

1 Support by the Austrian "Fonds zur Förderung der wissenschaftlichen Forschung" "Schwerpunkt Angewandte Mathematik" (S32/02) is gratefully acknowledged.
2 Dept of Systems Eng., RStPhysE, Australian National University, G.P.O. Box 4, Canberra, A.C.T. 2601, AUSTRALIA
3 University of Technology Vienna, Institute of Econometrics, Operations Research and Systems Theory, Argentinierstraße 8, A-1040 Vienna, AUSTRIA

ABSTRACT:
Linear dynamic errors-in-variables (or factor-) models in the framework of stationary processes are considered. The noise process is assumed to have a diagonal spectral density. We analyse the relation between the (population) second moments of the observations and the system- and noise characteristics; of particular interest are the number of equations (or the number of factors) and a description of the set of all systems compatible with the second moments of the observations. In the present paper emphasis is put on the case which can be reduced to a single factor. The problems considered arise in the context of identification and preclude estimation.

Key words: identification, errors-in-variables, linear systems

1 Introduction

In identification of linear systems the "main stream" approach to noise modelling is to add all noise to the outputs (assuming orthogonality), or to the equations (which is the same for our analysis). In econometrics these models are named errors-in-equation models. Here we are concerned with the case where in principle all variables may be contaminated by noise. Such models are called errors-in-variables (EV) or latent variables models, or using a slightly different but equivalent formulation factor models. They have been analysed and used in econometrics, psychometrics, statistics and system engineering (see e.g. [1]-[7]).

EV modelling is appropriate for instance:

(i) If we are interested in the true system generating the data (rather than in prediction or in encoding the data by system parameters) and we cannot be sure a priori that the observed inputs are not corrupted by noise.

(ii) If we want to approximate a high dimensional data vector by a relatively small number of factors.

(iii) If we have no sufficient a priori information about the number of equations in the system or about the classification of the variables into inputs and outputs; then we have to perform a more symmetric system modelling, which in turn demands a more symmetric noise model.

The system considered is of the form

$$w(z)h_z = 0$$ \hspace{1cm} (1.1)

where h_z is the n-dimensional vector of latent (i.e. in general unobserved) variables, z is used for the backward-shift on z (i.e. $z(t) \mid t \in Z = (2, \ldots, \infty)$) as well as for a complex variable and

$$w(z) = \sum_{j = -\infty}^{\infty} W_j z^j ; \ W_j \in \mathbb{R}^{m \times n}$$ \hspace{1cm} (1.2)

We will call $w(z)$ the relation function of the exact relation (1.1) (compare [6]). Clearly, systems of the form (1.1) are symmetric in the sense that we need no a priori classification of the variables h_z into inputs and outputs and no a priori information about causality directions; without restriction of generality we will assume that $m \leq n$ holds and that $w(z)$ contains no linearly dependent rows; and in general m is not known a priori.

The observed variables are of the form

$$x_t = h_t + u_t$$ \hspace{1cm} (1.3)

where u_t is the noise vector.

Throughout the paper we will assume:

(i) $(x_t), (h_t)$ and (u_t) respectively are [wide sense] stationary processes [with real valued components and] with spectral densities Σ, $\hat{\Sigma}$ and D respectively. [In addition limits of random variables are understood in the sense of mean square convergence].

(ii) $E h_t = E u_t = 0$

(iii) $E u_t u_t^* = 0$

and finally

(iv) D is diagonal

For a discussion of assumption (iv) see e.g. [7] and [9]. In our analysis, unless the contrary is stated explicitly, the frequency ω will be kept fixed (i.e. we study (1.1) with $z = e^{i\omega t}$). In this sense Σ, $\hat{\Sigma}$ and D are considered as (constant) Hermitian matrices rather than as spectral densities. From (1.3) we have

$$\Sigma = \hat{\Sigma} + D$$ \hspace{1cm} (1.4)

Clearly (1.4) may also be interpreted as coming from a (static) relation between \mathbb{C}^n valued random variables z, t and u of the form

$$z = t + u ; \ W_t = 0, \ W \in \mathbb{C}^{m \times n}$$

$$\Sigma = E z z^* ; \ \hat{\Sigma} = E \hat{z} \hat{z}^* ; \ D = u u^*$$ \hspace{1cm} (1.5)

where \cdot^* denotes the conjugate transpose.

In this paper we will analyse the relation between the second moments of the observations Σ and the system and noise characteristics $w(z)$ and D. Such an analysis is a necessary first step for an analysis of the properties of estimation and inference procedures. The main questions are (compare Deistler and Anderson 1989):

(a) Find the maximum number, m^* say, of (linearly independent) rows of $w(z)$ among the set of all $w(z)$ compatible with given Σ. Sometimes we also use the symbol $mc(\Sigma)$ for m^* if we want to make the dependence of Σ explicit.

(b) Give a description of the set of all $(w(z), D)$ compatible with given Σ; in addition describe the subsets corresponding to different numbers of linear relations m.

(c) Describe the set of all Σ corresponding to a given m^*, $n > m^* \geq 1$.

Thus the problems we consider are (a) to find the (maximum) number of equations for given Σ, (b) to describe the set of all observationally equivalent (based on second moments only) signal and
noise characteristics and (c) to describe the set of spectral densities corresponding to a given \(m^* \).

There is no general solution available for these problems up to now. In this paper, the main emphasis will be on the case of general \(n \) and \(m^* = n - 1 \), i.e. on the case which can be modelled by a single factor. (For the "opposite" case, namely the one equation corresponding to a given noise characteristics and (c) to describe the set of spectral densities now. In this paper, the main emphasis will be on the case of general \(m^* = n - 1 \). We characterize the spectral densities corresponding to \(m^* = n - 1 \) and give a complete answer to (b) for this case. Thereby we give a rather complete analysis of the case \(m^* = n - 1 \).)

For the static case, where \(s_i \) and \(w_i \) are (real) white noise processes (and thus \(\Sigma(\lambda) \) and \(\Sigma(\lambda) \) are constant with real entries) and where \(w(\lambda) \) is constant with real entries, this problem has a long history, beginning with the work of Charles Spearman, see e.g. [11], [12], and [6]. For the dynamic case see [1] and [3]. The cases \(n = 2 \) and \(n = 3 \) have been treated in detail in [4], [5].

The paper is organized as follows: In section 2 we are concerned with question (b) above, without giving a complete answer. Thereby we give a complete answer to (b) for this case. Throughout the paper we use the following notation: If \(A \) denotes a matrix, \(\text{rk}(A) \) and \(\text{ker}(A) \) will denote its rank and its kernel respectively; by \(\text{dim}(A) \) and \(\text{dim}(A) \) we mean the rank and the dimension of this matrix, respectively.

2 The Solution Set - Some General Properties

Clearly relation (1.1) implies

\[
\sigma_j(\lambda) = 0
\]

(1.2)

If \(\Sigma \) and \(\Sigma \) are known and if we want to explain by the system as much as possible [in the sense that for given \(\Sigma, \Sigma \) is chosen as large as possible] and if we have no additional a priori information, then by (2.1), the rows of \(w \) are defined as a basis of the left kernel of \(\Sigma \); thus \(w \) is unique up to basis change.

Clearly in general only \(\Sigma \) is known and thus equation (1.4) will be the starting point of our analysis. Remember that \(\Sigma, \Sigma \) and \(D \) are nonnegative definite and that \(\Sigma \) is singular and \(D \) is diagonal. In view of this, \(\Sigma \) and \(D \) are called feasible for given \(\Sigma \) if

\[
0 \leq \Sigma - D \leq \Sigma
\]

(2.2)

holds, where \(\Sigma - D = \Sigma \) is singular and \(D \) is diagonal. As easily can be shown, for every \(\Sigma \geq 0 \) a feasible decomposition (1.4) exists and to every feasible decomposition a corresponding \(\Sigma \) representation exists. To avoid having to consider a number of special cases we will assume unless the contrary is stated explicitly that

(v) \(\Sigma \geq 0 \)

(vi) \(\sigma_j(\lambda) \neq 0 \), \(i, j = 1, \ldots, n \)

and

(vii) \(\sigma_j(\lambda) \neq 0 \), \(i, j = 1, \ldots, n \)

hold.

Here \(\Sigma = \Sigma^{-1} \) and as a general rule if \(\Sigma \) is a matrix, its \(j \)-entry is denoted by the corresponding lower case letter \(\sigma_j \).

For given \(\Sigma \), a vector \(\sigma \in C^n \) is called a solution if there exists a feasible \(\Sigma \) satisfying

\[
\Sigma = 0
\]

(2.3)

The set of all solutions corresponding to a given \(\Sigma \) is called the solution set \(L \) of \(\Sigma \). Analogously we define \(D \) as the set of all feasible matrices \(D \) corresponding to \(\Sigma \). Since \(L \) is the union of linear spaces of dimension greater than zero, we may find a normalization useful. In most parts of the paper, the first component of \(\sigma_j \), \(j \)-th is normalized to one. In view of this, we define the solution set \(L \) by

\[
L = \{ \sigma \in C^n_{\geq 0} \mid (1, x) \in L \}
\]

(2.4)

Let us define the matrix \(S = (S_{ij} : S_{ij}^{-1}) \), \(i, j = 1, \ldots, n \) and let \(s_j \) denote the \(j \)-th row of \(S \). Now it is easily seen from

\[
s_j, \Sigma = (0, \ldots, 0, S_{ij}, 0, \ldots, 0) = s_j(D)
\]

that \(s_j \) is the solution (with first component normalized to one) corresponding to the \(j \)-th elementary regression, i.e. to the case where all components of \(s_i \), except for the \(j \)-th, are assumed to be observed free of noise; the noise covariance matrix of the form

\[
D_j = \text{diag}(0, \ldots, 0, \sigma_j, 0, \ldots, 0)
\]

The vector \(s_j \) will be called the \(j \)-th elementary solution. Since the first elementary solution \(s_1 \) always exists, no matrix \(\Sigma \) is excluded by the normalization \(s_1 = 1 \). However, the kernel of \(\Sigma \) may be orthogonal to \((0, 0, \ldots, 0) \) and in this sense the normalization may be a restriction of generality. This situation can not occur in the case \(m^* = n - 1 \) since (vii) implies that every row of the corresponding \(\Sigma \) (which has rank 1) can be expressed as a linear combination of every other row. Clearly elementary solutions can also be defined for singular matrices \(\Sigma \). They correspond to the projection of the \(j \)-th component in \((1, \ldots, 1) \) on the space spanned by all other components. For the following see also [10].

Now, let us state some useful lemmas.

Lemma 2.1 Let \(\Sigma \geq 0 \) (may be singular). If the \(n \)-th row of \(\Sigma, \sigma_n \), is linearly independent from the other rows \(\sigma_1, \ldots, \sigma_{n-1} \) of \(\Sigma \), then the \(n \)-th elementary regression gives a noise covariance matrix \(D \) of the form

\[
D_n = \text{diag}(0, \ldots, 0, \sigma_n^{(n)}) \quad \text{(2.4)}
\]

where \(\sigma_n^{(n)} > 0 \) and where \(\text{rk}(\Sigma - D_n) = \text{rk}(\Sigma) - 1 \) holds. If \(\sigma_n \) is linearly dependent on the other rows, then the noise covariance matrix of the \(n \)-th elementary regression is zero.

Proof The proof is straightforward and can be seen from projecting the \(n \)-th component of \(\sigma \) (see 1.5) on the linear space spanned by the other components of \(\sigma \).

Lemma 2.2 Let \(D = \text{diag}(d_{ij}) \) be feasible and let \(d_{ij}^{(i)} \) correspond to the \(i \)-th elementary regression. Then

\[
0 \leq d_{ii} \leq d_{ii}^{(1)} \quad \text{(2.5)}
\]

Proof Without restriction of generality, take \(i = 1 \); let \(D = A + B \); where \(A = \text{diag}(d_{11}, \ldots, d_{nn}) \) and \(B = \text{diag}(0, d_{22}, \ldots, d_{nn}) \). First note that for \(d_{11} > d_{11}^{(1)} \), the matrix \(\Sigma - A \) would not be nonnegative definite. To see this consider

\[
\det(\Sigma - A) = (s_{12} - s_{11}) \cdot f_1(\Sigma) + f_2(\Sigma) \quad \text{(2.6)}
\]

where \(f_1 \) and \(f_2 \) depend only on \(\Sigma \) and where

\[
f_1(\Sigma) = \det \begin{bmatrix} \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \ddots & \vdots \\ \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix} > 0
\]

(2.7)

holds. Thus \(\det(\Sigma - A) \) is zero if and only if \(d_{11} = d_{11}^{(1)} \), and it is negative for \(d_{11} > d_{11}^{(1)} \).

Now \(\Sigma - D = \Sigma - A - B = C \geq 0 \) would imply \(B + C = \Sigma - A \geq 0 \) which is a contradiction for \(d_{11} > d_{11}^{(1)} \).

To prove the last statement, perform the \(j \)-th elementary regression for \((\Sigma - D) \); since all elements of \(s_i \) are unequal to zero by (vii), \(s_i - (\Sigma - D) = 0 \), the \(j \)-th row of \(\Sigma - D \) is linearly dependent on the other rows of \((\Sigma - D) \). Hence by Lemma 2.1, and diagonal matrices \(\Sigma \) for which \(0 \leq \Delta \leq \Sigma - D_i \) has \(\Delta = 0 \). Equivalently, the last statement of the lemma is proved.

For fixed \(\Sigma \), the relation between \(L \) and \(D \) is given by

\[
\Sigma \Sigma = \Sigma D \quad \sigma \in L, \quad D \in D
\]

(2.8)

In order to further investigate the solution set, let us connect two points, \(\sigma, \psi \in L \) by the complex line

\[
\alpha \sigma + (1 - \alpha) \psi, \quad \alpha \in C
\]
The question then is for which \(\alpha, \alpha \neq (1-\alpha) \gamma \in \mathbb{L} \) holds. Note that

\[
\alpha + (1-\alpha) \gamma = \alpha + (1-\alpha) \mu \gamma
\]

where \(x, y \in \mathbb{L}, z = 1 \) and \(y \) and \(y \) correspond to \(x \) and \(y \) respectively; \(D \) is diagonal and the unknown variable in (2.9). Clearly \(\alpha + (1-\alpha) \gamma \in \mathbb{L} \) and only if there is a \(D \) satisfying (2.9), \(D \geq 0 \) and \(\alpha + (1-\alpha) \gamma \in \mathbb{L} \).

First consider the case \(x = s_1, y = s_1, j > 1, D_1 = D_1 \) and \(D_2 = D_2 \), i.e. we investigate the real plane given by the first and the \(j \)-th elementary solution. Then the first element in the second equation in (2.9) is of the form

\[
\alpha d_{11}^{(j)} = d_{11}
\]

and the \(j \)-th element gives

\[
(1-\alpha) s_{jj} d_{jj}^{(j)} = (\alpha s_{jj} + (1-\alpha) s_{jj}) d_{jj}
\]

which gives

\[
\frac{1}{1 + \alpha d_{jj}^{(j)}} d_{jj}^{(j)} = d_{jj}
\]

By Lemma 2, \(d_{jj}^{(j)} \geq 0 \) must hold for every feasible \(D \). Also note that \(s_{jj} \cdot s_{jj} > 0 \); thus (2.10) and (2.11) imply \(\alpha \in [0,1] \). Put

\[
d_{ii} = 0 \text{ for } i \neq 1, i \neq j
\]

then such a prescription for \(D \) satisfies (2.9) and \(D \geq 0 \) for every \(\alpha \in [0,1] \). In order to show that a \(D \) given by (2.10) is feasible for every \(\alpha \in [0,1] \), it remains to show that \(\mathbb{S} - D \geq 0 \) holds. Note that for the \(j \)-th elementary regression \(d_{jj}^{(j)} \) is the unique solution of the equation

\[
det(\mathbb{S} - \text{diag}(0, \ldots, 0, d_{jj}, 0, \ldots, 0)) = 0
\]

in the variable \(d_{jj} \in \mathbb{R} \). This is a direct consequence of the fact that (2.13) is a linear equation with a positive coefficient for \((s_{jj} - d_{jj}) \) (compare 2.8). Now performing the \(j \)-th elementary regression for \(\mathbb{S} - \alpha D_1, \alpha \in (0,1) \) we see that the corresponding noise covariance matrix is diag(0, 0, \ldots, d_{jj}, 0, \ldots, 0) with \(d_{jj} \) given by (2.11) and thus \(\mathbb{S} - D = (\mathbb{S} - \alpha D_1) - \text{diag}(0, \ldots, d_{jj}, 0, \ldots, 0) \geq 0 \).

Let us consider the set

\[
F = \{ \sum_{j=2}^{n} \beta_j s_j \mid \sum_{j=2}^{n} \beta_j = 1, \beta_j \in \mathbb{C} \}
\]

For every \(y \in F \cap \mathbb{L} \) we can choose a corresponding feasible \(D \) with \(d_{jj} = 0 \). Thus, for \(z = s_1, y \in F \cap \mathbb{L} \), we have (2.10) and thus \(\alpha \in [0,1] \). Clearly, here, in general not every \(\alpha \in [0,1] \) gives a solution.

In an analogous way as before we proceed in the case \(x = s_1, y = s_j, j > 1, k \neq 1, k \neq j \). Then from (2.9) we obtain

\[
\alpha_{jk} d_{kk}^{(k)} = (\alpha_{jk} + (1-\alpha) s_{jk}) d_{kk}
\]

for the \(k \)-th equation and an analogous term for the \(j \)-th equation. Again we put \(d_{ii} = 0, i \neq k, i \neq j \). Equations (2.9) then are equivalent to

\[
\frac{1}{\alpha} - 1 = \frac{1}{\alpha} - 1 = \arg \alpha_{kk} - \arg s_{jk}
\]

which in turn is equivalent to

\[
\alpha s_{jk} = (\alpha) s_{jk}
\]

Using the same argument as above, we can show that \(\mathbb{S} - D \geq 0 \) holds. Now let us discuss condition (2.16). It describes a real curve in the real plane \(\alpha s_{jk} + (1-\alpha) s_{jk}, \alpha \in \mathbb{C} \). We may distinguish between three cases:

1. If \(\frac{\alpha s_{jk}}{1-\alpha} > 0 \) holds, then (2.16) is equivalent to \(\alpha \in [0,1] \). i.e. the solutions are the part of the line connecting \(s_{jk} \) and \(s_{kk} \) which is between these points.
2. If \(\frac{\alpha s_{jk}}{1-\alpha} < 0 \) holds, then (2.16) is equivalent to \(\alpha \in [1,\infty) \cup (0,\infty) \). then the solutions are the part of the line connecting \(s_{jk} \) and \(s_{kk} \) which is outside of this point.
3. If \(\frac{\alpha s_{jk}}{1-\alpha} \) is not real, then the solutions corresponding to the set of all feasible \(\alpha \) are an arc of a circle.

The Spectral Densities of the Observations for the Case \(m^* = n - 1 \)

In this and in the next section we give a complete analysis of the case \(m^* = n - 1 \), i.e. the case which can be described by one single factor:

We give a characterization of \(\Sigma \) in this case, a description of the set of all \(\Sigma \) corresponding to \(m^* = n - 1 \) and finally a description of the solution set (for given \(\Sigma \), also in terms of different coranks \(m \)). Part of the results have been available for the static case for a long time (see e.g. [6]). For the dynamic case 3 case see [6]. The next theorem gives a characterization of the case \(m^* = n - 1 \).

Theorem 3.1 For \(n > 3 \) the following statements are equivalent:

1. \(\mu(\Sigma) = n - 1 \)
2. There exists a diagonal unitary matrix \(U \) such that \(U^* \Sigma U = \{1, i \} \), \(i, j = 1, \ldots, n \) is real with all entries \(\tau_{ij} \) positive and satisfying

\[
\tau_{ia} \cdot \tau_{ij} - \tau_{ia} \cdot \tau_{ij} = 0 \quad \text{for } i, j, k, l \text{ all different (3.3)}
\]

3. There exists a diagonal unitary matrix \(U \) such that \(U^* \Sigma^{-1} U = \{1, i \} \), \(i, j = 1, \ldots, n \) is real with all diagonal elements negative and satisfying

\[
\tau_{ia} \cdot \tau_{ij} - \tau_{ia} \cdot \tau_{ij} = 0 \quad \text{for } i, j, k, l \text{ all different (3.3)}
\]

Proof: (a)\(\rightarrow\)(b): Since there is a feasible \(\Sigma \) with rank equal to one, we can write

\[
\Sigma = \lambda \mathbb{I} \quad \lambda \in \mathbb{C}
\]

In addition, for \(U = \text{diag}(\lambda, \ldots, \lambda) \), where \(\lambda \) denotes the phase of the \(j \)-th entry of \(\lambda \), \(\lambda = U^* \lambda \) has all elements positive (Note: since \(\Sigma \) has all entries nonzero, so has \(\lambda \)). Thus all entries in

\[
U^* \Sigma U = \mathbb{I} + D
\]

are positive. (3.1) and (3.2) are straightforward.

(a)\(\rightarrow\)(b): Consider the matrix \(T = \{1, i \} = U^* \Sigma U \); then we can find a decomposition \(T = \tilde{T} + \tilde{T} \) defined by \(\tilde{T}_{ij} = \tilde{T}_{ij} \), for \(i \neq j \) and by

\[
\tilde{T}_{ii} = \tau_{ia} \cdot \tau_{ij} - \tau_{ij} \quad i, j, k, l \text{ all different}
\]

Then it easily can be checked from (3.1), \(\tilde{T} \) is independent of \(j, k \), and all minors of \(\tilde{T} \) of order 2 are equal to zero and thus \(\tilde{T} \) has rank 1. Clearly \(\tilde{T}_{ij} > 0 \), since \(\tau_{ij} > 0, i, j = 1, \ldots, n \), and thus \(\tilde{T} \geq 0 \). Furthermore \(\tilde{T} \geq 0 \) holds by (3.2) and thus \(\tilde{T} \) and \(\tilde{T} \) are feasible for \(\tilde{T} \); which immediately implies that \(U^* \tilde{T} \) and \(U^* \tilde{T} \) are feasible for \(\Sigma \).

(b)\(\rightarrow\)(c): Suppose temporarily that \(D > 0 \) holds. It is easily to check that (3.4) implies

\[
(U^* \Sigma U)^{-1} = D^{-1} - \frac{\lambda \mathbb{I}}{1 + \lambda \mathbb{I} D^{-1} \lambda} \cdot D^{-1} \lambda \mathbb{I} D^{-1} \lambda = D^{-1} \cdot \lambda \mathbb{I} D^{-1} \lambda
\]

where \(\lambda \) is a vector with all positive entries. It is immediate that all off-diagonal entries of \(U^* \Sigma U \) are negative.
Now suppose $D \geq 0$. Since Σ is nonsingular, the entries of $(U^* \Sigma + eI)^{-1}$ $e \geq 0$ depend continuously on e. For all $e > 0$ the off diagonal elements are negative; hence in the limit for $e \rightarrow 0$ they are nonpositive and thus by assumption (vii) negative also. (3.3) directly follows from (3.4).

(c) - (b): Let $T = (t_{ij}) = U^* \Sigma^{-1} U$ and $T = \hat{T} + \tilde{T}$ where \hat{T} is defined by $\hat{t}_{ij} = t_{ij}$, $i \neq j$ and

$$t_{ii} = \frac{t_{ij} + \hat{t}_{ij}}{t_{kk}}; \quad i, j, k, \text{ all different}$$

Again it is easy to see that \hat{t}_{ij} is independent of j, k and that \hat{T} has rank 1. Furthermore since all t_{ij}, $i \neq j$, are negative, \hat{T} consists of negative elements only and thus can be written as

$$\hat{T} = -\mu \hat{T}; \quad \mu \in \mathbb{R}_+^* \quad \text{(i.e. } \mu > 0)$$

\tilde{T} then is diagonal with strictly positive diagonal elements. From (3.5) we then obtain

$$T^{-1} = U^* \Sigma U = T^{-1} + \frac{1}{1 + \mu \tilde{T}^{-1}} \tilde{T}$$

which implies (b).

Remark 1 \text{ Note that for } m_* = n - 1, \text{ by}

$$x(e - D) = 0 \iff x U^* (e - D) U = 0 \text{ (with } U \text{ defined as above),}$$

for every complex problem $x U$ gives a one-to-one relation to a solution with a real Σ. Note that in general the entries of $x U$ will be complex.

Remark 2 \text{ If we drop assumptions (vi) and (vii), then Theorem 3.1 remains true if we replace (b) by}

(b'): \text{ There exists a diagonal unitary matrix } U \text{ such that } U^* \Sigma U = (t_{ij}), \text{ i,j = 1, \ldots, n is real with all entries } t_{ij} \text{ nonnegative and satisfying (3.1),(3.2) and}

$$\sum_{j=1}^{n} t_{ij} > 0, \quad i, j \neq i, \text{ for at least one pair } (i, j)$$

and (c) by:

(c'): \text{ There exists a diagonal unitary } U \text{ such that either (c) or (c1): All off-diagonal elements in one row and column of } (t_{ij}) \text{ are negative and zero in all other rows and columns hold.}

Remark 3 \text{ Next let us investigate the set } \Sigma_{n-1} \text{ of all } \Sigma \text{ (satisfying our assumptions) with } m(\Sigma) = n - 1. \text{ Consider the mapping }

$$i(\lambda, D) = \lambda^* D + D, \lambda \in \mathbb{C}^n \text{ and } D \geq 0, \text{ diagonal. If we impose the additional normalization assumption } \lambda_1 > 0 \text{ and } i-1 \text{ are continuous. Then } \Sigma_{n-1} \text{ is a subset of real dimension } 3n - 1 \text{ of the set } \Sigma \text{ of all } D \geq 0, \text{ which is of real dimension } n^2 \text{ and } i-1 \text{ provides a useful parameterization for } \Sigma_{n-1}. \text{ In particular we see that for } n \geq 3 \text{ the single factor case is highly nongeneric for the spectral densities of the observations.}

4 The Solution Set for $m_* = n - 1$

In this section we will give a complete description of the set of all solutions corresponding to a given Σ with $m(\Sigma) = n - 1$. We also provide a characterization of solutions corresponding to different m. By L_n we denote the set of all solutions $x \in L$ where there is a feasible Σ such that $2L = 0$ and dimC ker$\Sigma = m$ hold. For $x = (x_1, \ldots, x_n) \in \mathbb{C}^n$ we define the projection x by $p(x) = (x_1, \ldots, x_n) \in \mathbb{C}^n$ and analogously we define $p(M) = \{x(x) | x \in M \}$ for a set $M \subset \mathbb{C}^n$.

Theorem 4.1 \text{ Let } n \geq 3 \text{ and } m(\Sigma) = n - 1. \text{ Then}

(a) \text{ There is a unique feasible } D, D^* = \text{ diag}(d_{jj}^*) \text{ say, given by}

$$d_{jj}^* = \frac{c_{ij} \cdot c_{jk}}{c_{ik}}; \quad i, j, k \text{ all different} \quad \text{(4.1)}$$

such that $\Sigma - D^*$ has rank equal to one; in this case

$$L_{n-1} = \{x(\ker(\Sigma - D^*) \cap \{x \in \mathbb{C}^n | x_1 = 1\}) \} \quad \text{(4.2)}$$

and

$$\dim_C(L_{n-1}) = n - 2 \quad \text{(4.3)}$$

hold.

(b) \text{ Let}

$$x_j = \alpha^* x_2 + (1 - \alpha^*) x_j; \quad j = 2, \ldots, n \quad \text{(4.4)}$$

where

$$\alpha^* = \left[1 - \frac{2t_{1j}^*}{t_{jj}^*}\right]^{-1} \quad \text{(4.5)}$$

Then all entries of x_j not in positions 1 and j are equal to zero and

$$L_{n-1} = \{x \left(\sum_{j=2}^{n} \beta_j x_j | x \alpha, \beta \in [0,1], \sum_{j=2}^{n} \beta_j = 1 \} \} \quad \text{(4.6)}$$

(c) \text{ For every } m \text{ such that } 1 < m < n - 1, L_m \text{ is a nonvoid subset of } L_{n-1}, \text{ additionally satisfying } L_m \subset L_{n-1}.

(d) L_1 can be written as $L_1 = L_{1,2} \cup L_{1,3}$ where

$$L_{1,2} = \{x((\alpha x_1 + (1 - \alpha) x_2) D_2 = (\alpha x_1 + (1 - \alpha) x_2) D \} \quad \text{(4.9)}$$

From section 2 we know that for every $\alpha \in [0,1], x = \alpha x_1 + (1 - \alpha) x_2$ is a solution. From (3.9) we see that if we put $\alpha^* = (1 - t_{12}^* t_{22}^{*-1})^{-1}, i \neq 1, i \neq j$ then x_1, x_2 is not possible and all entries of x not in positions 1 and 2 are equal to zero. Furthermore α^* does not depend on i. Now define $D = D^*$ in (4.9) by

$$d_{11} = \alpha^* d_{11}^* \quad \text{ (4.10)}$$

and

$$d_{jj} = \alpha \cdot d_{jj}^*; \quad j \neq 1, i \neq 1, k \neq k \quad \text{(4.11)}$$

Then it is straightforward to show that the d_{jj} do not depend on $1, k$ and that $\Sigma - D^*$ has rank 1; thus $x \in \ker(\Sigma - D^*)$; $j = 2, \ldots, n$ and these points generate L_{n-1} by (4.6).
(c) First we show that if \(D \) is a feasible matrix with \(\dim \ker(\Sigma - D) = m \), \(1 < m < n - 1 \), then \(D \) must be of the form

\[
D = D^* - D
\]

(4.12)

where \(D \) is a nonnegative diagonal matrix. This follows from the fact that for every feasible \(D \), all \(2 \times 2 \) principal minors of \(\Sigma - D \) are nonnegative, and then \(D^* \) can have at most one element smaller than the corresponding element in \(D \). If there is such a strictly smaller element in \(D^* \) then all other elements in \(D^* \) must be strictly larger than the corresponding elements in \(D \), which implies \(\dim \ker(\Sigma - D) = 1 \) and thus \(D \) with \(\dim \ker(\Sigma - D) = m \), \(1 < m < n - 1 \) must be of the form (4.12) with \(D \geq 0 \). Note that for two matrices \(A \geq 0, B \geq 0 \) we have

\[
\ker(A + B) = \ker A \cap \ker B
\]

Thus \(\ker(\Sigma - D) = \ker(\Sigma - D^*) \cap \ker D \); as easily can be seen we also have \(\dim \ker C(\Sigma - D) = (n - 1) - \dim \ker C(\Sigma - D) \). In particular, for given \(D \) with the non-zero entries in positions \(1 \leq j_1 \cdots \leq j_{m-n+1} \leq n \), then all \(x_j \) such that \(j \neq j_1, \ldots, j_{m-n+1} \) form a basis for \(\ker(\Sigma - D^* + D) \).

(d) Consider the equation system

\[
(\alpha s_1 + (1 - \alpha) \sum_{j=1}^{n} \beta_j x_j) \Sigma = \alpha s_1 D_1 + (1 - \alpha) \sum_{j=2}^{n} \beta_j x_j D^*
\]

\[
= (\alpha s_1 + (1 - \alpha) \sum_{j=2}^{n} \beta_j x_j) D; \quad \sum_{j=2}^{n} \beta_j = 1
\]

(4.13)

The first equation in (4.13) gives

\[
\alpha (d_1^{(1)} - d_1^{(1)}) = d_1^{(1)}
\]

(4.14)

and the remaining equations give

\[
d_{ij} = d_{ij}^{(1)} \left(1 + \frac{\alpha s_j}{(1 - \alpha) \sum_{j=2}^{n} \beta_j x_j} \right)^{-1}; \quad j \geq 2
\]

(4.15)

where \(x_{ij} \) denotes the \(i \)-th component of \(x_j \). From section 2 we know that \(\alpha \geq 1 \) and \(d_{ij}^{(1)} = d_{ij}^{(1)} > 0 \) hold. Thus, if we first consider the case \(\alpha > 0 \), from (4.14) we have \(d_{11} \geq d_{11}^{(1)} \), where the strict inequality holds for \(\alpha > 0 \). Thus by the same argument as in the proof of (c) we see that if \(\alpha > 0 \) gives a solution, then it corresponds to \(m = 1 \). Furthermore \(d_{11} \geq d_{ij}^{(1)} \) implies \(d_{ij} \leq d_{ij}^{(1)} \), as \(j \geq 2 \) and as easily can be checked \(s_{ij} x_j^{(1)} > 0 \) holds. Thus (4.15) implies \(\beta_j > 0, (0 < \alpha \leq 1) \).

Next we have to show that for every \(\alpha \in [0, 1], \beta_j \in [0, 1], \sum_{j=2}^{n} \beta_j = 1 \), the element \(s_{11} + (1 - \alpha) \sum_{j=2}^{n} \beta_j x_j \) is a solution: This is straightforward from the fact that \(D^* \) in (4.13) can be obtained from the first elementary regression for \(\Sigma = \text{diag}(0, d_{11}^{(1)}, \ldots, d_{nn}^{(1)}) \) [note that \(\pi(0, d_{xx}) \in L_{1,0} \) and see section 2]. This shows the part for \(L_{1,0} \). The proof for \(L_{1,1} \) is similar: We consider the case \(\alpha < 0 \). Then (4.14) implies \(d_{11} < d_{11}^{(1)} \) and (since \(d_{11} \geq 0 \) holds) \(\alpha \geq \alpha_{\text{min}} = -d_{11}^{(1)} \). Since \(d_{11} \geq d_{ij} \) holds with possible exception of one \(k \geq 2 \), this implies \(\beta_j < 0 \). But then from \(\sum_{j=2}^{n} \beta_j = 1 \) we must have \(d_{kk} > 1 \) for one \(k \geq 2 \), in this case \(d_{kk} > d_{kk}^{(1)} \) thus these solutions correspond to \(m = 1 \). Further note that \(\alpha_{\text{min}} = 1 + (1 - \alpha_{\text{min}}) x_{ij} = x_{ij} \) holds.

In the next figure we show a solution set \(L \) for \(n = 4, m^* = 3 \), in the static (real) case. Note that for the real static case \(\dim L_{1,0} \) is equal to \(\dim L_{1,0} \) for the complex case.

Remark 1 For \(n = 2 \), in general \(D^* \) would not be unique (see [4]). Also for general \(n \), if (vi) is violated, \(D^* \) may not be unique, as can be easily seen from the case \(\sigma_{ij} = 0 \), for all \(i \neq j \) except for \((i, j) = (1, 2) \). On the other hand for \(n \) sufficiently large in relation to \(m^* \), \(D^* \) may be unique also for \(m^* < n - 1 \) (under additional conditions which are generically satisfied). For example for \(m^* = n - 2 \) and \(n \geq 5 \) we can calculate the corresponding \(D^* \) from the conditions that all \(3 \times 3 \) minors of \(\Sigma \) are zero.

Remark 2 For most cases, the main interest is in the solutions corresponding to \(m^* \); this corresponds to the maximum degree of explanation by the system versus the "outside world". Note that the \(x_j \) in (4.4) belong to all \(L_m \), \(1 \leq m \leq n - 1 \). Using \(y_t \) as a symbol for outputs and \(x_t \) as a symbol for inputs we may rewrite equation (1.3) in an evident notation as

\[
\begin{bmatrix}
X_t \narmy \n\end{bmatrix} = \begin{bmatrix}
\beta_{1t} \n\end{bmatrix} + \begin{bmatrix}
\beta_{2t} \n\end{bmatrix}
\]

(4.16)

The systems corresponding to \(m = n - 1 \) have one input and \(n - 1 \) outputs. Moreover, by (vi) every entry of \(L_1 \) may be chosen as an input (which of course in general will not be causal for the outputs). Once the decision which entry of \(L_1 \) is chosen as the input has been made, \(L_{m-1} \) corresponds to a single system.

Remark 3 As is easy to see, for \(m^* = n - 1 \), the solution sets \(L_m \) continuously depend on \(\Sigma \).

Let for instance the first component of \(s_t, s_{t-1} = 2 \) say denote the "true" input; then using the \(x_j \) in (4.4), \(j = 1, \ldots, n \), we have the true outputs:

\[
x_{11} = y_{11}, x_{jj} = y_{j-1, j} = y_{j-2, j} = \ldots = 0 \quad (j = 2, \ldots, n)
\]

(4.17)

where \(k_{1-2}(s^{(1)}) = (-s_{jj})^{-1} \). Clearly (4.16) and (4.17) has a direct interpretation as a dynamic single factor model.

Fig. 1: A "typical" solution set for \(m = n - 1 : n = 4, m^* = 3 \), static (real) case

5 References

