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* Simply because of their rarity, the estiination oft.he gtatistics of buffer-overflowsi -
well-dimensioned queneing networks via-direct simmlation is exfreniely costly.-Ong
technique that can be used to reduce this cost is importance sampling, and it has
been shown previously that large deviations theory can be used in conjunction with
importance sampling to minimize the required simulation time:'In this paper, W&
.Obtain results on the fast simalation of tandem networks of queues, and derive an

analytic sofution to the.problem of finding an pptimal simylation, system for a class
of tandem networks of GI/GIf1 queves. '
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1.  Imtrodwction

In designing telecommunications networks, we:are. often interested in deter:
mining the rate at which data ig-lost due to buffer overflows. In.general, it is not

possible to eliminate these overflows in dimensioning the network, but because of -

the high cost of their occurrence, we Wwould: like to diménsion*the nétwork such
that the rate of data loss is minimized. In -order'to do this, we necd 4 cheap; simple
method for determining this rate, ]

There are many examples in the literature where importance sampling [1}-15
applied to rare event problems in telecommunications (e.g. [2-6].) Of particular
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interest is [2); where Jaige deviafions theory isusedin conjunction with importance
samphng 1o minimize the s:mu}\at:on t:me\reqmred .These ideas are extended to
queueing networks in [3] Howéver, 16 analytic expression for the patameters of
the simulation system is given. This latter problem has been addressed previously
. for a number of special cases such as Jackson networks [7]. In applying queneing
networks to the modeling of.practical systems, it is oftgn necessary. to use more
complicated. models.than, the M{M/{1 quene. .cxamined. in: the above .examples.
The specific case of queues with déterministic service times, which is of great prac-
tical interest for modeling modern fast packet-gwitching networks, is dealt with in
[81. In this paper, we look at tandem networks of GI/GI/1 queues, i.¢. queues where
the dlstnbutlons of mtcr arrival and vu-tual service times are essenhally arbltrary,
except that successive inter arrival times dre mdepﬁndent, as are successive service
times. An analytic expression is derivéd for ‘the simulation system for a particular
- subclass of such networks.

Section 2 introduces the idea of importance sampling, and the concept of
maximizing speedup. The major resulis of [3] as they apply to this paper are
summarized in section 3. Section 4 presents a number of lemmas necessary for
the construction..of .an optimal. simulation system for 2 tandem network of
GI/GI/1 aueues.-which is carried-out in section 5. :

The idea in importance' sampling is'as follows. Suppose that we are interested
in certain (rare) events in a system S that we ¢an simulate on 4 digital computer.
Instead of simulating-S, we simulate a second system S, which has the property
that the events in S and § correspond in some way. In particular, to the rare events
A in § correspond events 4 in S (which may be the same as the events 4). The
correspondence is such that

(1) the events 4 in S are more frequent than the events 4 in S, and

(2) the'contiection between § and-§ allows oneto infer P(4) if one'knows P(E)
" (B(A) is the probability of theevent 4 in§.)

T.ha problem of finding the best system to use in importance sampling can be
posed as an optimization problem as follows, Let A4 be.a rare event for a system §,

with @ = P(4) < 1. For a direct Monte Carlo simulation involving n independent
experiments, we-could estimate o via:

Gy =23 Lyl (1)
i=] . .

where the w; are the i.i.d. ontcomes of tne experiments.: The variance of & is easily
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computed as -
Blo~ &' =~(ad?). @

) Altematmely, consider a probabﬂlty measute P assoc:ated thh a system S,
with P absolutely continuous with respect to P, such thai the same event Spao&s
~ apply for S and S, Using § we can obtain a second estimate

& --Z L(@)L@), G

I-—-l

where L= dP/dfi and the'@; are the i.i.d. outcomes: ofn experiments.using S. The
quanttty dP/dP i is known as the likelihood ratio, or Radon—leodym derivative.
The variance of o a is different to (2), and is obtainable as-

i Aszw)quw).:é-'aa)-.. | N

We want-the cstimate of & to-be as accurate as possible. Therefore, we want to
teplace the probabilities of all- events-in S to'new.ones in § (which has the same
event'space) so that the variance

@P2 [ Puar ' ®
is lmmmlzed [21.
Let ¥ = Litne event A ocours in triat K3+ 'I'hen in our original system S we have:
EVi=c | (6)

Let Ly denoté the likelihood ratio d P/dP during trial &, i.e. the ratio of the prob-
abilities of the trajectories under the measures P and P in § and .S. We observe
that the L are iid. and

ElL V] =EV] = M
'Hence, if we simulate ‘the system-& for p tnals ‘and if §'is chosen so that Z; is known
for each everit, or at least those for which ¥, is non-zero, then from (7), it is clear

that we cas estimate the probability of the event 4, v1a

&= L1V1+L2Vz+ +LV
' '

(3)
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Given a system S minimizing (o* ) we can use (8) to find the estimate of o for
the original system S from (much faster) simulation performed on S.

Now we have not yst suggested how. the system S might be chosen in
order to ensure that a good speedup is obtained, or better still, to maximize this
speedup, ie. minimizing (¢*)* in (5). In.many ways, we have replaced one
difficult problem (finding the probability of ovérflow) w:th another (finding. §

. glven S )

3. Fast simulation of networks of GI/GI/1 quenes

We consider a general open network of GI/GI/1 queues. For a network of
queues, cali-a eycle a piece of a trajectory starting at the zero state and terminating
on- the first-occasion when either. the total:number of customers‘in the network
exceeds some value (say N), or the state equals zero again: Call -a cycle that
terminates with the system in the empty state a cycle of the first kind, and one
that terminates with the number of customers in the:network greater than N a cycle
of the second kind. Let d be the number of quenes in the network, ); be the rate of
external arrivals at queue i, +; be the total arrival rate at queue 4, p; be the virtnal
service rate at queue’y, p; be the routing probability from queue-i to. queue j and
P;obe the probability- that.a:customer:leaving queue 7 leaves the-network. We will
assume that all guenes are stable in the sense that +; <-g; Vi. All the parameters
of the system § (i.e. v, A;, 1t; and py) are assumed constant. These parameters of
the system satisfy the traffic equations:

d
7:-“-*2?;':'!?75:'\;, i=1,2,...,4, ' ©)
Jj=1 '

and the routing probabilities satisfy:
v d "
ZPEJ‘:I’ i=1,2,...,d- ) ' (10)
j=0

.. Suppose ais the probability that a cycle ends in a buffer overflow, i.e. that it is
of the second kind. There is a relation. between c-and an optimal simulation §ystem
SN i i, pis), which is strocturally the same as S, and is obtained from S by
varying its parameters from \;, ft;, 5 Py 0 AL, pis Vs Pis and which'is used for
estnnatmg a by simulation. Using a similar heuristic justification to that presented
in the previous section, it is argued in [3] that the parameters for an optimal
simulation system § (q/,, i,7i,Pp;) can be found as the arguments achieving
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minimization in the following large-deviations approximation' for-c:

a~expd-N_ inf R Z&h,\,( ,) +Emh,u,( )+):mm('rnm)K:
B 1Y) A

i=1 el

(11)
.:whére.
Pt_;
K= ZP log 22 (12)
N 1', : | (13)
Z(’Yi - ﬁi)lfyj‘bp;
)

where , (+) is the Cram@r transform [9] of the distribution of the external inter
arrival times at queug 7, and A, (- ) is the Cramér transform of the distribution of
the virtual service times at queus i,

The infimum is subject to the following constraints:

b B 2 0, (142)
0<ph<1, (14b)
4>} -for at least one i, (14c)

d’ ..

=t -
d ,
9 =" pjimin{}, 4f) + X (14e)
j=

We will use the symbols 47, A}, pf and pj; to denote the optimal values of the
Y1, N5 iy and pj; reSpectlvely It has been argued [2, 3] that if the system § defined by
the parameters »f, A}, yif and pj; is used to perform simulation, then this simulation
is asymptotically optimal as N becomes large. In the next section, we will perform
the minimization for a tandem network of GI/GI/1 queuss using the method of
Lagrange multipliers to satisfy the equahty constraints.

1Ihis approximation is quite crude, and is not of pracucal nse for estimating o. However, arguments
associated with the minimization (i.e. Aj, u7, 4/, pj;) will be useful in estimating the statistics via
simulation, even thongh the system generated will only be approxlmately optimal.
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4.  Technical lemmas .

In this section, we state and prove a nymber of lemmas that will beused later
in this paper.

LEMMA 1

Consider the problem of the previous section, in which the network under
consideration is a tandem network of quenes, For convenience, we assume that
the queues are arranged with increasing numbers from left to right, so that a cus-
tomer leaving one queus will enter the queue 1mmed1ately to iis right, The formula
{13) for R can be written

1

R=m, _ (15)

where M'i 1s the unstable quene with the lughest index, for the particular values of X},
e ey i—"d chosen. .

Proof

~ Let k be the index of the leftmost unstabls queiie in the simulation system.
‘Then it is clear that

T =X, (16)

fince the average rate of customers leaving a queue is the minimum of its arrival and
virtual service rates. Similarly, let / be a2 queue that is unstable, and let j be the index
of the first queue to the right of queue i that is also nnstable. Then we have

9% =i ' (17)
Because of this,

d
Z(’ﬁ' = MYt > 1 = e — Be (18)

‘where M is the index of the nghtmost unstable queiie. Then, combining the above
statements, we must have

RSy (19)
m]

2 This makes quews M the nghtmost m;qéble queue.
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LEMMA 2

_ Using the same notation as above, for given k(- ), there is a unique value of
¢ that solves

55() 4

and this value is g’ = .

Proof
Consider the function
£(x) = hy{a) = 3} (%), (21)
for which .
£ = —xHi(x), 22)

which is less than zero for all x > 0, It follows that g (x) can have at most one zero in
X > 0. By the properties of the Cramér transform, x = 4~ is one such value, i.e. the

g’ = pis the only solution. O
- Let F(+) and G'(- ) -be two probability distributions related by
| 6() = Flaz +b). 23)
| Then their Cramér transforms Ay (-} and hg(- ) are related by
ha(y) = he(ay +8). 24

Proof
The Laplace transform of F( <) is given by:
" Mels) = f ¢ dF(z) ' (25)

and its Cramér transform by

ay<y)=§gg [sy — log Mg (s)]- (26)
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The Laplace transform of G( - ) is given by

Mgls) = f 7dG(2) (27
= f oE=a g ()
—oblapg (5 S (o8
= e ag(=), 2%)
and its Cramér transform by
hg () = sup [sy —log M (s)] (29)
©oselRe L .

= §up [sy + ———10ng( )]

FER

= fz.g [s{ay + b) —log Mx{(s)}

= ke (ay +_b_). i -{'3(_))

LEMMA 4

Consider a single GI/GI/1'queve with average arrival rate A and averagé
virtual service rate-y, and lét the: average arrival and -virtual- service rates in the
fast simulation system to be A* and u” respectively. Then

X2, | (31a)
@< p. (31b)
Proof

Let X, p* be the values of X' and p/ achieving the infirvura in the mini-
mization problem, obtained when the setup of section 3 is speclahzed to a single
queue. It can be shown that the minimunmi satisfies 3]

S o I
Gl w

(This can also be established from (11).) The values of X* and g* satisfying these
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equations are the average arrival and service rates. for the optimal simulation
system.

. In(32), hy(-) is the Cramér transform of the distribution of inter arrival
times. This distribution has mean 1/). Now, the left hand side of (32) is non-
negative, since the Cramér transform is non-negative for all values of its argument
[0} Therefore, the right hand side must also be non—na'gative The constraint
(14¢) in conjunction with (11) means that A* > u*. Hence, applying a known
convemty property of the Cramér transform [9] gives A*> X Smularly, we can show
< p. w]

5.  Tandem network of GI/GI/1 queues

For a tandem network of d GI/GI/1 queues, the cost function H that we must
minirtiize to find the optimal simulation systein is!

H= R[,\; h;,(%;) +§ ;L‘,:km (;1—;)} ;. (34)

where

1

R (35)
zi:('ri — )y
The minimization is tq_b?e pexformed subject to the constraint
‘al>pl for at least one i (36)

" These equations are obtained from (11) by eliminating the routing prob-
abilities p;; and the external arrival streams at all queues other than the first (ie.
the leftmost) quene, and letting A, be the external arrival rate-at queue 1.

Using lemma 1, we can rewrite (34) as

@@ o

where M is the index of the rightmost unstable queue in-the simulation system.
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The minimum will be achieved where the partial derivatives of H are zero:

G Iy
a% R s (5) 4 (3) B5)

0 . :
RH - m(p)-{-h,‘,( ) i-"ltf{,'
T
-1—h (;) otherwise,
L

_ 'i‘herefore, by iemma 2, {33b) implies that fori #-M, ,u}‘ = p;Wearc now left with
two problems that must be solved to find the optimal simulation system:

(1) to find the value of M that is optimal;
(2 given M, to find the values of A} and M-

+(38b}

=0.

Calculation of M} and 3¢ given M
Given M, and the fact that the optimal value of g} is u; = p; for i # M, the

optimization problem of (11) reduces to that which arises for the case of an isolated
GI/GI/1 queue. This has been solved previously [31. Hence A} and p}, are the unique

sclution of |
1
h'\l ()\*) +hﬂﬂ(ﬂ ) ( * )ha\g( s) .t (39)
1
1 1 1
= < A, (“ ), 40
(n A) . (40)
with A] > Ay add gy S st

‘In other-words, it M is known the parameters of the opt;mal simulation
systcm can be calculated analytically.

Calculation of M

In the general case, We-cal_ahot offer an analytic solution to the problem of
finding M, and a numerical solution must be found. We note that, at worst, this
involves a search over d possible values of M. However, in an 1mportant class of
problems, a.simple analytic solution does exist.
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:Assume-there exists a firdction 4n{ +, « )-with the propertiés that
() Tor spec:ﬁc values of the first argument, it interpolates the Cramér. transform

h,(-)} by
holiss, ») =Ry (+); 1)
_(2) it is differentiable with respect to its first argument, and’
Ot
o> ¢ (42)
for all u € [min; (127), maax; (1;)] and ' < p.
Observe now, using (38b) that
1 1 .
b @) ()}

Wee now wish to mininiize H with.respect to M, 1. and ujs. Clearly, since hgle, + ) is
an increasing function of its first parameter, we must choose this to bé agsmall as
possible, i.e.

M = argminge,. (45)
nEfl.d]
In other words, M is the index of the queue with the smallest service rate, i.e. the
most heavily loaded queue, The values of A and pj, can now be found using the
procedure described above.

Further, we note that because the optimization problem solved for the
tandem network is the same as that solved for the isolated GI/GI/f1 queue, lemma
4; reqmres #iar-< poa-Since e is the smallest of the service rates, we have that
'm_n ,uM < y.M sl = Pate1-- In other words the arrival rate af queue
M -+ 1 is less than its wrtual service rate in the szmulatlon _system.. Noting that
pr=p; for, z;éM and that this implies that h,,,(l/m) 0 for i# M [7], and
applying the above argument to. each queute to the right of quene Min sequence,
we_are gua.ranteed that no queue to the right of queue M is unstable in the
Simulation systém, ie. ¢ < uiforalli> M.

Two examples that £it this prescription are:

(1)  Where the distribution (F;{ +} at-queue i) of the rate of virtual services can be
expressed in the form

, {x) = Flax), (46)
foralll1 <i< d,.and.s_omc.F(i-:)?anda positive.constants g;.
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Let . be the rate associated with F(x) and p; the rate associated with
Fi(x). Also, Jet 2(+) be the Cramér transform of F(-) and A,, (-} the Cramér

“transform of Fy(-). Then by lemma 3

Ial9) =hlay). @)

Leta; = p; fp. We can déﬁne‘kﬁ'( v, e)as

‘We observe also that

Then the derivative of ho(+, «) with respect to its. ﬁrst parameter can be

found via:
ahc 22 —1 ©, Ohela LL. —I
iy : 1 (H o] ;

= (51)
.- &
lah(’i) S5
;—:.Ta._’ (52)

which is positive for u! < g;, by the properties'of the Cramér transform [9].

This form applies where the difference between the distnbutmns of the
virtual service times at the quenes in the network is simply a time scaling. This
may be relevant where 4 number of identical servers are connected in parallel
to provide increased service capacity at particular queues

Where the distributioni of the rate of virtual services can be expressed in the
form

F(x) = F(x+b) (53)
foralll < i< d,and some F(-)and const,anté b;. Ap]ﬁlying an argument very

similar to that in the previous example, it can be shown that this case fits the
above assumptions concerning the existence offig(«, « ).



M.R. Frater; B.D.O. Anderson|Fast simulation-of buffer overflows 21%

This form corresponds to the case where the service times-at sach
gueue in the network have the same distributions, except for a different
-censtant delay at sach node..

In both of these cases, as wuuld be expected from. the above resplt; the
opumal solution involves <changing the external arrival rate,and the -virtual
sérvice rate at the most heavily loaded queue, i.e..the queus with the smallest service
rate,

An'example of a network for which'wé can’ calculate analyhca]ly the opumal
simulation system is a tandem network of MJDJ1’ queues " The parametets of the
ongmal and optimal simulation systerns for.a nymber of such networks are shown
in table 1, In this particular example, all the virtual scrvice rates remain unchanged
in the simulation system, including that-it node M; only the rate'of external arrivals
(A1) ix takes a different value in the §ifilation system

6,  Conclusion .

In this paper, we have shown how the results of [3] can be used'to find an
optimal importance sampling simulation system for a class of tandem networks
of GI/GI/1 quecues, without the need for a numerical minimization. In this
process, we have derived sorne resnlts that are applicable to the generation of a
fast simulation system for an arbitrary tandem network of GI/GI/1 queues. In
particular, we have shown that in the fast simulation system, the service disti--
bution is different from that in the original system for only one queue in the
network. ‘

Further work is required fo extend these results to arbitrary networks of
GI/GI/1 queues. The principal added difficulty in the general case comes from the
presence of the routing probabilities in the cost function to be minimized in finding

the optimal simulation system, especially where there is feedback aronnd the quene
that dominates the overflow statistics.

Table 1

Optimal simulation systems for a number of
tandem networks of M}{D/1 queues,

M F1 2 A TR
0.3 I 2 176 1 2

0.5 2. 1 L.76 2 1

07 i 2 138 H 2

0.7 2 1 1.38 2 1

09 H 2 1.11 1 2

0.9 2 1 2 1

1.11
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