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Fast simulation of buffer overflows in tandem networks of 
GI/GF/l queues*, 

', Simply beeam of their mi&, the thefbation of thd ~ s t i c s ~ ~ b ~ c ~ o i r & w s : ~ ~  
Wen-dimensioned queueing w~works :kia~ia.itirect siumiation is &ety ~stiy:064' 
teanique that can be used to r h  this wst is importana samplm& and it has 
been shown previously that large deviMions theory can be nsed in con&wtiOn with 
importan0 Sampling to minjonize the reqnt\ed -tion .timeriW'tbis p*,. we 
obtain d h  on the fast ?hulation of tandem networks of queoes, and derive an 
pnalytic solution to the.pfob1erq of @ding.? pptiyl , s ; I p + t i o n . ~  for a adass 
of tandm =hvorks of GZJGIJl queues. 

X ~ t r d s :  Qneneang.mtworks, large deviations, jmportmp sknpI&, ~ - s i m n l a t i o ~ .  

. Ia designing teleeommuniotions networks, we:areohen interestedtedin deter! 
mining the rate at which data is:.lost .due to :buffer overiIo~s:In.geneml, it is not 
possible to eliminate these overflows in dimensioning the network, but because of 
the high cost of their occurrence, we would, like to dithe116iou~the..network such 
that the rate of data loss is minimized. 1n-order.to do $s, we ned ii cheapi'sim'ple 
method for d e t e h i h g  this ntte; 

There are many examples in the literature where hnportance sampbg [I].is 
applied to rare event problems in telecommunications (e.g. [24.) Of particular 
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interestis [2];.wbre:la$~:deviatiom thiory is'u~ed~~~w~juncti~~wi~~m~.o& 
sampling to minimize the sim@tion t b e ~ r g  ukd... These ideas are extended to .. . 2 . ..: 
queueing networks in [3]. However, no' akalytic '&pression for the parameters of 
the simulation system is given. This latter problem has been addressed previously 
for a number of special cases such as.JaCksognetworks [A. In applying queueing 
networks to the.-modeling of.,p~a~ticat~.~ystep!s,~ it is; oft- : n e w .  to use more 
complic+@.. modejs..Wthan the. M/@/l qu.qe..exapjn&. jn: @e above .examples. 
The specific case of que&'&th diterministic service times, which is of great prac- 
tical interest for modeling modem fptpacket-gwi+ng networks, is dealt with in 
[Sl. .In !&~.pper,.ye qVe!oqk,at.fandem netyprks, of ~ I / G f / l ~ . q u ~ p ,  i.,~. queues w h e ~  
h e  distrib.utions'iifji@r arrival and y h $ S e ~ ~ . t i i @ s  ire'&entjaUy .arbitrary, 
except.t&af.&i&sii;e Valval&= Ge indk~dent ,  "& are &&*e Grvice 
times. An analytic expression is 'derived for'the simulation system for a particular 
subclass of such networks. 

Section 2 introduces the idea of importance sampling, and the concept of 
maximizing speedup. The major results of [3] as they apply to this paper are 
summarized in section 3. Section 4 presents a number of lemmas necessary for 
the co.wtruction,of optimal, simulation s y s w  for p .@ndem &work of 
GZ/GI/l huenes:.which is .camed.out.in -tion 5. 

The id&inimpdr&c&hpling is'as follows.'Suppose that we q'ipterested 
in certain (rare) events in a system S that we &n simulate on 'a &$tat d p u t e r .  
Instead of siEnulating.S, we simulate a second system 8, which-has the property 
that the events in Sand S correspond in some way. In particular, to the rare events 
A in S correspond events A in S (which may be the same as the events A). The 
wrrespondence is such that 

. ~. 
(1) the events ;i in 9 are more frequent than the events A in S, and 

n e  problem af.finding.the .best system,.to use in importance sampling can be 
posed @ optin&ation.problem as follows, Let.A be.arare event for a system S, 
with cr = P(A) < 1. For a direct Monte Carlo simulation inyolving n independent 
.experiments,- .we :couId estiqae cr .via: 

where the wi are the ii.d. outcomes of me experimeqts.iThe variance of 6"is easily 
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. . 
&&iktively, consid& a probabiity'ineasure Pass~ciated &&a s y s k q ~ .  

kith P absolu&ly conhuous'with respect 10.2, such that the s&e &vent.$ti& . . 

apply for S and S. Using S we can obtain a second estimate 

w ~ ' L  =dP/dp and. the.& are the.i.i;&.doutcomes:of n experiments-using S. The 
quantity dP/@ is h o r n  as the-likelihood r&io, or Radon-Nikcdym derivative. 
The v&ance of & is different to (3, and is obtainable-,as 

:We waht-the estimate of 6 to-:be as acemate-as possible. Therefore, we want to 
i e p b  the probabilitIeses.of all.events..h S to.new:ones in S (which has the same . . .  
'event'qace) so that the variance ' 

is ginhized 121. 
Let Vk = l{hthsc*lcntA cccaninaialk~. Then in our original system Swe have: 

E[vk] = a. (6) 

Let Lk deriote the likelihood ratio dP/@ during trial k, i.e. the ratio of the pro& 
abilities of the trajectories under the measures P and P in S and S. We observe 
.that the Lk are ii.d. and. 

'~ence,.if s&ulate ide systems forp tri&,'and gS is chosen sgthat Liis known 
for.&h eerit, or at l& those for which Vk is ion-zero, then from (7), it is cw 
&at we caKestitnate the probability of the event A, CY via: ' 

. . 



Given a system Sminimizing (a*)', we canuse (8) to find the estimate ofafo? 
the original system S from (much faster) simulation performed on S. 

Now we have not yet suggested.h6w>the system S might be chosen in 
order to ensure that a good speedup is obtained, or better still, to maximize this 
speedup, i.e. :minimizing (o * )~ .  iq (5). In, mny ways, ye  haqe replpd one ... . 

qmbleq '(&din$ the ir~b;ab;ili&., of qvirtlow) with .,:: . &at* ... @ding..S . ~ . .  . 
given S). 

3 Past simulation of networks of GZ/GI/l queues 

We consider a general open network of GI/GZ/l queues. For a network of 
queues, calla cycle a piece &a trajectory starting at the zero.fite.and termin&ting 
on. the firstawasion when either. the :totalinaber of customers'in the network 
exceeds some value (say N);or the state. equals zero. again: Call .a .cycle that 
terminates with the system in the empty state a cycle of the first kind, and one 
that terminates with the number of customers iq thenetwork greater than N a cycle 
of'the second kind. h t  d be th=i~umb& bf qu&es in the networlr, Ai be the rate of 
external amvals at queue i, yi be the total arrival rate at queue i /li be the virtual 
service rate at queue-.< pi be the routing probability from queue..i to. queue j and 
pio:be the. probability. that.a:custamer:leaving queue i Ieaves.the?network. We .will 
assume that all queues are stable in the sense that yi 6-p,-, Vi. All the parameters 
of the system S (i.e. -yi, Xi, p, and pi]) are assumed constant These parameters of 
the system satisfy the traffic eegutionr: 

and the routing probabilities satisfy: 

. . Suppose a is the probability that a cycle ends in a buffer overflow, i.e. that it is 
bf the.-nd kind. There is a re1ation:between a.a@ & optimal bulation system 
~ ( ~ ~ , f i ~ , y ~ , ~ ~ ) ,  which ~'struci&ally the same S, and:isobtained'fropl S by 
varying its parameters from Xi, /li, ri, piito'A{, fi:, 4, pb, and which is used' for 
estimating a by simulation. Using a dmkheuristic justification to that presented 
in the previous section, it is'argued .in [3] that the parameters for an optimal 
simulation system S (Ap:, yi),Pij) can be found as the arguments achieving 
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minimization in the following large-deviations approximationl.for.a: 

where 

d 
&= xph logP4, 

j=o Pij 

where hA,(.) is the Cram& transform [9] of the distribution of the external inter 
arrival times at queue i, and h,,( - ) is the Cram61 transform of the distribution . . . .. of . 
the virtual service times at queue i. 

The in6mum is subject to the followipg constraints: 

x;,p:,7: 2 0, (144 

o s p & s 1 ,  (14'4 

"/;.>.pi -for at least one i, (144 

We wil l  use the symbols 7;; A;, & andp; to denote the optimal values of the 
A:, pi andp; respectively. It has been argued [2,3] that if the system S defined by 

theparameters 3, AT, p; and& is used to perform sipulation, .then this simulation 
is asymptotically optimal as N becomes large. In the next .section, we will perfo.nn 
the minkuhmin for a tandem network of GI/GI/l queues using the method of 
Lagrange multipliers to satisfy the equality constraints. 

'T6is approximation is quite mde, and is not of practical ase for estimating a. However, arguments 
associated with the mixhimtion @a A;, /A;, q:,&) will be nsefol in estimating the statistics via 
simnlatioa, evcn though the system generated will only be appioximately optimal. 



.212 . M.R. Frafer, BJI.0. AndersmlFast simulation ofbuffer.overfbws 

In this section, we state and prove a ~WIbe.1: oflemmas that will b e d  later 
jn @is paper. 

LEMMA 1 
Consider the problem of the previous section, in which the network under 

consideration is a tandem network of queues. For convenience, we assume that 
the queues are arranged with increasing numbers from left to right, so that a cus- 
tomer leaving one queue will enter .the queue immediately to its right. The formula 
(13) for R can be written 

w h e r e ~ i s  the unstable queue with thehighestindex, for the pactiwhrvalnes of A;, 
I 2 . p ~ ,  . . .,pi chosen . 

Proof 

Let k be the indexof the'leftm&t unstabli queiie in the 's;hhtidn system. 
.Then it is clear that 

7; = A<, (16) 

.since the average rate of customers leaving a queue is the minimum of its arrival and 
virtual senice rates. Similarly, let i be a queue that is upstable, and let j be the index 
of the first queue to the right of queue i that is also unstable. Then we have 

I 
7; =pi- (17) 

;Because of this, 

ivhere M is the index of the rightmost mtable queue. Then, combining the above 
stateinents, we must have 

"This makes que& Mfhe . . righhnG ,. . &ble queue. 



LEMMA2 
Using the same notation as &okve,for given h,,(.), th'ei is a ~ & u e  value of 

p' that solves 

q.pd this value is p' = p. 

Roof 

Consider the function 

for which 

which . is less than zero for all x > 0. It follows aatg(x) can have at most one zen, in 
x > 0. BY the  ropert ties of the Cram61 transform, x = u-' is one such value, i.e. the - - 

= p is the only solution. 

.LBMMA3 
Let F(-) and G(- ):be @vaprobaMlity distniutions relatsd by 

. . 

G(z) = F(uz+b). (23) 

Then their C d r  transforms h p ( - )  and hG(- )  are related by 

~ Q ( Y )  = ~ F ( U Y  +b).  

Proof 

The Laplace transfonn.qf F(.) is given by: 

and i ts  Cram61 transfoiq by 
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The Laplace, traqsform ofG(-) isgiven.by 

and its Cram& transform by 

LEMMA4 
Consider a single GI/Gl/l 'queue with aveiage arrival rate A and .averagk 

virtual service 'mte.p, ~d let ~e~&verdgk'ar i i iaI~and~~.sewice  fates in the 
fast simulation system to be A' and p' respectively. Then 

Proof 

Let A*, P* be the values of A' and P' achieving the in6mum in the mini- 
mization problem, obtained when the setup of section 3 is specialized to a single 
queue. It can be shown that the minimrmi ktisfie9[3]:. ' 

(This can also be established from (Il).) The values of A* and p* satisfying these 



equations are the average arrival and service rites. for' the. optimal simulation 
system. 

In (32), hA( . )  is the Cram61 transforin of the distribution of inter a m d  
&es. This distribution has mean 1/X. Now, the lifi h a d  side'of (32) is non- 
negative, since the Cr& traasfom is non-negative for aU values of its argument 
191. Therefore, the right hand side must also be non-negative. The constraint 
(I&) in conjunction with (1.1) means that A* > J. Hence, applying a known 
convexity property of the Craink @ansfom [9] gives A*.? X; Similarly, we can show 
$5 p. 

5. Tandem network of GI/GI/l queues 

For a tanderp network of d GI/GI/I queues, the cost function H that wemust 
mi&iz&to find the optimal simulation sys&in isi 

where 

I& minimization is to <e ~erfonned:svbject to the constraint 
.. . 

> Cli) -for at least one i. (36) 

These equations are obtained from (11) by eliminating the routing prob- 
.abilities pij.and the external arrival streams at .@ queues o&eb than the .&st (i.e. 
the.lefbost) queue, and Jetting XI be the external arrival rate.at queue 1.. 

Using lemma 1, we can rewrite (34) as 

where M is the index of the rightmost Unstable-queue in.the siniulation system. . 
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:We minimum:d be achieved where -the,partial derivative of ljl are zero: 

aH- - ( I )  -=- 
ax; - -. ' 

j W F 3 A ! .  7 +hA, q 
1 

Therefore, by lemma 2, (38b) implies that for:$ #;&, = I.(I.'W;BIC now left with 
two probIerns that must be solved to k d  the optimal simulation system: 

(1) to h d  the value.*f . M . that i s . o p m  
2 given M, to 5 d  the valu& of $ ifid'&,. 

Calculation of X i  and p& given M 

Given M, and the faet that the optimal value of pi is p: = for i # M, the 
optimization problem of (I 1) reduces to that which arises for the case of an isolated 
GI/GI/l queue. This has been solved:previously [3]. Hence A; and ,& are the unique 
solution of 

h - .+h . - =. --- hx. - A,. ( A*. J .  - (:; . I ,  (;J , (39) 

1 .  1 
= . G - 3 h ~ ( 3 - ) ,  (40) 

with'Ai. > X i  *./i;Iy.>'p& . .. 
-h other-woids, if M is hown, the' parhetkrs of the op;timal simulation 

system can.becaIcuIated &dytically. 

Calculation of M 
. . 

In the generaicase, *e.c&ot offer an analytic so1utioi to the problem of 
finding M, and a numeiical solution must be founb. w e  note that, at worst, this 
involves a search over d possible values of M. However, in an important class of 
problems, a:&nple;.analytjc. soluti~p.~4~e.s. &.t.. . 
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:Asiume:&re exists a fuliction hr( . , ;);with thepiopeaic3 that 

(1) for'specific values of the &st argimeqt,:it interpolatis the ~r~&.tqt@sform 
h,',(.) by 

h c ( ~ i ,  .) =h,,(i.); (41) 

(2) it is differentiable with respect to its first argument, q d  

for all p E [mini (pi), maxih)] and ,u' < p. 

Observe now, using (38b) that 

We now wish to.mininiiie HHwirespect ia M,.X~.a~d.~&~'Clearly, since &('a , . ) is 
an increasing function of its first parameter, we must choose this to b@j  sinal all as 
possible, i.e. 

other words, M is the index i f  the queue withthe smallest service rate, i.e. the 
most heavily loaded queue. The values of X i  and p& can now be found using the 
pxocedure described above. 

Further, we note that because the optimization problem solved for the 
tandem network is the same as that solved for the isolated GI/GI/I queue, lemma 
4 r ~ $ r e ~  &.< pM:.Since fiM.is,.@e thesmallest of &? rates,.pve have that 
TM+I-.= p&,Sik ,  .<:&+I ,=J&+I.- ,h:- o@ef words,. the heval rate at queue 
Mj- 1. is less ..than its .*@a! yrvice rate the shgulation, system.. Noting that 
&:=pi for:.i#.~,.-+d that.@s ,@kg& .that kk(lj&) = 0 for i # M m, and 
applying thi above argument ta..each,iuelle.to the,rrght of queqe M i,n sequence, 

.Te w a n t e e d  that no queuee to .the right. of qqeue. M .is unstable. in the i$it*.;'i.e. ..; < p; fbr'.d > k.. 
Two examples that fit this prescription are: 

(1) Where the distribution (Fi ( .'j atquene i) of the rate of virtual services can be 
expressed in the form 

,r:(x)'.= ,F[&X),, (46) 

for all 1 < i (d,.and.some.P(:.:).and:ppsitive.constaofs .ai; 



Let p b e t h e . . r a e s o c  with F(x) and pithe rate assseiated with 
F&). Also, let h( .) be,the Cram6r transform of F( -  ) and h,,(. 1 the Cram& 

.'ti&form.of F ~ ( . ) .  Then by lei- 3 

Let a, = pJp. We c& definee hc( ; , . ) & 

We observe also that 

Then -the derivative; of. hc(.., .) with-respect to its ..ht.parametercan be 
found via: 

which is positive'for < i;, by the ~iope~ties'of the Cmmir transform [9]. 
This fw applies where the difference between the ltishibutions of 

virtual service tirnei at the queuci in the network is &ply a tiinc scaling. TI& 
may be relevant wheie a number of identical servers are conneckd in parallel 
to provide inbased service capaciv at  particular queues. 

(2) Whet6 the distributioii of the iate of virtual servicescap bd exp&sed.& . . th6 
form 

f i  (x) = F(x + bi) (53) 

for all 1 5 i 5 d, and some F( - ) and constants bi. Applying an argument very 
similar to that in the previous example, it can be shown that this case fits the 
above assumptions concerning the existence oEhc(., *),. 
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This form corresponds to the case where the service timq..at each 
queue in the network have the same distributions, except for a different 
-constant delay at each.node.. 

Iq both pf .these cases, a3 wu,$(bk expected'&m- +e above re$ult; th,e 
opumai' iolution invilvks .c&nging the. extern& arrival. rate;-;and the .virtual 
& ~ c e r a t e  at the most heavily loaded queue, i;e;.thequeue'withthe smallest'service - 

rate. 
Ankxample of a ketwork for w h i c ~ ~ e  c ~ + & l a t e a d j t i x l i y .  @e op.t@niil 

simulation system is a h d e m  netwzfk of  ~ / D ] I .  queues: The piuimete6 of the 
original ,andoptimal simulation systems fos:a.&mb& sf-su& network? areshown 
itl table 1. In tbis uarticular examale. all- thevirtual service rates remain unchanged 
in the simulation sy~tem, indudin^g.&at-it node M; ;only ,the rate:of external ai?i&s 
(A1) is takes a .~ different ~ value ~ .~ . b the &&litti& s y ~ t e ~ .  

In this paper, we h i e  shown how the &k.of [3] &n -biused'to %id an 
optimal importance sampling simulation system for a class of tandem networks 
of GZ/GI/l queues, without the need for a numerical minimization. In this 
prwes, we have derived some resalts that are applicable to the generation of a 
fast simulation system for an arbitrary tandem network of GZ/GI/l queues. In 
particular, we have shown that in the fast simulation system, the service distri- 
bution is different from that in the original system for only one queue in the 
network. 

Further work is reauired to extend these results to arbitrarv networks of 
GI/GI/l queues. The prinkpal added diiculty in the general case &ma from the 
presence of the routing probabilities in the cost function to be minimized in hding 
the optimal sirnulati4 system, especially where there is feedback around the queue 
that dominates the overflow statistics. 

Table 1 
Optimal &nulation systems for a nnmber of 
tandem networks of MIDI1 queua. 

XI PI PZ Xi pi d 
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