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ABSTRACT: {Previows wenk, (Parkor- Andersan), has applied s Extendel alpan Fitter (BT 1o the paabden of estimating the funda.
mentid freguency, Phoses atud amphtudes of the hamonic components of a pevodic, not-sinusoidal signnl cuntaminated by adilitive noise. It
was shown that the EKF con Lo decoupled into bwe separale entitics: an amplitude colitsator and & phase-Treqiency estimator, Furtherninore,
it was shown that the amplitude estimator is explicitly eompntable, This paper duscrilres the subsequent investigation of the phinse frequency
estimalor in 1solation, where it is assumed tiat the harmonic amplitudes are known. We derive bounds an the pafonmance of the estinator
and show how the phase-lrequency estimation prohlem can be interpruted in torms of multicarrier Frequencey Modulation (FM). The paper
also presents simulations demanstating Lhe existence of 2 ‘threshold cffect’ - familiac Lo us from single carrier FM demodulation - associated
with the geneml phase-frequency estimation problen.

1 Iutroduciion 1.1  State Space Modcol
Consider an approximately periodic, non-sinusoidal signad contami- It is naw straightforward Lo deline a State space wodul fur the sigoal.
mated by additive nvise. Shice the siganl is non-sinusoidal, we may Fhe stats vector consists of Lie 2m + 1 ssg'nai' prramlers us fullows:
Wik oF it as consisting of an infinite mumber of sinusoida) conypra- ) P
ments; or harmonics. The problem we wish o address is that of {1 = [ra(e) .. v} w(0) O3(1) oo O] (1.6}
tracking the signal’s lumdaonental feequency along with the phaze ami
anplitude of gach of its harmontic components. The state space model is described as follows.
Pasker and Anderson [6,7] hnve attacked this problum by fornlat. .
ing a state space description of thn signal and applying an Extended ' e+ 1} = Far()+wlt) (.7}
Jalnan Filler (BKF) Lo the received signst, A complete desmiption {1y = w{f) 4 =(r)
b!' Lheir app’roaf:h may be found in [6,7); what I«l\-ows isa brief reca- = hfz{t)] + i) (1.8}
pitulation of the problem formulation given therein, While the work
of this paper does not deal with ikele formalation per se, the follow- where
ing sunweary sonees o scl the scene Jur our trealinett, We will be - b
consistent with thelr notation. hiz{e)] = Erk{l)sin &4t} [1.9}
We denule the received {or mensured) sigual by =1
2 = p)+n{th 120,1,2.... (3.1 and the (2m + 1) x {2m + 1) matrix F is given by
» where n{1) is the enrrupting measurement. nolse cavsed by -passage F _dm |
tlmough a channel, amd y(f} the actuai pericdie, non-sinsidal sig i
nal. {Here, I is x discrede thwe index.) The periadic signad may be 1 1
expressed s a Foutder series: ’ F= 2° 1 {1.10)
o0 : -
W) = 3 rusin(lwt 4 ) (1.2) ) . " 1

hed where [, 35 the m X m identity wmatrix and Ui Llank spaces e
where we bave assimed a zero dee.  component, Uie Tosdamental nole zeros. ‘The proowss noisc tenm ult) & a white, Gaussian,
fiequency to be w and the harnonic sinplitudes and phases o be vy, zevo-mican vectur Tandom process of length 2 + 1 with covarianae
al ¢ respectively. E[ v(tyeT (5} ) = Qbra, where @ is the (2 + 1) (2m - 1) dingonal

Suppose now that y(f} is in fact approximalely periodic so that

. i X matrix: Q £ dizg{ 70 91 .--92m )
harmonic awplitudes and phascs are ‘slowly' Gime varying. Then

The measurement noise n(t) is a white, Guussian, zerv-mean scodor

o random prociss with variance Bf a(t)n(s) ] = fid,. Wealio assune
- . ot for a8 £ and 3 there holds Bl nf{typ?{s} ] = 0. The signal wmodd
Wy = Z mi{t)sin (1), (13) is suited o the spplication of an EXKF due to Lhe noslinswity of (1.9).
k=1 The celevanl filter cquntions ace as Tollows, [see 1)),
where )
! 1.2  Diserete-Time Extoendoed Kabnan Filter
A k J . K
K ;ﬂ i) + daith (1.4 Estimation Equations:
with [t 4 1) — w{) § fool0), T raft 4+ 1) = 20 (0) | folt) and | ot + ey = Tele— 1)+ L0 — A X1} )).11)
I]-— #e(8) | fwit) all sm.all. It is reusonable to assume that enly a 41| = Fa(t F1) {1.12)
fiite mumber of harmonics contnin the bulk of thie signal energy, so
et al.l higher ?rdcr learmnonice contributions may Le neglected jn the Kalman Gaine
analysis. The signol can Lhen be represented by
wo L = SR a7 ryE {(:.13)
Wy =5 r(0sindi(n) (1.5) S = Bl - §t ]t D)te) - Tl - 10T 00
k=1

Riccati Equation:
shiere m is the nunber of significant harmonic components. {We

shall henceforth refer to the Tundamental’ component as the 'first Lle41) = F{ (=S AHOTE ) HTE(G FT 40
hannonic’.} {1.15)
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Lincarized Measurement Vector:

I’{ﬂ - akf z{1) }

n (1.16)
() lage)waiele=1)
Upon application 1o our signal model, we olitain
()= [sin.a-; w-uSinln O Ty e0SBy ... Tin 05 0 | (117}

where for convenience, 5: = E{l | ¢t =1} and nentlt-1)
The filter is injtinkized by £{0 { =1) = E} o{0) | = To und E{0) =
E] ({0} ~ o }{z{0) - Fo}¥ | = I - This completes the formulntion
of tlie problem as one of extended Kalmaa filtering.

EKF Structure: Il was shown in [6} that the soluiiot: of (1.15)
with Jf given by (1.17) could be closely approximated by the so-
lution of a ‘time-averaged® version of (1.15), (sce (6] for caplana-
tion). TFhis led to the discovery that the BIKF could be decouplald
into separate amplitude estimation and phasce-frequency cstimation
components whereby amplitude eslinates were inadc a3 il Ll phase
and frequency eslimates were correct snd wice verse. Furthermore,
the amplitude estimator was found to be explicitly computable. Our

__ Lask, therefore, is Lo atlempt an understanding of the phase-frequency
* estunator.

2  Analysis of Phase-Freguency Estimator

Quice again we cansider an approximately poriodic, non-sinusoidal
signal y{t} with m harmonics, nlthough on ¢his oceasion we will work
in continuous time. Our task is to rack the signal's fundsnentsl
Irequency along with its hannonic phases, given that it has besn
‘contaminated by additive nojse, We nssimiz perfect knowledge of the
harmenic amplitudes, 4., 1 € & € m, consistent with our wish
to snalyse the phase-freguency estimiator in isolation. Similarly to
Section 1, we may express the uncorrupted signal by

)= ) Asindyy) - (2.1)
=31
The mecasurements are then given by
={t) = y(t} + n(1) (2.2}

where n(f) is the measurement noise, We assume a state space moedel
_ag follows:

H) = Fo(t)iwg+u(t) (2.3)
() = ia‘lesinﬂstlHﬂ(f)
= )4 n) (2.)
where 2(t) = [ (1) 84(2) . Oen(8) I7, 12, = [ o0 8.0 )7 and
T ool
F=| 2 2.5
P

Here, Fis an (m+1) X (m+1) mutrix and ={t) a veciorof length m+1.
The process noise voctor v(t), {also of length m + 1), has covariance
Bl v(1)vT(s}] = Q&(t - 5}, where @ £ diag| g0 41 ... qm ). Likewise,
Lhe measurement, hoise scalar n{t} has vatiunce B n{{)n(s}} = R&(~
s), where R 2 /2.

The process and measurenent notse processes are Luken to be in.
dependent, just as in ihe discrete-lime formulntion, (in fact, the sin-
ilarily is such that the phase-frequency part of the discrete-time stale
space model may be recovered by ssmpling the above continuous-Linw
syster and Jelting o tend fo uero,)

Once again, the signal model is nonlinear snd we apply a coptinuous-
time EKF to the received signal, The canations are given as fullows,

2.1 Cooatinnous-Time Exteudwt Kalsan Filter Equations

Estimation Equation:

) = PR + wy + KO 20 ~ A3} ) (2.6)

Kalman Gain:

K() = S()TR {(2.7)

Riccali Equation:

By = FE(+EOFT - SUTRTHE(N+Q  (28)
S() Bl {at) - HONa{h) - FUNT) (29)
Lineavized Obseryation Vector:
H{Y = ﬂ%;’(%)-l ety . {2.10)
The lincurized observation vector i given in this case by
[0 Ay cosBy AgcosBy ... AucosOon ] (2.11}

‘The *soul’ of the EKF is the Kalaan Gain, abtained by solving the
matrix Riccati equation, (2.8). We next discuss how the solution of
(2.8) may be approxinated as { — co.

2.2  Soplution By Time-Averaging

The solution of {2.8) appears to be an intractable problewn dus to the
presence of transcendental functions is the JJ(2) vector. The task can
be considerably simplified with the use of a similar strategy to that
emplayed in the discrete-tim: sitvation, namely the replacement of
the HT{(} A2 H{t} term by its time avernge. Theorem 2.1 below then
tells s under which conditions (he solution of the ‘time-averaged’
stendy-state Ricentl equation so obtained can be used Lo npproximate
the solution of {2.8) as t — oo, Before stating the reult, we require
some definilions.

Let us focus on the HT(2)RII{1) matrix. Aparl from the fiest
row and column compencnts which are tero, its (i 4 1)(7 + thh com-
ponent is given by 244 cos §; cosi?; [No. Time averaging yields

0 i#j

ave] 24;Aj cosﬁ-msﬁ}[!\’g 1= { ANy i=j {2.12)
L]

We may tien define the time-averaged version of HT 11 as [llows.
TRV 2 v HTRH | = diag!—;;[ 04%..4%,1. (203

lere, ave(-} denoles Lthe operation of aversging ¢ach matriz compo-
stent over one period of its oscillation. The resull is the diagonal,
time-invariant matrix defined in (2,13}, the non-uero diagonal com.
ponents of which are the individusl harmounic signal-lo-noise ratios
{SNR%). .
The Yime-nversged’ steady-state varsion of (2.8) is defined by
I
0=FL+EF" ~LH RTHE+Q {2.14)
The filler system matrix associated with {2.14) is given by F £ (Fu
T R~¥TT). We are now ready tostate the theorem. {Lack of space
preciudes us giving a prool.)

Theorem 2.1 Consider & and Z(t) os defined in (2.13) and (2.3).
Suppose that the eigenvalues of F avc much closer to O than fo the
point jw ao thal the system &) = Fa(t) + BlLY is 2 Jow-pass syatem
with veapect lo inpuls of frequency w end above. Then as { = o,
L = B(t) is graranteed to be small.

{The result implies Ut for T 10'be & good approximation to £(2)
as [ — oa, signals of frequency v must lie outside the *pass band’ of
the fikker sssacialed with .}

Armed with the resuit of Theorem 2.1, we twn our atéention to
the solution of (214}, Assuming both frequency amd phase variation,
Q is a full rank disgunal matrix. By decompusing @ into the sum of
two singular (m 4 1) x (m + 1} diagons) matrices

Q= +G=, {215)
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where

Qs £ disg[ge00...0] (2.16)
Qz é diag[ g 2 2 ---Fm ] L3 {2'17}
it is possible Lo explicitly solva the Riceali cl*qnntiom
0 = FE+TiFT =50 R'TTT+ Q (2.18)
0 = FE 4T FT LA RIS +Q2,  (219)

for an arbitrary rmmber of harmonics, m. The solutions T) and Ty
¢an Lhen be used Lo derive upper and Jower bounds on the full salo-
tion, (that of {2.14)}. (It would seem that {2.14) is not analylically
solvable {or arbitrary m, hence our indirect approach.)

2.3 Interpretation of T,

The signat model of (2.3) and (2.4) with Q) as the process noisa et
varante matrix, (and ¥ the error covariance milrix}, coresponds Lo
the case whers 1he fundamental frequency alene experiences random
vasintion, with ne overlying rondom phase variation. This can best
beconceptualized as frequency modulation (FM) — more specifically,

Juulti-cirrier FM. We can think of the random frequency variation as
the ‘message’ modulaling a set of harmonically related carrier fre-
quencies. We will laler sce the importance of this interpretation,
particularly in relation to its implications for the EKF's parformance
at Jow SNR.

24 The Solutions T; and T,

. These are given as follows. (Space constraints preclude us from de-
scribing the method of solution.)

fw  Epw Wow 3w aan M
Cﬁw E‘ 2{0 3{9 en m{a
2w 4éa 6€p o ?ﬂtfg
o= - o 9o ... :
: o mm - 1)€g
m’EDw mzfe
(2.20)
b o 0
0 vE o . 0
f! = 0 (] \fﬂ- o ... 0 2.21
a Vi
where
oR
L = < {2.22)
R
fow = '5’53 (213’
4—!
o = (o= I —) {2.24)
o= -1+(1+;Eq;”1”’)m 2.25)
X = M+4r2+9A +... +mPAm  (‘olfcctive’ SNR)
' {2.26)
A = EH 1<ig 7
i =N £igm {2.2%)

The physical interpretation of the @) model as mmulicanier FM is
justified by inspection of the solutions to {2.18}. As we will later sce,
this reveals Lhal the formulae of (2.22) ~— {2.26) arc virtually identica)
to thoss for the well known problen of classal (single carrier) M
demodulation. The role of the signakto-noise ratio (SNIY) parameter
in the classical case in assumed in the-multicarsier case by what we
term the ‘effective SNR A —a welghted sum of the individual earvier

SNR's.

" By comparison, the solutmn of (2.19), By, is

is considerally stapler
inform than ;.
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Emor X=X | X=01xXg | X=001xXp
EE XN - 21.9% 21.5% 21.8%
f=10"% .,a =107 g=10"%
b4 —‘t‘: 21.9%V 21.8% 21.8%
-T2 297% 295% 250%

“Table 1: Percentage Uane ecror in approximating by bounds.

We remark that the solution Ty is ned & stabibizing solulion for
(2.18}, in the sense that there holds anly Re l;[F-El-ﬂTR"lﬁi £0
and not Re X[F -E;ﬁTR“‘ﬁ] < 0. In other words, the fillor
defined by Ty is not asymplolicslly stable. It can be made so by the
introduction of a small amount of phase process noise into the signal
model used for Lthe purposes of designing the Rlter, ic. by making the
replacement Qy — diagf go €5 ... € |, where ¢1,... ¢ are small in
relation to gg, but nonzero. Wilh this new filler applied Lo a signal
genemled by the signal model asswisted in the multicarsier case, this
serves to drve Lhe phase estisnates towards the true phase values as
[ = 00,

2.5 Boundson T

As mentioned earlier in the section, Lhe Ltwe decompusition solutions
can be used lo derive upper and lower bounds on the full sofution

Tof {2,134}, The Jower buunds are trivially oblained via Nishimura's

Theorem {1 to be
wnx (5, 52) € <E {z.28)
An upper bound may be derived, when Qz is not large, by con.
stilering the solution of {2.18} bul with &y replaged by 1@, for
some constant v. ket X 2T RN = dagl 0 Ay oo Am ] and
define the pseucdo inverse of X by X3 2 (¢ A;" nAGY ), where
XXt = X1X = diag{ 0 1...1 ]. The upper bound is then given by
the following result. {Space limitalions prevent us fromn presenting
the proof here.)
Theorem 2.2 Lef T1ly) be the solntion of (£.18) with Qy replaced
by Qs
f. Choose § so lhal 72XV 2 Qa, and szsume that the eunfries of
Q7 are safficiently smell that § £ 2a.

2. Ghoose v > O 50 thal

B
o 2’

{2.29)
Then with T the solution of (2.14) with Q = Oy + Q3, there holds

E<Ti{n+6X%. (2.30)

For t.yp:cnl values of X and with o = 0.5, the pereentage Lrace

.ervars in approxianaling T by the overbound of Theorein 2.2 along

with the wnderb ounds stated carlier In the section, are given in Table
1. There we have defined Xg = diag] 1.01.01.01010]}and Q =
Q1+ Q2 = dingl 90 m ...94 } = 1078 % Xg. We clivse the minimum 8
satislying Theorem 2.2. We also chiose v satisfying equality in (2.29),
e, y= T:ﬂ!ﬁ: .

3 FM Pemodulation and the Threshold Effect

In this section, we aim to deseribe the similarities between classi-
cnl single-carrice FM detnodulation and the physical siiuation corre-
sponding Lo the signal moded of (2.3) and {2.4) with @, as the process
noise novariance malrix. This, ax we have already stated, can be best
interpreted as ‘multicarrier’ FM demoedulation. Having achieved this,
we intend Lo deamonstrate the existence of a ‘threshold ¢ffect’ in the
multicarricr case — a phenomenon that is well known in the spacial
case of asingle carvier. We will then present the results of siinulntions
demonstrating the existence of a threshold effect in the case of the
anginal discretestisne EKF as defined in Section 2.



3.1 Single-Carrice FM Damodunlation

Qur choice 2mong the plethora of lreatments of classical FM demnod-
ulation, will be the state space formulation of Van Trees [8). Here,
the received frequency-nodulated signal is assuined Lo be of the form

ru{t) = V(2P)sia(wet + dy / afu)du) + n,(t) (3.1)
[}

where 1,{t} ia white, gaussian and zero-wnean with variance —hi;“ §{t—s)
and the modulating *nwssage’ process aft) has the specirul density
_ L]

Sa(w} = m . (3.2]
In other words, () can be thought of*s3 the cutpul of & first order
lincar system excited by white noise with spectral density . We then
define astate vector v,(t) 2 {a{t) 6(t)]7 where 0{t) & d&j [ afu)du.
(Mote that we have changed Uhe order of the stale vectar components
from that arginally defined by Van Trees in order to be consigtent
with our previans notation.) We can rewrite {3.1} as

ralt) = Bafz(1)) +ma() (3.3)

whaere .
halz(t)) = (2P} sin(wet + 0(2)) . {34)

We obtain the Hyear ‘base-band’ signal woedel Lelow as follaws,

© Apply an EKF 1o the xonlincar signal inodd] represeinied by {3.5) and

(3.1). Then apply Theoren 2.1 to the associated [ticeati equution.

This givesrise to o "time-averaged’ Ricenti equation whose coefficients

can he identifled with the paramcters of the signal modd of {3.5) and
{3.6} below — the ‘base-band® modet

£i(t) == ( ;f 'g )z.(l)-!-');{l) (3.5)
T = (0 1)) +R.00) . (3.8)

The process nolse vector b{t) is white, gaussian, zero-mean and in-
dependent of the messurement noisc ?z'(t} with Ef v {t)uT{r) ]| =
diag[ ¢ 0 J5(¢— 1) and Ef R, (t)n.{r) ) = 450t~ 1), .

The steady-siute mean square Kplman estimation errors can then
be found by solvipg the 2 X 2 algebraic Riccati equation

— = = - —_ P —
o=v( d:‘ :_)P+P( ak ‘2’ )—P{DI)T?—V;(GI)P-I-( :
(2.7)
where
B = s bow .
p= ( E5 Eﬂ ) ) (3-8)

“The expressions for the mean square frequency ercor £, and the meun
square phase ervor £¢ are Labulated in Table 2. Also tabulated are the

corresponding expressions for the fundarental frequency and phase

errors in the multicarrier case. We can vse that the expressions are
virsually identical apart from some minor differences caused by the
fact that shightly differcnt models have baen used. This similarity
gives us some confidence in supposing that multicarcier FM demod-
ulation cun be understood in terms of its dassical spatogue.

What are the implications of this clear similarity between the Lwo
scenazios? Perhaps the most important implication is one concerning
the low SNR peformance of the mullicarsier demodulator. It is wall
known that in the single carrier case Lhere exists & phencmenon {due
to the problem’s inherent nonlinearity) which manifesis jtself as a
sudden worsening in demodulation performance at a sulficientiy low
SNR. This is aptly termed the ‘threshold effect’. At a certain citical
vahie of SNR kpown us the “threshold point’, the mean square fre-
quency error increases suddenly and rapidly above what is predicted
by the linear model, In the single carrier cave, this point corresponds
tt; a caleutated mean square phase ervor of about 0.25 rad?, {se= Table
2)

There are two main causes of the phes . The fiaxt iy that
at low SNft's, the linearization assumptions underpinsing the EKF
become invalid, introducing errors that are not accountud for by the
linear model. (Recall chat the BKF linearizes the nonlinear signal
model aboul the current statz estimate which is assumed close (o the
froe current stale valus, At low SNR's this assumnption fuils.)
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The second cause, (actually alse attributalle witimalely to the
lailure of the hinearzation assunption), & tenwed “cyele slipping'
whercby at low SNMUs the phase estimate may differ from the true
phase by & multiple of 2, This couses a teansient i the frequency
wstimata thereby Increasing the frequency estivation emor?.

In view of the opparent similarity between the ulticarrier and

_ classical problems, it is reasonable o ssk if a threshold effect occurs

1}
0

in the multicarder case as well, Jindead, computer simulations show
strong evidence for this,

3.2 Sihmalations

Conputer simulntions? were carried out using the discrete-time EXF
defined in Section 2. [Recall our earfier statements sbout the equivas
Jence belwesn the continnons and discrete-time fonnulations. In any
cuse, it is the discrete-time EKIT that is ultimately of interest)

Thuee clusses of Monte-Cazlo stnulations were performed corre-
sponding 1o the spedial cuses of inylticarrier FM demodulstion, pliase
frecuianey tracking and phase-frequency-aightude tracking respec-
tively. Bach simulation involved measuring the mcan square state
estimation errors for SNt*’s ranging from 60 dB w0 =10 dB. The
pumber of Monte-Caclo runs for sach SNR was 30 . Each run was
200 umne samples long ta ensure that all measurements wese taken in
the steady-state. In the interesty of contionily, we have used exactly
the same input signal as in [6,7] and previously in {5], namely oue with
5 harmonics whose initial amplitudes are glven by 7 (0) = r; (0}/%,
£k =2,3,4,5 and fundamental frequeney w = 270.08,

As previously siated, the discrete Liine EKF of Section 2 was uzad
for ¢ach cluss of stimulation. The EKF estimates phases, frequency
and amplitudes, but in the case of both malticarsier FM demodula-
tion and phase-frequency tracking, the amplitudes are dssuomed con- -
stanl and known. Strictly speaking thercfore, the zimplitudes do nat
need to be estimated. If we set the initial amplitude error vardances
to zero and the initial amplitude estimates Lo the true amplitude val-
ues, the EKF will estimate the frequency and phases on L basis that
the amplitedes are known {and tiis happens in the first two classes
of simuiation below). Thix is because of the fact ¢that the amplicude
estimator and the phasefrequency estimator are decoupled, which
firstly ianplies that the phase-Irequency estimastor treals the ampii-
tude cstimates as il they are correct, and secondly that ancertainly
its the phase and frequency estimates has no effect o the ssaplitude
‘estimates®,

The following initializations and parameter values were chosen for
each class of simulation.

)

1. Multicarrier FM Dernodvlator: flere, the amplitudes are as-
sumed copstant and known so that we set 7p(0 | -1} =
w0 1 £ k £ The initial phases were alsa set
cqusl [ do. Bi{D}=1) =0(0) =0, 1 £ k < m. Sim
ilarly to [6,7], the Initial frequency estimate was taken Lo be
S0 | 1) = 5/8wf0} = 0.05 x Ix and the measurement noise
varianceto be ft = 1. The initial state crror covariance was taken
to be £{0) = disg] 0 0 6 0 0 (0,06x)% 0.02 0.02 0,02 0.02 0.02].
Note that the first 5 diagonal entries are zero, consistent with
our (pssumed) pedect knowledge of the barmonic amplitudes,
Also note thal the last fve entries ave non-zero which simply
veflects what would in practice be sur poos initial knowledge of
the phase — (we have used the same values s in [6,7] here), In

- this and the following clhsses of sitttulation, we use two values
of the process noise covariunce matrix, The fimst is the actual
signal mode) process covariance used in the stinulation program
to generate the signul to be estimated. In thds case the signal has
no amplitude or phase variation. The covariance is then given
by Q, =diagf0000022,00800] whereaz =3x 1077, The
ather cavarlance, é, = ding[ 00000 a3 ay ar a; a; 41 ) where
ap = 1 X107, is used in the on-line solntion of the Riccati differ
eners couation. We note that the phase entrics of @, are nonzere
wihtich appenrs inconsistent with the multicurrier FM demodula-
tion assumpticn ihat there be no random phase. This clioice is
deliberately made to avoid the phenomenon of data saturation
s deseribed in [6]. We alio note that the amplilude entsius are
zero because we Inow the amplitudes: they do not need o be
esthnated,

™m.

EPhis is sometimes refecred 10 In practical PM systema as “click® noide.

2Maclab was vied.

3W: wer the same definition of SNK 33 do Patker and Andcnon, e
SNR{4B} = lololno(}::;‘ e2 2.



Muean Square Mean Square ] Threshald point
Freaquency eiror Phase Brvor {phase error)
(fundamental} (fandamental)
Bingle Carrier
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Toble 2: Comparison between Multicarder and Classical FM

2, Phase-Frecuency Trackers This siluation corresponds te the sig-
nal model of (4.8) and (4.9} with Q as (e process noise co-
variance matrix., In other words, we are permitting the fre-
quency and the plnse to have random variation. [owever,
the harmonic amplitudss are stl] assumcd conslant and known.
Cur signal moddl process covariance is thercfore taken to Le
Q,=ding{ 00000 az a3 a3 a3 11 a3 ] where a3 = 1 x 1073,
while the covarfance used in Lhe solution of the Riceati difference
cquation is @, = diag{ 0 0 0 0 0 a3 ay 23 a3 as 23 ] Otherwiss,
all inftializations and parameter values are the same as Jor Lhe
mulicasrier 'M deanodulator.

3. Phase-Frequency: Amplitade Trucker: We now permit frequency,
phases and amiplitudes Lo vary randomiy so that the signal model
process covatiance becomes @, = diag 03...07 22 63...03 }.

" {This time we are estimating amplitudes as well as fregmency
and phases.} The possibility of data saturation is no longer of
concern, since all the states in the signal modef are excited. In
other wonds, we set @, = Q,. Apart Irom initializing the funda-
meatal amplitude estimale to Lhe squara root of 3/4 of the peak
signal encrgy and the remaining harmonic amplitude sstimates
to zero, all initializetions and parameter values ave the sane as
in the mullicarrier FM demodnlator.

Results: Plots of the inverse steady-state frequency error variance
versus SNR, both aclual (asterisks) and theoretical (unbroken lins),
for cach of the three classes ave given in Figores 1 - 3. {1t should be
roted that filiered, nol predicied estimates are used.) The existence

of a threshokd effect is clear. At an SNR of approximately 12 B the -

inverse of the actutal frequency error variance drops suddenly helaw
the corresponding (linear) theoretical value. We obtained the theo-
relical value of ervor variance for each SNR by avernging the on-line
solution of the Rizeatj difference equation after 200 time samples over
the 30 Monte Carlo runs. (An averaging appronch was necessiLated
by the measurement dependent nature of the /7 vector in the Riceati
equation.)

We also present plots of the steady-state phase ervor vardanee ver-
sus SNR, both actual and thenretical, for the st harmonic {funda-
mental) in Figures 4 - 6. The onset of thresheld is clearly exhilited.
(The presence of eycle slipping is net deducible from Uicse plots, as
we hiave used mnod x values of the phase ervor in caleulating Lhe vayi-
ance.} Of interest is the difference between the theoretieal aned actnal
phase error variance in the linear region, (high SNR), a difference not
duserved in the frequency plots. A passible broad explanation may be
the fact that application of an EKF involves a linearization abont the
predicted stale estimate, Umreby intraducing extra wnenrlainty inlo
the state eslirnales above that assacialed with a Lneasization about
the fillered state estimate. Heow this might explain the differenca be-
lween the phiase error variance plots and ihe inverse frequency error

vaiance plots is not known, The plencinenon is stifl ander investi-
gation.
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4 Conclusions

This paper has gontintied an investigation iuto tiie propertics of a fire-
quency estimation algorithm first meoted in {6, Same new jusights
into the stiuctnre of the algorithm were discovered, mimarily tha
the phnse-frequency estiation prolilem is interpretable in terius of
multicarrier FM demodulation. The multicarrier FM problem was
found to be very similar to the well known problem of classical sine
gle carrier PM. This recegnilion led to the discovery of a threshold
ellect in the case of the full amplitade, phase and frequency tracking
prablem.

‘This in turn has spawned a variety of divections for further inves.
tigation. First among these is gaining an understaneling of how the
threshold elfect occurs. The question here ix: are Lhore a4 nuinber of
sepurafe threshold points each associated in some way witl individual
harmonics? Can Lhis be cstablished analyticafly?

Anotler is elipracterization of Lhe threshold point. Ts 2his possibie
with a single valus of phase error for exarnple, as in the case of single
earvier FM, or do hanmonics intraduce unexpecial complicntions?

Finally Lursiing from The analylical to the practical: how can we
lower the threshold point, i, how can we get Leller pesformance
from the EKF at low SNR'a?
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Tracker
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