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Abstract

Let P be a convex set of real polynomials. This paper considers the question
of when there exists a real polynomial 0(s), or more generally a real transfer
function b(s), such that p(s)/b(s) is stricily positive real for all p(s) € P.
Necessary and sufficient conditions are found for the transfer function b(s)
case, and when the degree of the polynomials in P is restricted, such con-
ditions are also found for the polynomial b(s) case. Closely related results
are also obtained for a z-transform version of the problem. The results have
application in adaptive systems.

1.Introduction and Problem Formulation

Motivated by problems of adaptive system theory, in particular output error
identification and certain adaptive control algorithms, [1-3], the following
problem is addressed in [4]. Consider a set P of n*M degree Hurwitz poly-
nomials. State conditions for the existence of an n*" degree Hurwitz poly-
nomial b(s) such that p(s)/b(s) is strictly positive real [Rep(jw)/b(jw) > 0
for all real w, given the Hurwitz property for b(s)] for all p(s) € P. More
generally, one can replace a search for polynomial b(s) by one for rational
b(s), with relative degree -n. To understand the importance of this problem,
consider the adaptive output error identification of a plant whose transfer
function has denominator polynomial p(s). Assume degree of p(s) = n.
Then, to ensure the exponential convergence of the identification algorithm
one must filter certain signals by a filter having transfer function 1/(s),
where 1/b(s) is rational, has degree > n, has relative degree n and b(s)/p(s)
is strictly positive real, henceforth abbreviated as SPR. The degree restric-
tions apply because of the need to avoid explicitly differentiating certain
signals. Notice that the simplest such 4(s) is a polynomial of degree n.
Further, from the definition of SPR transfer functions, b(s)/p(s) SPR is
equivalent to p(s)/b(s) SPI. Notice also that p(s) is unknown. To con-
struct an appropriate b(s) onc can make the additional assumption that the
coeflicients of p(s) lie in some known convex set, The problem then becomes
one of finding a single b(s), satis{ying the appropriate degree restrictions,
such that for all p(s) in this set, p(s)/b(s) is SPR. For a discrete time plant
with stable denominator p(z~!), the corresponding design problem is to
find b(z~1), such that p(z=1)/b(z~1), is SPR (i.e. it is stable and obeys:
Re [b(e™*)/p(e™*)] > 0 for all real w). Unlike the continuous time case
there are no degree restrictions on b(z~%).

Two of the significant contributions of [4] in treating the continuous time
problem are the following. First, sets P are identified with the property
that there cxists a finite subsct P* such that p/b is SPR for all p € P*
implies p/b is SPR for all p € P. A wmost important example of such a set is
2 “Kharitonov sct” so called because of its importance in robust stability,
[5]. More precisely, with

n—1

pls) =" 8" o, pi € [ai, Bi), (1)
defining the set P, the set P~ is given by the four polynomials
Pl(s) = s + alsu—l 3 a:ﬁ"'l”' + ”'an—‘s + /]45"_4 + 0(55"_5 +... (2)
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P:'(S) = "4+ a Su—l +/}’_¥S”—2 + ;‘9‘15”73 + 0'43”_4 + 0'53"-5 + (3)
pa(s) = "+ Bys" ! 4 s 4 ags™ T 4 B4 4 Bss" %+ ... (4)
pals) = S4B T Bus" T b aas 0 4 ass" 4 Bss 4 .. (B)

(The coeflicient pattern involves alternation of two minimum values and two
maximum values).

The fact that the infinite set P can be replaced by the finite subset P* of
course makes the search for 5(s) a much easier task.

The second contribution of [4] to be noted here is that a sufficient con-
dition is derived for the existence of a Hurwitz nt" degree b(s) such that
pi(s)/b(s), i = 1,...,4 is SPR, the pi(s) being the four corner polynomi-
als of a Kharitonov set, i.e. they are given by (2)-(5). Such a b(s) yields
p(5)/b(s) SPR for all p(s) defined by (1).

Our main contribution in this paper is to find conditions for the existence
of b(s) which are necessary and sufficient, and to present a constructive
procedure. We present results for the case when b~'(s) is a relative degree
n transfer function, but b(s) is not polynomial, and results applying with
polynomial b(s), when n < 4.

The first problem considered in this paper is posed in discrete time.

We work with the n'h degree polynomial p(z~!) lying in a known convex
polytope P. It has been shown in [6] that with P* denoting the set of
corners of P, p(z=1)/b(z~1) is SPR for all p(z~!) € P and some fixed
b(z=1) if and only if p(z=1)/b(z~?) is SPR for all p(z~*) € P*. Given a
finite set P* of polynomials p;(+~1) in 2™, we seek a polynomial b(z~1) in
z=! such that p;/b is SPR for all i. It is shown that such a b(z~!) exists
iff for all p in P, p(z;!) = 0 implies |zg| < 1. We also give a constructive
procedure to find such a b if one exists; this constructive procedure uses the
polynomials in P*.

Two equivalent conditions arc established: the first involves the phalses of
pi(e7*) for different 4, and the second is that for all p(z=) e P, plz5)=0
implies |z0] < 1.

What makes the discrete-time problem somewhat easier than the continuous
time problem is the fact that the degree of b [as a polynomial in z~!] is not
constrained by the degrees of the p;, so that there are in fact arbitrarily
many coefficients that can be adjusted in b to secure the SPR property.
In contrast, if the continuous time transfer function p(s)/b(s) is SPR, the
degrees of b and p necessarily differ by at most 1, and thus the freedom in
choosing b is more limited.

The second issuc tackled in the paper is the continuous time problem. We
now work with a convex polytope P of nt" degree menic polynomials p(s)
and seek an operator b(s), satislying the continuous time SPR requirement
that the relative degree of an SPR function is necessarily 1, or 0. We
shall work with functions of relative degree 0. Again, [6], with P* the set
of corners of P, one needs only to find a b(s) such that p(s)/b(s) is SPR for



all p(s) € P*. [Of course for the Kharitonov set, the required P* can be
even smaller being the four polynomials in (2) through (5)}. Thus our initial
data is a collection of Hurwitz polynomials n;(s) € P* of the same degree
£. We show that an integer A{ and a polynomial d(s) of degree £+ M exists
such that n;(s)(1 + s)™/d(s) is SPR for all 4, iff P is Hurwitz invariant.
This condition is satisfied in the casc of P* derived from a Kharitonov set
(1). Note that the original objective of [4] (which corresponds to the special
case M = 0) has been relaxed, so that greater freedom arises in the choice

of d(s).

A third contribution of the paper is to consider the continuous time problem
with n = 2, 3,4 and with P a Kharitonov set. We show that the sufficiency
conditions of [4] for the existence of a polynomial b(s) are always fulfilled.

2. Discrete Time SPR Construction

In this section, we shall prove the following main result.

Theorem 2.1 Let pi(z~1),i = 1,2,...,r be a finite set of polynomials
in 21 with the stability property pi(z5') = 0 implies |zo] < 1. Then there
exists b(z~1), polynomial in 2= and such that b(z5') = 0 implies |20| < 1,

with »
Re [’;'(Sw)) >0 Vo € [0, 27], Vi 6)
if and only if for all w in [0,27],
max(arg pi(e/)] — minfarg pi(e) < = m

where, it should be noted, 1t is the unwrapped phase rather than the phase
mod 2r which is computed.

Proof. (Only if). Equation (6), implies that for all i,

larg pi(e’) = arg b(e*)| < 5 Vo € [0,21]
Hence for any i # k,
larg pi(e?*) — arg pu(e™) <7 Vw €[0,27]

Then (7) is immediate.

(if). The proof will be by construction. Define

a(z"1) = pi(pz ™) ®)
where p > 1 is selected to satisfy conditions (A) and (B) below:
(A)  qi(25Y) =0  implies |2| <1 9)

Let v be the maximum modulus of any z; such that p;(z;!) = 0 for some
i. Notice that v < 1. Now ¢;(z5!) = 0 is equivalent to pi(pz5') = 0, and
evidently, |z0/p] < v. So if p is chosen so that pv < 1, we ensure that (A)
holds.

(B)  maxfarg q:(e’™)] — minfarg qi(¢’*] <7 Vwe[0,27]  (10)

Notice that arg g;(e’“) depends continuously on p for p near 1. So therefore
does

(1)

Since w belongs to a finite interval, it is then clear that for some p* and any
p € (1,p*), condition (B) holds because (7) holds.

max{erg (™)) — minarg g:(e’*)].
1 )

Obviously, we take p € (1, min(y™!, p*)) to secure both Conditions (A) and
Conditions (B).

Define now a function ¢(w),w € {0, 27], by

max;[arg ¢i(e’*)] + min;[arg g:(e/*)]

#w) = : (12)
and observe that for all w, in the light of condition (B), there holds
jarg () - 0@ < § Vi=L2.r (13)

Divide up the interval [0,27] into subintervals [0,w,], (w1, ws], [w2,wa)}, ...,
such that on each subinterval, arg ¢;(¢/*) is minimized by the same ¢ through
the interval, and maximized by the same i through the interval (the choice
normally being different to that made for minimization). In (w;,wi+1), #(w)
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is infinitely differentiable. Clearly on [0,27], #(w) has a derivative which is
piecewise continuous.

Consequently, we can determine a IHilbert transform for ¢(w) and indeed
a function v(z7!), analytic together with its inverse in |z| > 1, but not
necessarily on |z| = 1, such that

arg v(z™) = 4(w) (19)

Notice that the piecewise differentiability of ¢(w) allows the possibility of
approximating the Hilbert transforn integral by a sum without necessarily
incurring numerical probleins, sce e.g. some discussion in [7]

Now consider the transfer functions g;(z~')/v(z~*). Because of (13) and
(14), if follows that each of these transfer functions has positive real part for
z = ¢/, Further, the analyticity properties of v ensure that g;(z~1)/v(z"?)
is analytic in [z] > 1. It follows that ¢:(2~1)/v(27!) is positive real. Now
define w(z~!) by

v(z7Y) = w(pz™) (15)
w(z"h) = v(p~tz7Y) (16)

Observe that ” .
g(="") _ pilpz™h) an

Wz D) = wlpe)

It is a standard property that if Z(z=!) is PR, then Z(p~'z"!) is SPR

Vp > 1. Clearly now, p;(z~')/w(z™!) will be SPR, and free of singularities

for |z} > p~!. Also, w(z=*) and w~!(z~*) will be free of singularities in

lz| > p~1, and so also on |z| = 1. This means that we can write down the
Laurent series expansion for w(z~!), viz

wlizTY=wy+wz7 Fwer" 4+ wyz N 4.,

(18)
with the property that given ¢ > 0, we can choose N so that the truncation

N (19

wn(z™l) = wy + wiz . wnzT
satisfies )
mwau\'lw(ej“) —wn(ef)| <€ (20)
By choosing ¢ sufficiently small, we can further ensure that wn(z5!) =0
implies 29| < 1. To see this, recall that w='(z~!) is free of singularities in
|z] > 1, and so takes the maxinmumn value of its modulus on |z| = 1. Hence
Jw(z)] takes its minimum value over the region |z] > 1 on the boundary
|z} = 1. Call this value ;. Now w(z~1) — wy(2~1) is free of singularities in
{z] > 1 and so jw(z~!) — wy(2~1)| takes its maximum values on |z = 1, i.e.
throughout |z| > 1, one has |w(z™!) — wn(z7')| < €. Suppose ¢ satisfies
€ < €1/2. Then throughout |z{ > 1,

v = (™) = w(z™h) +w(z)
> e = lwn (7Y = w(z)
> e —¢€
> af2 (21)
We can also choose ¢ sufficiently small to ensure that
(efw
—IM >0 for all we[0,27] and all 4 (22)
wy(e/?)
To see this, observe that
P _ WPV +Pfwy 1 ¥k (% —a®) _
Re sy = V2o = g P R A p (el =)l (on —w)]

(23)
Now p;w* + pfw > 0 for all w on [0,27] and all ¢ by the SPR property for
pi/w. Let § be the minimum value assumed over all w and all i. Choose

)

———— 24

€< 2maxy; |pi(e?)] 249

This ensures that (22) holds. Together, (21), which is valid in |z] > 1,
-1

and (22) yield the SPR property for u'l"‘f(z_ . Taking b(z~1) = wy(z71)

completes the Theorem proof.

Remark. The degree in z7! of b(z~!) may be much higher than the de-
gree of any of the p;(27!). The above arguments contain no information
suggesting how this degree might be minimized.

We round off the main result above by noting the significance of the phase
restriction (7) on the p;(z~1). From [6], we note that if the set P, a convex



polytope of polynomials, is such that for all p(z~1)eP, p(z5') = 0 implies
|z0] < 1, then the members of the corner set obey (7). Of course, stability of
all p € P is also necessary for there to be a b(z~!) such that p(z~1)/b(z~1) is
SPR for all p € P. Accordingly, we have established the following corollary.

Corollary 2.1.

Consider a convez polytope P of polynomials in z='. Then there ezists
b(z1) such that p(z=1)/b(2~1) [and b(z~1)/p(z")] is SPR for all p(z=")eP
if and only if for all p(z=1)eP, p(z5!) = O implies |20} < 1.

The results here demonstrate that a phase restriction among the members
of a polynomial set P is necessary and suflicient for the existence of a single
b(z~1), whose ratio with every member of P is SPR. Recall 1/6(2~!), repre-
sents a filter used on certain signals in the output error identification setting.
Had this filter been linear but possibly time varying, e.g. [b(z™*, k)]~! (with
obvious abuse of notation), then convergence would require that

Z(z1 k) = b R (=) (25)

be strictly passive [1,2} (a definition of strictly passive systems appears
below). Thus, an additional question to address is: suppose the members
of P do have a pointwise phase difference that somewhere exceeds 180°
and somewhere is less than 180°. Can one find a single linear operator
b(z=1, k), for which (25) is strictly passive for all members of P? The
answer unfortunately is no. This lack of advantage in the use of linear
time varying systems over LTI systewms is not confined to this context alone.
Several results of this nature, with respect to robust stabilization of LTI
systems are known in the literature (8,9].

A linear, possibly time varying system is strictly passive [2], if for some
positive «y, and all k and u;,

k k
Suyizary w4 K (26)
i=0 =0

where K is a constant and u;,y; are the input/output sequences of the
system. An LTI system is strictly passive iff its transfer function is SPR[2].
We remarkthat by selecting the initial conditions appropriately, K can be
taken to be zero. We have the following theorem.

Theorem 2.2.
are such that

Suppose two slable, real polynomials pi(2~') and pa(z™*)

larg p1(e’*) — arg pa(e?¥)| < 7 27)

holds for some but not allw € [0,27). Then there ezists no kinear operator
b(2~1, k), time varying or otherwise such that b=z, k)p;(2~1) is strictly
passive fori=1,2

Proof. Suppose that (27) holds at wy and fails at wy. Then, by continuity
of phase with w, (27) implies at some w’ € (wy, wy) and az > 0

—-jw!

pi(e™") = —agpy(e™i@’) (28)

Then with
g = sinw'k (29)

any linear b=!(z~1, k) and appropriate initial conditions, the output in sys-
tem 5=1(z=1, k)py(2~") is equal within a scaling factor to that in b=1(z~?, k)
p2(z~!) and has opposite sign. Thus these two systems cannot be simulta-
neously strictly passive.

We have in effect shown that if one cannot find an LTI b(2~1) whose ratio
with all members of P is strictly passive, then it is impossible to find a linear
time varying b(z~!, k) for which the operator in (25) is strictly passive for
allp € P.

3. Continuous Time SPR Construction
In this section, we shall prove the following main result.
Theorem 3.1. Let ni(s),i = 1,...,7 be a finite set of Hurwitz polyno-

mials with equal degree £. Then there exists an integer M and ¢ Hurwilz
polynomial B(s) of degree M + € such that for all real w

ni(jw)(!+ ju)
ne [ >0 0

if and only if, for all real w

max[arg n;(jw)] — miin[arg ni(jw)] < = (31)

Proof.

(Only if) The argument is virtually the same as for the discrete-time prob-
lem, Theorem 2.1.

(if) Define polynomials p;(z~1) in =~ by

z—l

p = (1

ﬁ:‘:) (14271 (32)

Then pi(z5') = 0 implies Jzo| < 1 because n;(s) is Hurwitz, and (31) implies
a similar condition, viz (7) on p;(e/*)

Hence Theorem 2.1 implies that there exists a (z~!), polynomial in z~!
and such that b(z; ') = 0 implies |zo| < 1, with

pi(e¥) -
Re [b(el“’)J >0 Vwe[0, 27] Vi (33)

Suppose the degree of 6(z7!) in z~! is N. Define a polynomial B(s) of degree
Nvia z7! = (1= s)(1 +s)7! by:

bz = b(i;:) = (1—B+(Z)W (34)
Notice that oni(
P = e o
Hence
P:(Z-l) _ 2711(5)(1+5)N—1 (36)

b(z=1) T B(s)
By identifying M = N — ¢, we obtain the result of the Theorem.

Remark.

The integer M above does not have to be nonnegative. If nonnegativity is
desired and the procedure has led to N < £, one can proceed as follows.
Modify b(271) to b(z~!) + ez=¢ where ¢ is a very small quantity. Then the
stability property for 5(-) and the PRuess property (33) remain in force,
while the degree of the new b(x~!) in z~! becomes £. Then M = 0.

Again, arguing as in Section 2, the following corollary applies.

Corollary 3.1, Consider a convez polytope P of £—th degree polyno-
mials in 5. There ezists a nonnegative integer M and a polynomial B(s) of
degree £+ M such that p(s)(1+s)™ /B(s) is SPR for all p(s)eP if and only
if P is Hurwitz mvariant, i.e. for all p(s)eP, p(so) = 0 implies Re sq < 0.

The results obtained here and elsewhere are summed up in Figure 3.1.

4. Special Cases

In this section, we first consider polynomials in s oforder 2, 3 and 4 with the
prescribed set n;(s) being defined from a Kharitonov set. We show directly
that denominator polynomials of order 2, 3 or 4 as appropriate can be found
to secure SPR behaviour.

Second order polynomials. Cousider the transfer function set

R _ sP+es+d

W)= e @
where ¢, d are variable, ce[cy, ca], dec[dy, do),¢1 > 0,d; > 0 and a, b are to be
found so that the ratio is SPR. Obviously, > 0,b > 0 is required. Also,

Re z(jw) =
l(—w2 + cjw + d)(—w’ — ajw + b) + (—w? ~ cjw + d)(—w? + ajw + b)
2 (—w? + ajw + b)(~w? - ajw + b)
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w4+ (ac—b~d)w® +bd (38)
(—w? + b)% + a2
It is trivial to see that if

acy > b+d; (39)
and otherwise a > 0,5 > 0, we obtain Re z(jw) > 0 for all w, and all allowed
c,d.

Third order polynomials Consider now

P4 ds?4es+ f
sS4 as?+bs+c

:(s) = (40)

with de[dy, d3), eee1, €3] and fe[fi, fo], with di > O,e; > 0,f > 0. A
sufficient condition for all the numerator polynomials to be Hurwitz is, see
[10], that

diey— f3>0 (41)
A straightforward calculation yields
Wb twiad —b—e)+wi(be ~af = cd)+cf
{(Jw)® + a(jw)? + 6(jw) + <

So to secure positive realness it is sufficient to choose a, b, ¢ all positive with

Rez(jw) = (42)

ad—b—e>0 (43)
be—af —cd>0 (44)

for all allowed d,¢, f. (Hurwitzness of the denominator is automatic if the
numerator is Hurwitz and Re[z(jw)] > 0, see e.g. [4]). Now (43) will hold
for all allowed d, e, f if

ady—b—e23>0 (45)

The allowed region of a,b space is shown in Fig. 4.1a Also, (44) will hold
for all d, e, f if

bey —afy—cdy >0 (46)

Now (41) implies d; > f/e; so that for arbitrary ¢ > 0, the two regions

depicted in Figures 4.1a and b must have a common intersection. Any part

in the common intersection yiclds a,b values such that z(s) is SPR for all
allowed d, e, f values.

Fourth order polynomials. Consider the transfer functions

resP+ ftgs+h

(o) = tas® +0s°+es+d “n

with ce[ey, ea], ..., hefhy, hy), all numerators stable. Therefore e; > 0,
fi > 0,91 > 0, Ay > 0 and the Hurwitz determinant inequalities

ef—g > 0 (48)

efg—e*h—g* > 0 (49)

hold for all e, f, g, in the region of interest. It is established in [10] that
the following conditions are necessary and sufficient for this:

cifi—ga > 0 (50)
etfigz—eihz =g > 0 (81)
eafi=g > 0 (52)
exfigi—e3ha—gf > 0 (53)

Now a straightforward calculation yields

Rez(jw) =
W8 + (ae ~ b— f)w® + (d = ec+ fb—ga+ h)w' + (= fd +gc —bh)w? + hd
[Gw)® + a(jw)® + 6{jw)? + c(jw) + dI? ”

To secure z(s) positive real, it is suflicient to choose a, b, ¢, d all positive and
so that the numerator has all positive coeflicients for all allowed e, f, g, h:

ae—b—f> 0 (55)
d—ec+ fob—gat+h > 0 (56)
—fd+gec—bh > 0 (57)

Arguing just as in (4], (55) through (57) hold for all allowed e, f,g and h if
and only if a,b,¢,d are such that

aci=b~fr > 0 (58)
d—eyc+ fib—gea+hy > 0 (59)
—fad+qc—hab > 0 (60)

We establish that a solution exists by setting up a dual linear programming
problem - see the Appendix.

5. Conclusion

We have solved a long standing problem of adaptive system theory which
almost certainly has a number of other applications. The key to generating
a collection of SPR functions from a family of polynomials is either that the
family be a convex set, with all clements stable (a fact which Kharitonov
results may assist in checking), or that the elements of the family have a
restricted spread of phase at every frequency.

We have left open the question in the continuous time case as to whether
there are families of polynomials or a Kharitonov set of polynomials (all of
the same degree £) from which the SPR function can always be obtained
through division of each element of the set by a single polynomial of degree
£. In case £ < 4, we have established an afirmative answer; the search then
for a counterexample will be complicated by the number of parameters
involved.
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Appendix Solution of Linear Inequalities

Consider the inequalities (58) through (60), subject to (48) and (49)with
e, f.g,h in (48) and (49) being cither ¢y, or e3, fi, or fa etc. Consider more
particularly the linear prograinming (LP) problem minimize

a
noroaog|? (61)
d
subject Lo, for some small positive ¢,
a =1 0 0] ‘;1 [ fae ]
-0 fi e 1 -_Cizi hi+e (62)
0 =ha ¢ *fzJ ] d | L €



a
b

c |20 (63)
d

If this problem has a solution with a,b, ¢, d, it is a solution of (58) through
(60). If say a = 0, replace a by « + & where § is very small (0(¢)) to secure
a solution to (58) through (60). The above problem has a solution if and
only if the dual problem has a solution, [11]:

fat+e
Maximize [ Ay A2 As ] —hy +¢€ (64)
€

subject to

€ 1 0 0

[a A2 M|~z A =2 1 [ <[1 11 1] (89)
0 -y g ~-fo

%20 (66)

In turn, this problem has a solution if and only if we can find any A; satis-
fying (66) and

€ -1 0 0

(2 2 Ml -2 fi - 1 [g[1111] (67
0 ~h: g —f2

We examine these constraints in the A2, A3 plane. The last two inequalities

in (67) are

—e2da+gid3 < 1 (68)
Ae=fodzg <1 (69)

Together with the constraints Ay > 0,A3 > 0, the region so defined is
depicted in Figure A.1. Notice that the stability conditions (48) force
f;l < €297 so that the region in Figure Al is not bounded.

Consider now the first two inequalities in (67) with A, a parameter. These
are

A -1
P (70)
g2
Aafy 140
Aa ha | By )

Choose A\ = el'1 > 0. Then the region defined by these inequalities and
A; > 0is depicted in Figure A2.

It is obvious that the region depicted in Figures Al, A2 have a common
intersection, i.e. there exists A; satisfying (66) and (67).
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Figure A1 One restriction on | 2,| 5 values

Figure A2 Second reswriction on | ,,! , values



