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Abstract  

A modification of the Balanced Stoc1insiti.c Truncation method fqr relative error model reduction is introduced. The 
method is based on replac~ng the truncat~on step w ~ t h  a generalized s~iigular pertmbat~on approxlmatlon. The new 
method is shown to satisfy an infinity norm bound on the relative error between the full order and the reduced 
order models. The discrete time balaiiced stochastic truncation algorithm is at  the heart of the new method, and a 
relative error bound for this algorithm is derived. 

1 Introduction 

Model reduction techniques based on the trunca- 
tion of balanced realizaiions have become a stan- 
dard parad~gm for producing reduced order models 
since the idea was introduced in [ll]. Tlie Balanced 
Truncation (BTI method of 1111 satisfies an infinity 
norm error t;ouid. as well ar'odsessin~ other attrac- u 

rive propertics [.1],[6],[12]. It has loo,: I,t:eu lioowlr 
that the UT mcthod produces reduced older models 
which match the original system exactly at  infinite 
frequency, and generally therefore the fidelity of tlie 
reduced order model is greater at  high frequencies 
than at  low frequencies. This characteristic is con- 
trary to the requirements of control system design, 
where model accuracy in the frequency range where 
performance specifications are most stringent, usu- 
ally the low frequency range, is required. The Sin- 
gular Perturbation Approximation (SPA) technique 
applied to the balanced realization [5] satisfies the 
same error bound as EiT [lo], but exact matching 
occurs at  DC, rather than at  infinity. This is mast 
clearly seen by noting that the SPA and BT algo- 
rithms are related via the transformation s - l / s  
(101. Indeed, a whole family of reduced order models, 
called Generalized Balanced Truncation lGBTI re- ~~ , 
duced order modcls, can LC produced brriell on exact 
matchingat any poinr on thc posiiivcrcal ;ax15 [gj,[l5] 
GUT is equivalent to: (a) a r i~ j~e / f~eque~~cy  scaling, 
(b) lransfurmitlg tu s <liacrerr lime c:qolvhl<:nt sys 
teln by the standard L11111eilr jlial.; ( c )  truucatillg the - . ,  
discrete time system; (d) reversing tlie bilinear trans- 
formation; (e) reversing the time/freqneiicy scaling 
[9],[15]. Discrete-time Balanced Truncation (DBT) 
has been analysed and enjoys many of the proper- 
t,ies of the continuous time counterpart, including the 
error bound [14], the GBT algorithm inherits these 
properties, since the bilinear transformation and the 
scaling preserve the important tliings-the balancing, 
the infinity norm and stability. 

An alternative algorithm, Balanced StocliasticTrun. 
cation (BST), was introduced for stoc11ast.i~ model re- 
duction in [3] based on tlie Balanced Stocllastic Re- 
alization {BSR). This algorithm is verhalx less well 

tions [2],[13]. Since the BST algorithm is the same 
as the BT algorithm, except that iL starts from a 
different realization, it should be amenable to gener- 
alization using the Generalized Singular Perturbation 
techniqae. This is indeed the case, and the resulting 
algorithm, Generalized Balanced Stochastic Trunca- 
tion (GBST) produces a new fanlily of reduced order 
models satisfying an infinity norm bound on relative 
approxination error. A single scalar parameter can 
be used, to a limited but useful extent, to frequency 
shape the approximation error. A low value of the 
parameter emphasises low frequencies, a high value 
ernphasises high frequencies. 

The development follows the approach of [9] to the 
extent that we show that GBST is equivalent to scal- 
ing, bilinear transforn~ation aud discrete time trunca- 
tion. The main problem is the establishment of a rel- 
at,ive error bound for the discrete time BST (DBST) 
algorithm, which has not to date been given despite 
the fact that the BST algorithm first, appeared in the 
discrete time setting [3]. To prove the relative er- 
ror bound for DBST, we iollor~ the approach of [l(i], 
and obta.in the same bound. Most of the proofs are 
straightforward but lengthy calcolations and for the 
most part areomitted or given terse treatment in this 
paper. 

Note: We use I/' to denote the para-Hermitian 
co~ljugate of a system-for continuous, real systems, 
V(s)' = V(-s)', whilst for discrete time syslems 
V(z)' = L'(l/z)'. 

2 Balanced Stochast ic  Realization 

Consider a stahle transfer function V(s) of McMillan 
degree11 n 

V(s) = V + C(s I  - A)-'I; with (G,A, I;) ~ninirnal 
(1) 
% ,  

To form the Balanced Stochastic Realization (BSR) 
we "balance" tlie colltrollability gramian of V ( s )  
against the observability granuaii of a stable, mini- 
mum phase spectral factor W ( s )  satisfying 

W(s)'WIs) = \'Is)V(s). . :  . .  . ,  . .  
known than tl;at of [llj, but has 'been ~xt.ensively 
analysed [2],[3],[7],[8],[13],[1G]. In parlicular, it enjoys The following t,heorem shows how to construct the 
an infinity norm bound on the relaliue error betrveen spectral factor W ( s )  and sulnmwises relevant prop- 
the full and reduced order models [8],[16], which is erties. 
considered more relevant to control systems applica- 



Theorem 1 Suppose V ( s )  is given b y  (1) with VV' 
non-singular. Lei P = P' > O be lhe controllabilily 
gramian of ( A ,  K) ,  which solisfies 

AP + PA' + IiK' = 0 PI 
Define the Hamillonion mat& H by 

A - B(VV1)-'C B(VVi)-'B' 
= [ - C 1 ( V V ) C  -(A - B(VV1)-'C)' 

in which 

I 
(3) 

B = PCi+ KV' (4) 

1. H has no eigenualues on the imaginary aais if 
and only if 

\-, 
Consequently, provided (5) I~olds, there ezist XI 
and Xz sue11 thal 

Real(Xi(A)) < 0 for all i 

[ :i ] has fvll column rank 

2. XI is nun-singular. 

9. The ihc solution of the Riccali equation 

0 = AIQ+QA+L'L (7) 
L = (W1)-'(C- B'Q) (8) 

W'W = VV' with W non-singular ( 9 )  

such that (A-BWelL)  is asymptotically stable 
is given b y  

Q = Xzxt-' (10) 

Fulhermore, Q = Q' > 0 and (L ,  A) is observ- 
able. 

4. The spectml factor W ( s )  satisfying 

W ( S ~  W ( s )  = V(s)V(s) .  

with W ( s )  and W(s)-' stable (11) 

is given b y  

Nole thal W ( s )  satisfying (11) is unique up 
lo pre-mulliplicalion by an arbitrary orilrogonal 
matrix-that is, all solutions are of the form 
(12) where W ranges over all solulions lo (9). 

5. With 

Z(s)  = D+ C(sI -A)- 'B (13) 
D+D' = VV' (14) 

we have 

Z + Z ' = V V ' = W ' W  (15) 

6. 
Q 5 P-' (16) 

Furlhennore, diln(kernel(1- PQ))  is the num- 
ber of zeros of V ( s )  in the right halfplane. 

Proaf: The Theorem is a collection of existing results. 
See eg [1],[q and references therein. 

The assumptions of.Theorem 1 and the condition 
(5) will henceforth be taken for granted. 

The computation of the BSR is completed by a p  
plying a state transformation T = C-*U'R to the 
realizations (1) and (12) of V ( s )  and W ( s ) ,  where 
R'R = Q and UC2U' is the singular value decom- 
position of RPR'. Tliis transforms P and Q to the 
positive definite diagonal matrix C. 

After transformat~on, we have the BSR equations: 

AC+CA'+KK' = o (17) 
CC1+KV' = B (18) 

VV'  = D+D' (19) 

CA + A'C + L'L = 0 (20) 
B'C + W'L = c (21) 

W'W = D+D' (22) 

C = diag(u1,. . . , u,.) (23) 
u; 2 q+l  for i = 1 . .  . n  - 1 (24) 

From (16) we have 
C S I  

Note also that the system L(sI -A)- 'K is internally 
balanced, in the sense of [ l l ] .  

3 Generalized Singular Perturbation Approx- 
imation 

Given a state space realization as in ( I ) ,  say, a Sin- 
gular Perturbation Approximation is obtained by ap- 
proxin~ating some subset of the states by constants. 
That is, if x denotes the state vector, we partition r 
as 

r = [ :: ] and set i.2 = 0. 
- ~ 

To obtain a Generalized Singular Perturbation Ap- 
proximation (GSPA), we instead approximate zz by 
a pure exponential: 

Clearly, the case a = 0 corresponds to the conven- 
tional SPA. Making use of the state dynamics, ie 

we obtain 

The output equation y = C x  + V u  becomes 

so Z(s) is positive real. 



Definition 1 Let V(s) be given by (I) and be parti- ProoE Here, we outline the superstructure of the 
iioned as: proof. 

A = [ k  & ] , I < = [ f 2 ]  (27) 1. Observe that the a-dependence can be taken 
care of by scaling the Laplace transform vari- 

C = [ C l  C 2 l  (28) able s: 

Let a 6e such ihat ( a 1  - A22) is non-singular. A (a) set w = s / a ,  V(w) = V(s) = V + 
C/a(wI- ,410)-'I<. Note that, when the 

generalized singvlar periurbatiotr approrimation v(s)  scaling is applied to W(s) and Z(s) too. 
of V(s) is given by we still a have BSR. 

where 

A = A11 + Alz(nI- Au)-'A?, 

li = K1 + Alz(uI- A22)-LIi? 

@ = CI + C2(aI-  Aa?)-'Azl 

P = v + c 2 ( ~ r  - A ? ~ ) - ~ I ~ ?  

The special cases a = 0 and a - w correspond 
to Singular Perturbation Approximation and Trunca- 
tion respectively. Naturally, the efficacy of the GSPA 
procedure depends on the properties of the partition- 
ing of the state space, as well as of the approximation 
(261. > ,  

The case when (C,A,I<) is an internally balanced 
realization has been analysed in [5],[9],[10],[15]. The 
method is shown to produce good reduced order mod- 
els and enjoys an infinity norm bound on the absolute 
errorbetween the full and reduced order models. The 
bound is independent of a .  

If (C, A,[<) is a BSR, then the reduced order model 
obtained by truncation-ie, the Balanced Stochastic 
Truncation approximation-has bee11 shown to enjoy 
an infinity norm bound on the relatiue errorbetween 
the full order and reduced order systems [8],[1Gl. It  is 
natural therefore to pose a GSPA ve~sion of the BST 
algorithm, where the GSPA procedure is applied to 
a Balanced Stochastic Realization. This algorithm 
should produce good reduced order inodels and sat- 
isfy a relative error infinitv norm bound. 

Definition 2 Svppose V(s), W(s) and Z(s)  are given 
by (I), (12) and (19), where A, I<, B,C,  L, V, IV, D 
and L: form a BSR. The redvced order models v ( s ) ,  
w(s), i ( s )  defi~ted via Definifioa I will be called 
Generalized Balauced Stochastic ~ a c a t i o e  (GBST) 
reduced order models of V(s), W(s) and Z(s). 

4 Ma in  Results  

Theorem 2 Suppose V(s) and W(s) are given by (1) 
and (I.!), where A, I<, 5 ,  C, L, V, \V,D and P fonn a 
BSR. Witha 2 0, let V(s) be the GBSTreduced order 
model of V(s) of order k. Then 

I .  
V(a) = V(a) (34) 

2. If a* > Q+I, their A is asyn~ploiically stable 
and (I, 2, k )  is minimal. 

3. If 1 > or > u i + ~ ,  ihen: 
" 

u' (35) Ilw-'[v - V]llm 5 2 C - 
1 - oi 

iZl;+l 

(b) Apply GSPA to V(w), taking = 1 to 

obtain ?(w) = v + C/a(wI - A/a)- ' t .  
with A, k ,  c and v as in (30)-(33). 

(c) Reverse the scaling to obtain V(s). 
(d) Note that since u is non-negative, the scal- 

ing maps the left half plane to the left 
half plane (so stability properties are pre- 
served). 

The eases p = 0 and o = .x, do pot fall into 
this andys~s. However, the result 1s know11 for 
truncation ( a  = m) [16] and the case a = 0 can 
be dealt with using s - 11s a4 in [lo]. 

2. The a = 1 GBST algorithm is equivalent Lo: 

(a) Transform to discrete tilne via the bilinear 
transformation z = (1 + s ) / ( l  - s )  Note 
that this produces a discrete time BSR. 

(b) Truncate the discrete system to obtain a 
reduced order discrete time system. 

(c) Transforin the reduced order discrete time 
system back to a continuous time system 
via s = (: - I)/(= + 1) 

(d) Note that the bilinear transformation pre- 
serves infinity norms. 

The major items to be proved are therefore: 

1. That a = 1 GBST is in fact equivalent to bi- 
linear transforn~ation plus discrete time trunca- 
tion. 

2. That the bilinear transforms preserves the BSR. 

3. That the discrete time BST algorithm elljoys 
the properties claimed iu the Theorem. 

5 GBST a s  a discrete t ime B S T  algoritlnn 

In this section, we verify that the GBST algorithm, 
with a = 1, is equivalent to bilinear transforma- 
tion togetlier with discrete atime Balanced Stocl~astic 
Truncation. 
Lemma 1 Let V(s) be giuen by (1) with (I-A) 710tl- 

singular. Define 
l + s  

2 = - 
I - s  

and 

F = ( I + A ) ( I  - A)-' (30) 

M = &(I - 4)-'I< (37) 

H = J~c(I  -A)-' (38) 

R = V+C(I-.4)- 'fi  (39) 





Theorem 3 Suppose V(z), W(z) a~rd Z(z) given by 
(43),*(44) and (45) form a DSBR. Let P(r) ,  W(Z) 
and Z(r) be the DBST approzimatto~~s of V(z), W(r) 
and Z(z) . Define also P(z),  A>(z), ~ ( z ) ,  #(r )  and 
G(z) as appropriate (see Lerntno 4) .  Then 

P(z)EzF(z)* - xz + &(z)M(z)* = o (56) 

P(z)E2H(z)* + h i ( z )V(~)*  = ~ ( z )  (57) 
P(z)~(x)' + H(2)CzH(z)' = i ( z )  + i ( z ) '  

(58) 

and 

F(Z).C~@(Z) - c2 + N(z).N(z) = o (59) 

C(~) 'E~(F)(Z)  + w(z).N(L.) = t ~ ( ; )  (GO) 
w(z)'w(z) + C?(Z~&G(:) = Z ( Z ~  + 2(z) 

(61) 

where 
Ca = dioy(afitl,. . . , a,) (62) 

Proof: To prove (65), use (57) to substitute for 
G(z) in the left hand side. Then write v( r )  = 
V(z) - H(Z)(ZI - ~ ( 2 ) ) - ' ~ ( 2 )  using (52). Finally, 
substute for ~ ( z ) h ( z ) .  from (56). The result fol- 
lows noting that W(r)-'V(z) and r are all-pass. 

The final inequality we need to obtain the error 
bound is tlie following: 

Lemma 7 If ar. > u t t ~ ,  then 

Proof: Minor modification o l  the proof of Tl~eorern 2 
of [14]. 

ProoE Expand the left hand sides of (56)-(61) 
and substitute from (46)-(51) using the partitioning Theorem 4 Suppose V(z) a ~ t d  W(r) given by (4.9) 
(40,41). Lengthy, but straightforward. and (44) form a DBSR. Assume (K,F,M) is minimal. 

Let V(z) be the kih orderDBSTapprozimani to V(z). 

Lemma 5 

Proof: From the dual of (52) we have 

Using this, together with (59) a id  (GO), we have 

from which (63) follows. 

Lemma 6 

2. If a k  > Uk+l, ihen Fil is asyrnptoiically siable 
and (Ni,  F~ I ,  MI) is minimal. 

3. If 1 >at > a&+', then ihe error boattd 

" 
(TO) llW-*(V- P)llm 5 2 1 - 

i=l;+1 I - a i  

holds. 

Proof: Equation (69) is trivial. Because (N, F, il.1) 
is il~ternally balanced (from (46) and (49)). the sta- 
bility of Fll and the mininiality of ( N I , F ~ I ,  MI) is a 
standard r e su l t s ee  [12],[14]. 

The error bouud is obtained via the preceding lem- 
1nas as follows: 

lllv-*(v - P)I/- 

= IIW(Z)-*H(Z)(ZI - F ( Z ) ) - ~ M ( Z ) ~ ~ ~  

5 ]lN(z)(zI - F ( z ) ) - ~ M ( z ) ~ ~ ~  

+ ~ ~ w ( z ) - * ~ ( : ) ( z ~  - F(Z))-.C?M(:)II~ 

5 [~N(Z)(ZI - @ ( z ) ) - ~ A ~ [ z ) \ I ~  

+I~M(Z).(ZI - F ( z ) ) - * \ - ~ M ( z ) ~ ~ ~  

+~~w(z)- -H(z) (=I  - P(z ) ) - 'X :~ (z ) l [~  
N 

5 E { I I N ( Z ) ( ~ I  - F ( : ) ) - ~ S ~ ~ ~ ( Z ) I ~ ~  
i = o  

+Ilh?(z)'(zI - ~(:))-'~$~'iM(z)ll..) 

+I IW(Z)-=H(~)(ZI  - F ( ~ ) ) - ~ E ~ ~ ~ + ~ ~ M ( Z ) I I ~  



[3] U.B. Desai and D. Pal, A transformation a p  
proach to stochastic model reduction, IEEE 
Trans Auiu Control, AC-29, 1097-1100, 1984. 

Figure 1: Error bound and GBST errors. 

7 Example 

Consider the example presented in [16]. The BST al- 
gorithm used there for the model reduction is equiv- 
alent to the GBST algorithm described in Section 3 
with a 4 oo. As is readily apparent the algorithm 
matches the high frequency behavior of the system 
more accurately than the low frequency beliavior. 'To 
reverse this, we use the Singular Pert,urbatioe Ap- 
proximation approach, taking a = 0 in t l~e  GSI'A 
algorithm. Other non-negative values can be select,ed 
to shape the error as a function of frequency. 
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