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Abstract

A modification of the Balanced Stochasitic Truncation method for relative error model reduction is introduced. The
method is based on replacing the truncation step with a generalized singular perturbation approximation. The new

method is shown to satisfy an infinity norm bound on the relative error between the full order and the reduced
order models. The discrete time balanced stochastic truncation algorithin is at the heart of the new method, and a

relative error bound for this algorithm is derived.

1 Imtroduction

Model reduction techniques based on the trunca-

tion of balanced realizatigns have become a stan-
dard paradigm for producing reduced order models

since the idea was introduced in [11]. The Balanced
Truncation (BT) method of [11] satisfies an infinity
norm ecrror bound, as well as posessing other attirac-
tive properties [4],[6],[12]. It has long been known
that the BT method produces reduced order models
which match the original system exacily at infinite
frequency, and generally therefore the fidelity of the
reduced order model is greater at high frequencies
than at low frequencies, This characteristic is con-
trary to the requirements of control system design,
where model accuracy in the frequency range where
performance specifications are most stringent, usu-
ally ‘the low frequency range, is required. The Sin-
gular Perturbation Approximation (SPA) technique
applied to the balanced realization [5] satisfies the
same error bound as BT [1(], but exact matching
occurs at DC, rather than at infintty. This is most
clearly seen by noting that the SPA and BT algo-
rithms are related via the transformation s -+ 1fs
[10]. Indeed, a whole family of reduced order models,
called Generalized Balanced. Truncation (GBT) re-
duced order models, can be produced based on exact
matching at any point on the positive real axis [93,[15].
GBT is equivalent to: (a) a time/frequency scaling;
(b) transforming to a discrete time equivalent sys-
tem by the standard bilinear map; {c) truncating the
discrete time system; (d) reversing the bilinear trans-
formation; (e) reversing the time/frequency scaling
[9].(15]. Discrete-time Balanced Truncation (DBT)
has been analysed and enjoys many of the proper-
ties of the continuous time counterpart, including the
error bound [14], the GBT algorithm inherits these
properties, since the bilinear transformation and the
scaling preserve the important things—the balancing,
the infinity norm and stability.

An alternative algorithim, Balanced Stochastic Trun-

cation (BST}, was introduced for stochastic model re-
duction in [3] based on the Balanced Stochastic Re-
alization (BSR). This algorithm is perhaps less well
known than that of [11], but has heen extensively
analysed [2},[3),[7],(8],(13],[26]. In particular, it enjoys
an infinity norm bound on the relative error between
the full and reduced order models [8],{16}, which is
considered more relevant to control systems applica-
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tions [2],(13]. Since the BST algorithm is the same
as the BT algorithm, except that it starts from a
different realization, it should be amenable to gener-
alization using the Generalized Singular Perturbation
technique. This is indeed the case, and the resulting
algorithm, Generalized Balanced Stochastic Trunca-
tion (GBST) produces a new family of reduced order
models satisfying an infinity norm bound on relative
approximation error. A single scalar parameter can
be used, to a limited but useful extent, to frequency
shape the approximation error. A low value of the
parameter emphasises low frequencies, a high value
emphasises high frequencies.

The developinent follows the approach of [9] to the
extent that we show that GBST 1s equivalent to scal-
ing, bilinear transformation and discrete time trunca-
tion. The main problern is the establishment of a rel-
ative error bound for the discrete time BST (DBST)
algorithm, which has not to date been given despite
the fact that the BST algorithm first appeared in the
discrete time setting [3]. To prove the relative er-
ror bound for DBST, we [ollow the approach of [16],
and obtain the same bound. Most of the proofs are
straightforward but lengthy calculations and for the
most part are omitted or given terse treatment in this
paper.

Note: We use V™ to denote the para-Hermitian
conjugate of a system—Tfor continuous, real systems,
V{s})* = V(~—s), whilst for discrete time systems
Viz)» = V{1/=).

2 Balanced Stochastic Realization

Consider a stable transfer function V(s) of McMillan

.degreen n

Vis) =V + C{sI — Ay 'K with (', A, K} minimal

)
To form the Balanced Stochastic Realization {(BSR)
we “balance” the controllability gramian of V{s)
against the observability gramian of a stable, mini-
mum phase spectral factor W(s) satisfying

W{(syW(s) = Vis}V(s)'
The {ollowing thecrem shows how to construct the

spectral factor ¥ (s) and summarizes relevant prop-
erties.



Theorem 1 Suppose V(s) is given by (1) with VV'
non-gsingular. Lel P = P’ > O be the conirollability
gramian of (A, K), which salisfies

AP+ PA' + KK' =0 (2)
Define the Hemiltontan metriz H by

H= [ A- B(VV-ic

B(VV')LB
-CHVV)IC 4y ]

~(A = B(VVY-iOy
(3)

B=PC' +KV' (4)

in which

1. H has no eigenvghies on the imaginary azis if
and enly if

[AESI 1{/-{] has full row rankVs+35=0

(5)
Consequently, provided (5) holds, there exist X3
and Xo such that

H{g]=[%]a (6)
Real(M(A)) < 0 for all i
[ §; ] has full column rank

2. X1 15 non-singular.

3. The the solution of the Riceali equation

0 = AQ+QA+L'L (7)

L = (W) HC-BQ) (8)

ww VV' with W non-singular (9)

such that (A— BW L) is asympiotically stable
is given by

Q=X:Xx;7? (10)

Futhermore, @ = Q' > 0 and (L, A) is observ-

able.

4. The spectral factor W(s) salisfying
W(s)"W(s) = V(s)V(s)"
with W{s) and W(s)™* stable (11)
13 given by
W(s) =W+ L(sI — A)"'B (12)
Note that W(s) satisfying (11} is unique up
o pre-mulitplication by an arkilrary orthogonal

mairiz—that is, all solutions are of the form
(12) where W ranges over all sofutions to (9).

5. With

Z(s) = D4+CBI-A"'B (19)
D+D = VvV (14)

we have
Z+Z=VV'=W'W (15)

s0 Z(s) is posilive real.
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Q<P (16)

Fyrthermore, dim(kernel{(I — PQ)) is the num-
ber of zeros of V(s) in the right half plane.

Prooft The Theorem is a collection of existing results.
See eg [1],{7] and references therein. o

The assumptions of Theorem 1 and the condition
(5) will henceforth be taken for granted. ‘

The computation of the BSR is completed by ap-
plying a state transformation T = E-1U'R to the
realizations (1) and (12) of V(s) and W{s), where
R'R = @ and UL is the singular value decom-
position of RPR'. This transforms P and @ to the
positive definite diagonal matrix E. '

After transformation, we have the BSR equations:

AL+ EA + KK = 0 {17)
SC'+KVf = B (18):
v’ b+D- (19)
TA+AEL+LL = 0 (20)
BE+WL = C . {21)
wWw = p+p (22)
D = diag(o,...,0n) (23)
g > oippfori=1-..n-1 (24)

From (16) we have
<l (25).

Note also that the system L(s! — A)~! K is internally
balanced, in the sense of [11}. o

3 Generalized Singular Perturbation Approx-
tmation

Given a state gpace realization as in (1}, say, a Sin-
gular Perturbation Approximation is obtained by ap-
proximating some snbset of the states by constants.

That is, if = denotes the state vector, we partition
as .

= [ f‘n;] and set &2 = 0.

To obtain a Generalized Singular Perturbation Ap-
proximation (GSPA), we instead approximate 3 by
a pure exponential:

.‘l..‘g = 0Ly

(26)

Clearly, the case o = 0 corresponds to the conven-
tional SPA. Making use of the state dynamics, ie

[B]=[4 anl[n]+[R]
we obtain :

&1 = [An + Azlod — Aze) ' Agley
+[.K1 + Apglal — Agz)_lKQ]u.

The output equation y = Cz + V4 becomes
y = [Ch+Calad = Ag) N1 +[V+Cale — Az) T Koju



Definition 1 Let V(s) be given by (1) and be parti-
tioned as:

A= [daplx=lR] @
C =[G ] (28}

Let o be such that (ol — Ag) is mon-singular. A
generalized singular perturbation apprezimation V(s)
of V(s) is given by .

V(s) =V +C(sI - A K (29)
where
A = An+Ap(el - A2) '4s  (30)
K = Ki+Ap(el - Ap)~ 'K, (31)
C = Ci+Cyal - Ap) ™4y (32)
1 V 4 Coled — An) ' Ko (33)

The special cases o = 0 and o — 00 correspond
to Singular Perturbation Approximation and Trunca-
tion respectively. Naturally, the efficacy of the GSPA
procedure depends on the properties of the partition-
i(ng )of the state space, as well as of the approximation
26).

The case when (C, A, K) is an internally balanced
realization has been analysed in [5],[9],[10],[15]. The
method is shown to produce good reduced order mod-
els and enjoys an infinity norm bound on the absofute

error between the ful} and reduced order models. The
ound s independent of o.

If {C, A, K} is a BSR, then the redunced order model
obtained by trunca.tion——ie, the Balanced Stochastic
Truncation approximation—has been shown to enjoy
an infinity norm bound on the relative error between
the full order and reduced order systems [8],[16]. It is
natural therefore to pose a GSPA version of the BST
algorithm, where the GSPA procedure is applied to
a Balanced Stochastic Realization. This algorithm
should produce good reduced order models and sat-
isfy a relative error infinity norm bound.

Definition 2 Suppose V(s), W(s) end Z(s) are given
by (1}, {12} and (13}, where A,K,B,C,L,KW,D
and ¥ form o BSR. The reduced order models V(s),

W(s), Z(s) defined via Definition 1 will be called
Generalized Balanced Stochastic Truncation {(GBST}
reduced erder models of V(s), W(s) and Z(s).

4 Main Results
Theorem 2 Suppose V(s) and W(s) are given by (1)
and (12}, where A, K,B,C,L,V,W, D and E form

BSR. Witha > 0, let V(s) be the GBST reduced order
model of V(s) of erder k. Then

1.
Via)=V{a)
2 Ifor > k41, then A is esymptotically stable
and (L, A, K) is minimal,

3 Ifl > o > Orer, then

(34)

“W_’[V - I?]“oo h

(35)
imhet

Proof: Here, we outline the superstructure of the
proof.

1. Observe thas the o-dependence can be taken
care of by scaling the Laplace transform vari-
able s:

(a) set w = sfa, Vi) = V(s) = V +
C/a(wl— Afa) ' K. Note that, when the
scaling is applied to W(s) and Z(s) too,
we still a have BSR.

(b) Apply GSPA to V(w), taking & = 1 to
obtain V{w) = ¥ + &/a(wl — A/a)"'K,
with 4, K, & and ¥ as in (301-(33).

(¢) Reverse the scaling to obtain ¥(s).

(d) Note that since « is non-negative, the scal-
ing maps the left half plane to the left
Lialf plane (so stability properties are pre-
served).

The cases & = 0 and o = o do net fall injo
this analysis. However the result is known for
truncation (@ = oo} [16] and the case & = 0 can
be dealt with using s — 1/ as in [10].

2. The & = 1 GBST algorithm is equivalent to:

(a) Transform to discrete time via the bilinear
transformation z = (1+s5)/(1 —s) Note
that this produces a discrete time BSR.

(b) Truncate the discrete syslem to obtain a
reduced otder discrete time system.

{¢) Transform the reduced order discrete time
system back to a continuous time system
vias=(z—1)/{z+1)

(d) Note that the bilinear transformation pre-
serves infinity norms.

The major items to be proved are therefore:

1. That a = 1 GBST is in fact equivalent to bi-
linear transformation plus discrete time trunca-
tion.

2. That the bilinear transforms preserves the BSR.

3. That the discrete time BST algorithin enjoys
the properties claimed in the Theorem.

[u]

5 GBST as a discrete time BST algorithm

In this section, we verify that the GBST algorithm,
with ¢ = 1, is equivaleni to bilinear transforma-
tion together 'with discrete atime Balanced Stochastic
Truncation.

Lemma 1 Lei V(s) be given by (1} with (1= A) non-
singuler. Define

Y 1+
T 1o
and
F o= (I4+AI-A)? (36)
M = VI -A)y'K (37)
H = Vo -ay? (38)
R = V+CU-A'K {39)
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Then
V(s}=R+H(zI - F)y'M
We cell R4 H(zI — FY™'M the discrele time equiva-

lent of V(s) and, using an abuse of notation lo avoid
{00 many symbols, we denote it by V(z).

Proof: Standard resuli—follows from divect calcula-
tion. =]

Definition 3 Let V{(2) = R+ H(2] - F)~*M. Par-
tition F, M, H as:

= [ Fu Fi2 = [ M
Fo= i # ]’ M= [ My ] (10)
H = [H H] (41)

The {runcation reduced order model V{z) is given by:

V{z) = R+ Hy(z] — Fy)) 7'M, (42)
Lemma 2 The discrete time system V{z) given given
by (42} is the bilinear transformation of the confinu-
ous time system V(s) given by (29), with « = 1.

Proof: See [15]. o

Lemma 3 Suppose V(s), W(s) and Z(s) are given
by (1), (12} and (13), with (I — A) non-singular. Let
V(z}, W(z), Z(z) denole their discrete lime eguive-
lents:

V(z) = R+H(:I-F)y'M {43)
W) = S+ N(zI-Fyié {44)
Z(z) = J+H@EI-FYIG (45)

where F,M,G,H,N,R,S,J are given by the appro-
priate formulae —see Lemma 1.

Then A,K,B,C,L,V,W,D and T form a BSR if
and enly f FIM G H N, R, S, J and T form o dis-
crele BSR (DBSR). That is,

FEF -S+MM' = 0 (46)
FEH' + MR = G - (47)
RR+HEH = J+J (48)

F'EF -S4+ N'N = 0 (49
GTF+SN = H (50)
§S+ETC = J+J (51)

Proof: We only prove that BSR = DBSR for (46)-
(48), the other set of equations and the other direction
being analogous.

To prove (46), note, using (17), that

4+ AD(T+A)- (I ~-ATIT-A)=-2KK'
Hence
FEF' - %
= {[—-AH{I+ A+ 4)
—(I — AVE(I - A1 - AN
= MM '
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For (47),
1
Vi _

= (I-AHI+ AT+ KK|I-A)'C+ KV
= (I-A)"YB+[I+ AT+ KK~
(I - AN~ AYCh)
(I-Ay'B
1
= %G
Finalty, for (48),
RR' + HLH'
= VV'+C(I—~A)~YB-XC)
+(B' - CI)(I - AN C’
+C{I ~ Ay KK + 28)(1 - A'Y- 1
= J4+ I +C(-A) =S - A)—(I- AL
KK 4+ 25)(1 - AN
= J+J

(FEH' + MR')

a
Definition 4 Let V(2) be given by (43), where the

realization is a DBSR. We call V(z), the trucation of
V(z) given by {42}, the Discrete Balanced Stochastic
Truncation (DBST} reduced order model of V(z}.

The following lemma, due to (4], is vital to the
analysis of the error due to truncation:

Lemma 4 With nelatlion as above,

V(z) - V(s) = H(x)(zI - F()) T M(z)  (52)
n which ‘
Flz) = Fpo+ Fu(zl - Fu) 'R, (63)
M(z) = Ma+ Fu(zl—Fn) "My (54)
H{z) = Hao+ Hi(zl - Fi)"'Fy  (55)
Proof: Use the Schur decompsition:
2i—F=

[ I 0 ] :I—Fn 0 .
—Fgl(ZI - Fl]_)"l I 0 - F

I 0
*{ Pl - R 1]
Equation (52) then follows easily o

Note that the resulf is solely about truncation, and
that it applies equally to W(z) and Z(z), with appro-
priate definitions of N and ¢}, which we omit.

8 Discrete Balanced Stochastic Truncation

This section, which analyses the DBST algorithm, is
the heart of the paper. Some properties of the DBST
algorithm are already known—see [3], but more re-

cent work has focused on the continons time case.
e major property to be proved is a relative er-

ror bound for the DBST algorithm analogous to the
bound for the continuous time case [8],{1(:%.



Theorem 3 Suppose V(z}, W(z) and Z(z) given by
(43}, (44) and (45) form a DSBR. Let V(2), W(z)
and Z(z) be the DBST approzimations of V(z), W(z)
and Z(z) . Define also F(z), M(z), H{(z), N(z) and
G(z) as appropriate (see Lemma 4). Then

F(2)E2B(2) ~ B + M(2)M(z)* = 0 (56)
F()Sa B2 + M(2)V(2) = O(z)  (37)
V(W () + H()EH(z)* = Z(z)+ Z(2)

(68)
and

P2y EoF(2) - 3+ N{2)*N(z) = 0 (59)

Gy EAF)) + W2y N{z) = H(z) (60
W) W(2) +GayTaGls) = Z() + 2(z)
{61)

where .
Y =diag(ogyy, -, 0n) {62)

Proof: Expand the left hand sides of (56)-(61)
and substitute from (46)-(51) using the partitioning
{40,41). Lengthy, but straightforward. o

Lemma 5
W) f()(e] — F() ) = V() - 7(2)
+271G(2) (2] — F(2))* S M(2)  (63)
B} - F@) MV () = W(z) - W(z)
2 N (@)l = F{2)) BB {(2) (64)
Proof: From the dual of (52) we have
W(z) = W(z) + N(=zI — F(2))"*G(z)
Using this, together with (59) and {60), we have .

W(z)" N (z)(2] — F(2))"' M{z)
= H{z)(zl ~ F(2))" M (z)
+G(z)* (2] = F(2))7*[E2 — F2)SaF{2)*
~(2] — F2)) Do F(2)) (2] — F2))"' M(2)
from which (63) follows. o

Lemma 6

W (2)"G(2)* (=1 - F2) B M (2) o
< M2y (21 - F(z)) " E5M (2 Mloo
HIW ()" H(z)(2] — F(2)) D5 M () oo
(65)

W ()= Ee)(eT = ()™ B ()
S NG - PE) B
HIW (@) ST - BT M)
(66)

Proof: To prove (65), use (57) to substitute for
G(z) in the left hand side. Then write V{(z) =
V{z) — H(z)(21 — F(2))"' M(z) using (52). Finally,
sabstute for M(2)M(z)* from (56). The result fol-
lows noting that W{z)~*V{(z) and z are all-pass. H

The final inequality we need to obtain the error
bound is the following:

Lemma T If o > oy, then

18(z)" (a1 = F() "4 Mz)lle < 2 ). oit
i=k+1

(67)

INGY L~ Fa) ' BiMG)llee < 2 ) oft!
i=k+1

(68)

Proof: Minor modification of the proof of Theorem 2
of {14]. o

Theorem 4 Suppose V{(z) and W(z) given by {43)
tmd!M} Jorm a DBSR. Assume (H,F, M} is minimal.
LetV(z) be the k** order DBST epprozimant to V(z).

i .

V{o0) = V{e0) (69)

2. Ifop > g, then Fyy is asymplotically stable
and (N],F]l, Ml) is minimal,

3. If1 > o > opy1, then the error bound

0y

W= (V= Vllo <2 Y

i=h+1

(70)

1—-o

holds,

Proof: Equation (69) is trivial. Because (N, F, M)
is internally balanced (from (46) and {49)), the sta-
bility of F1) and the minimality of (N, Fi;, M) is 2
standard result—see [12],[14].

The error bound is obtained via the preceding lem-
mas as follows:

W=V = ¥ Yoo

W (2)* H(z)(z] — F(z))7 M (2)]loo

< NN T~ F(2) ' M(2)]e
HW (Y * G22I - F{z)) " EaM (2 Moo
V()T = F2)) " MUz

HIM (=) (2] ~ F(2)) 7" E2M (2)]}oo

HIW ()" H(2) =T — F(2)) ' B3M (2 )lleo

[FaN

N
D NG = F(2) SF M (2o

i=0
HM (2)" (2] = F(2))* S5 M (2)|oc }
HIW(z)" J(=) (2] = F() T V0 (2| oo

[ I
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Figure 1: Error bound and GBST ervors.

n

.<.. 22{ Z 2|+1 Z 6J?i+2}
i=0 j=kil izk+1
H[W (=) H(z)(2I — F(2)) 7 EE M VA (2o
n '2(N+1) )
= 2 Z S od
j=k41 =2
HW () H(2)(2] = F(2) 1 E ™M M (2)|eo
i c:r‘,-—t:r_,?N"’3
= 2
=kt 1~g;
+|1W(z)-*f?(z)<zr—P(z))-izi““*”mz)um
= 2.2 oo as N — oo
=kl i
[M]
7 Example

Consider the example presented in {16]. The BST al-
gorithm used there for the model reduction is equiv-
alent to the GBST algorithm described in Section 3
with & — o0. As is readily apparent the algorithin
matches the high frequency behavior of the system
more accurately than the low frequency behavior. To
reverse this, we use the Singular Perturbation Ap-
proximation approach, taking o = 0 in the GSPA
algorithm. Other non-negative values can be sclected
to shape the error as a function of frequency.
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