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Abstract 

Let P be a convex set of real polynoinials. This paper considers the question 
of when there exists a real polynoillial b(s ) ,  or more generally a real transfer 
function b(s) ,  sucli that  p ( s ) / 6 ( s )  is stricily positive real for all p ( s )  E P. 
Necessary and suficient conditions are found for the transfer function b(s) 
case, and when the degree of the polynomials in P is restricted, such con- 
ditions are also found for the polynomial b(s )  case. Closely related results 
are also obtained for a z-transform version of the problem. The  results have 
application in adaptive systcms. 

1.Introductioii and Problem Formulation 

Motivated by problcms of adaplixc system thcory, in particular output error 
identification and certain adaptive control algorithms, [l-31, the following 
problem is addressed in [4 ] .  Colisider a set P of nth degree Hurwitz poly- 
nomials. State conditions for thc existence of an 7 i t h  degree IIurwitz poly- 
nomial b(s)  such that p ( s ) / b ( s )  is strictly positive real [Rep(jw)/b(jw) > 0 
for all real w, given the IIurwitz property for b(s)] for all p ( s )  E P. More 
generally, one can replace a search for polynomial b(s)  by one for rational 
b(s ) ,  with relative degree -11. To understand t,he importance of this problem, 
consider the adaptive output error identification of a plant whose transfer 
function has denominator polynon~ial p ( s ) .  Assume degree of p ( s )  = n. 
Then, t o  ensure the exponenticil convergence of the identification algorithm 
one must filter certain signals by a filter having transfer function I /b ( s ) ,  
where l/6(s) is rational, has dcgrw 2 71 ,  lias relative degree n and b ( s ) / p ( s )  
is strictly positive real, henceforth abbreviated as SPR. The degree restric- 
tions apply because of the need l o  avoid explicitly differentiating certain 
signals. Notice that the simi~llcst. such 6(s) is a polynomial of degree n. 
Further, from the definition O F  S P l t  traiisfer functions, b(s)/p(s) SPR is 
equivalent to p ( s j / b ( s )  S P l l  Notice also that p ( s )  is unknown. To con- 
struct an appropriate b ( s )  oiic call malie the additional assumption that the 
coeficients ofp(s) lie in soiiic 1cnon.n convex set. The problem then becomes 
one of finding a single b ( s ) ,  s rying tlie appropriate degree restrictions, 
such that for all p(s) in this sct, y(s)/6(s) is SPR. For a discrete time plant 
with stable denominator p ( z - ' ) ,  Llic corresponding design problem is to 
find b(z-'), such that p(z-')/b(;-'), is SPR (i.e. it is stable and obeys: 
Re [b(e-'")/p(e-'"')] > 0 for all real w ) .  Unlilte the continuous time case 
there are 110 dcgrce rcslrictions 011 b ( 2 - I ) .  

Two of the significant coiit.ril>iilioiis of [l]  in treating the co~~t inuous  time 
problem are the following. l;irat,, scls P are identified with the property 
that there csists a finile s u l w t  P" bucl i  that  p / b  is SPR for all p E P* 
implies p / 6  is SI'R for all 1) E %. ,\ i i iost important example of such a set is 
a "I<harit,onov sct." so callc(l Ixxciusc of its itnportance in robust stability, 
[5]. More precisely, wi th  

~z E [.i,Di], (1) p ( s ) =  s"+pls"- '+ . . . + l , , ~ ,  

defining tlie sct P ,  the wt 'Pc is  p , i w i i  I I Y  the four polynomials 
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p ? ( s )  
p3(s) = 
p 4 ( s )  = sil + b2s1L-? + L13Sf1-3 + + p S P 5  + .. . (5) 

= s" + u l s ' ' - - i  + /3,s"-' + Sljs'1-J + aqs"-4 + 0 5 s * - 5  + . . . ( 3 )  
$1' + OIS'"-' + n.)s"-' + a3s"-9 + ,d.,s"-' + p s s * - 5  + . . . (4) 

(The coeficient pattern iiivolbcs altcriiation of two minimum values and two 
maximum values). 
The  fact that  the infinite set P can be replaced by the finite subset P* of 
course makes the search for 6(s) a much easier task. 

The  second contribution of 141 to be noted here is that  a sufficient con- 
dition is derived for the existence of a IIurwits nrh degree b(s) such that 
p, (s ) /b (s ) ,  i = 1,. . . , 4  is SPR, the ps(s) being the four corner polynomi- 
als of a Kharitonov set ,  i.e. they are given by (2)-(5). Such a b(s) yields 
p ( s ) / b ( s )  S P R  for all p ( s )  defined by (1) .  

Our main contribution in this paper is to find conditions for the existence 
of b(s) which are necessary and sufficient, and to present a constructive 
procedure. \$'e present results for the case when b-'(s) is a relative degree 
n transfer function, but b ( s )  is not polynomial, and results applying with 
polynomial b(s ) ,  when n 5 4. 

The first problem considered in this paper is posed in discrete time 

We work with the nth degree polynoinial p ( z - ' )  lying in a known convex 
polytope P .  I t  has been shown in (GI tha t  with 'P* denoting the set of 
corners of P ,  p(z-f)/b(z-') is SPR for all p ( z - ' )  E P and some fixed 
b(t-') if and only if p ( z - ' ) / 6 ( z - ' )  is SPR for all p ( t - ' )  E P*. Given a 
finite set P* of polynomials p,(z-') in z-', we seek a polynomial b(2-l) in 

such that p , / 6  is SPR for all i. I t  is shown that such a b(z-') exists 
iff for all p in P ,  p ( z ; I )  = 0 implies /zoI < 1. We also give a constructive 
procedure to find such a 6 if one exists; this constructive procedure uses the 
polynomials in P'. 

Two equivalent conditions are established: the first involves the phases of 
p ' ( e j ; )  for different i, and the second is that  for all p ( z - ' )  E P ,  p(zgi) = 0 
implies 1 ~ 0 1  < 1. 

What makes the discrete-time problcm somcwhat easier than the continuous 
time problem is the fact that  the degree of b [as a polynomial in z-'] is not 
constrained by the degrecs of the p, ,  so that there are in fact arbitrarily 
many coeflicients that can be adjusted in b to secure tlie SPR property. 
In contrast, if the conLinuous time transfcr function p(s)/b(s) is SPR, the 
degrees of 6 and p necessarily differ by at most 1, and thus the freedom in 
choosing 6 is more limited. 

The second issue tackled in the p q ~ c r  is the continuous time problem. We 
now work with a couvex polytope ' p  of lit'? degrce iiionic polynomials p(s) 
and seek an operator b ( s j ,  satisfying the continuous time SPR requirement 
that  the relative degree of an SPR function is necessarily f l ,  or 0. w e  
sliall work with functions of relalive degrce 0.  Again, [GI, with P* the set 
of corners of P ,  onc nceds only to  find a b(s j  such that p ( s ) / b ( s )  is SPR for 
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all p ( s )  E P*. [Of course for tlic I<lirU.itonov set, the required P* can be 
even smaller being the four polynomials in ( 2 )  through ( 5 ) ) .  Thus our initial 
data is a collection of IIurwitz polynomials n i ( s )  E P* of the same degree 
e.  We show that  an integer Af and a polynomial d ( s )  of degree e +  M exists 
such that  ni(s ) ( l  + s ) " / d ( s )  is SPR for all i, iff P is Hurwitz invariant. 
This condition is satisfied in tlie casc of P* derived from a Kharitonov set 
( 1 ) .  Note that the original objective of [4]  (which corresponds to  tlie special 
case M = 0) has been relaxed, so that greater freedom arises in the choice 
of d ( s ) .  

A third contribution of the paper is to  consider the continuous time problem 
with n = 2 , 3 , 4  and with P a Kharitonov set. We show that the sufficiency 
conditions of [4]  for the exist,ence of a polynomial b ( s )  are always fulfilled. 

2. Discrete Tiiiie SPR Construction 

In this section, we shall prove (.lit following main result. 
Theorem 2.1 Let p i ( . - ' ) ,  i = 1 , 2 , .  . . , r be a f in i te  set of polynomials 
in z-l with the stabili ty properly p i ( z 0 ' )  = 0 implies 1.~01 < 1. Then there 
ez i s t s  b(z- ' ) ,  polynomial i n  z-l and such fhat  b(z;') = 0 implies 1201 < 1 ,  
with 

pi0 V u  E [ 0 , 2 r ] ,  V i  Re [ b ( e J w ) ]  > 
if and only  i j f o r  a l l u  i n  [ 0 , 2 r ] ,  

m,+x[arg p i ( e j w ) ]  - mp[arg p i ( e j w ]  < n (7) 

where, it should be noted, it is the unwrapped phase raiher than ihe phase 
mod 2 n  which IS computed. 

Proof. (Only if). Equation (G) ,  implies that for all i, 

larg p i ( @ )  - arg 6 ( e J " ) l  < 5 v w  E [ 0 , 2 r ]  

Hence for any i # h ,  

Iarg pi (e j")  - arg pp(e jw) l  < r vw E [ 0 , 2 r ]  

Then (7) is immediate 

(if). The proof will be by construction. Define 

qi(z-')  = P ~ ( P . - ' )  (8) 

(A) q i ( z 0 ' )  = 0 implies lzol < 1 (9) 

where p > 1 is selected to  satisfy conditions (A) and (B) below: 

Let v be tlie masimum modulus of any 21 such that pi(.;') = 0 for some 
i. Notice that  Y < 1 .  Now q,(z; ' )  = 0 is equivalent to  p i ( p z ; ' )  = 0, and 
evidently, ( ro /p l  5 v. So if p is chosen so that  pv < 1, we ensure that  (A) 
holds. 

(B) m,aw[arg q i ( e J W ) ]  - min[arg qi(e"] < r vu E [O, 2 4  ( 1 0 )  

m+x[arg qi(c'")] - min[arg I q i ( e J w ) ] .  ( 1 1 )  

i 

Notice that arg qi (eJ")  depends rontiiiuously on p for p near 1 .  So therefore 
does 

Since w belongs to a finite iiiterval, it is then clear that for some p* and any 
p E ( l , p * ) ,  condition (B) holds because (7) holds. 

Obviously, we take p E ( 1 ,  iniu(v-' ,  p * ) )  to secure both Conditions (A) and 
Conditions (B). 

Define now a function q5(w),w E [0,2~], by 

4 ( w )  = inaxi[arg q , ( e f w ) ]  + min,[arg q i ( e J w ) ]  
2 

and observe that for all w ,  iii the light of condition (B), there holds 

Divide up the interval [ 0 , 2 r ]  into subintervals [ O , ~ ~ ] , [ W ~ , W ~ ] , [ W ~ , W ~ ] ,  . .., 
such that on each subinterval, arg q;(c j")  is miiiiiiized by the same i through 
the interval, and maximized by the same i through tlie interval (the choice 
normally being different to that made for minimization). In (WipWi+i)td(W) 

is infinitely differentiable. Clcarly on [ 0 , 2 r ] ,  g ( w )  has a derivative which is 
piecewise continuous. 

Consequently, we can deterniiiic a Hilbert transform for O ( w )  and indeed 
a function U(.-'), analytic together with its inverse in 1.1 > 1 ,  but not 
necessarily on IzI = 1, such that 

arg u(z-') = 4(u) ( 1 4 )  

Notice that the piecewise differentiability of d ( w )  allows the passibility of 
approximating the Hilbert transform integral by a sum without necessarily 
incurring numerical problems, see e.g. some discussion in [7] 

Now consider the transfer funct.ioiis qz(z-l)/u(z-l). Because of ( 1 3 )  and 
( 1 4 ) ,  if follows that  each of these transfer functions has poeitive real part for 
z = e ly .  Further, the analyticity properties of u ensure that q;(z-')/u(z-') 
is analytic in 121 > 1. It follows that q i ( z - ' ) / v ( z - ' )  is positive real. Now 
define ~ ( z - ' )  by 

v ( 3 - l )  = w(pr-') ( 1 5 )  

w(3-1) = v ( p - 1 2 - 1 )  ( 1 6 )  

( 1 7 )  
qi(2-l) - P i ( p 2 - l )  
U(.-1) w ( p 2 - 1 )  

or 

Observe that 
--- 

It is a standard property that  if Z(2-l) is PR ,  then Z(p-'z-') is SPR 
V p  > 1 .  Clearly now, p ; ( z - ' ) / w ( z - ' )  will be SPR, and free of singularities 
for 1.1 > p- ' .  Also, to(.-') and zu-'(z-') will be free of singularities in 
IzI > p - ' ,  and so also on IzI = 1. This means that  we can write down the 
Laurent series expansion for w(z-'), viz 

W ( 2 - l )  = WO + W1Z-l  + W?2-' + .  . . + W N f - N  +.  . . (18) 

with the property that given c > 0, we can choose N so that the truncation 

W N ( 2 - l )  = WO + WIZ- '  + .  . . + W N Z - N  ( 1 9 )  

satisfies 
ina..Iw(eJw) w - wN(eJY)I  < 6 ( 2 0 )  

By choosing e sufficiently small, we can further ensure that W N ( Z ~ ' )  = 0 
implies l z ~ l  < 1. To see this, recall that w-'(z-') is free of singularities in 
1.1 2 1 ,  and so takes tlie maximuin value of its modulus on Izl = 1 .  Hence 
Iw(r)l takes its minimum value over the region 121 2 1 on the boundary 
IzJ = 1 .  Call this value c1. Now w(2-l) - ~ ~ ( 2 - l )  is free of singularities in 
IzJ 2 1 and so / w ( z - ' )  - w,v(z-')l takes its maximum values on (+I = 1, i.e. 
throughout 1-1 2 1, one has I w ( z - l )  - w ~ ( z - ~ ) l  < c. Suppose e satisfies 
c < 6 1 / 2 .  Then throughout 111 2 1, 

IwN(r-')l = l U J N ( z - 1 )  - tu(.-') + w(2-1)l 

2 lUJ(Z-l)l - I U J N ( 2 - l )  - W ( Z - ' ) l  

2 C 1 - €  

> C l / 2  ( 2 1 )  

We can also choose 6 suficicntly small to  ensure that 

( 2 2 )  p ,  (e'" ) Re->O 
w N ( e J w )  

for all u c [ O ,  2 ~ 1  and all i 

To see this, observe that 

hpi = 1/2PiU'*, + P?UN = ~ [ p i w * + p ~ w + p i ( w * N - w * ) + p ~ ( w N - w ) ]  
'JN IWNI2 2jUJNI' 

( 2 3 )  
Now piw* + p:w > 0 for all w on [0, air] and all i by the SPR property for 
p , / w .  Let 6 be tlie minimum value assumed over all w and all i. Choase 

( 2 4 )  
6 

2 nia.L,, lpi(eJw)l  
6 <  

This ensures that ( 2 2 )  holds. Together, ( 2 l ) ,  which is valid in 1.1 2 1 ,  
and ( 2 2 )  yield the SPR property for s. Taking b(2-')  E UN(.-')  
completes the Theorem proof. 

Remark. The degree in z-' of 6 ( 2 - l )  may be much higher than the de- 
gree of any of the p i ( 2 - l ) .  Tlie above arguments contain no information 
suggesting how this degree might be nunimized. 

We round off the main rcsult above by noting the significance of the phase 
restriction (7) on tlie p i ( 3 - l ) .  Froin [GI, we note that if the set P, a convex 



. .  
polytope o i  dolynomials, is suc~i  that  for all p ( z - ' ) c ~ ,  p ( z ; ' )  = o implies 
lzol < 1 ,  then the members of tlic corner set obey (7). Of course, stability of 
all p c P is also necessary for there to be a b(2 - I )  such that p(z-')/b(z-') is 
S P R  for all p c P. Accordingly, we have established the following corollary. 

Corol la ry  2.1. 

Consider a convex polytope P of polynomials in z - ' .  Then there exists 
b(z-') such that p ( z - ' ) /6 (2 - ' )  [and b(z-')/p(z:')] is SPR for allp(z- ' )cP 
rf and only iffor all p ( z - ' ) ~ P ,  p(:; ')  = 0 implres JZO)  < 1. 

The results here demonstrate that  a phase restriction among the members 
of a polynomial set P is necessary and sufficient for the existence of a single 
b(r-I), whose ratio with every meiiiber of P is SPR. Recall l/b(z-'), repre- 
sents a filter used on certain signals in the output error identification setting. 
Had this filter been linear but possibly time varying, e.g. [b (z - ' ,  k)]-' (with 
obvious abuse of notation), then convergence would require tha t  

Z(z- ' ,k) = [6(z-',k)]-'p(z-') (25) 

be strictly passive [1,2] (a definition of strictly passive systems appears 
below). Thus, an additional question to address is: suppose the members 
of P do have a pointwise phase difkrence that somewhere exceeds 180' 
and somewhere is less than 1SO'. Can one find a single linear operator 
6 ( 2 - ' , k ) ,  for which (25) is strictly passive for all members of P ?  The 
answer unfortunalely is no. Tliis lack of advantage in the use of linear 
time varying systems over LTI sysleins is not confined t o  this context alone. 
Several results of this nature, with respect t o  robust stabilization of LTI 
systems are knomn in the literature [8,D]. 

A linear, possibly timc varying systein is strictly passive [2], if for some 
positive 011, and all h and U , ,  

where I< is a constant and U,,!/, R I ?  the input/output sequences of the 
system. An LTI system is strictly passive iff its transfer function is SPR[2]. 
We remarkthat by selecting the initial conditions appropriately, I< can be 
taken to be zero. We have the following theorem. 

Theorem 2.2. 
ape such that 

Suppose t w o  stalle, realpolynomzalsp~(r- ' )  a n d p z ( z - ' )  

larg p l (e ' " ' )  - arg p z ( e J w ) (  < x (27) 
holds for some but not all w E [ O , ~ T ] .  Then there ezists no linear operator 
b(z- ' ,  k), time varying O T  O i h C T f U Z S e  such t h a t  6- ' (z - ' ,  k ) p ; ( z - ' )  is strictly 
passive for i = 1 , 2  

Proof. Suppose that (27) holds  at^ w1 and fails a t  w2. Then, by continuity 
of phase with w ,  (27) implies a t  some w' E ( w l ,  w?] and (12 > 0 

p l (e -Jw' )  = -a.2pz(e-'u1) (28) 

Zl i .  = s inwlx .  (29) 
Then with 

any linear 6- ' (z - ' ,  k) and appropriate initial conditions, the output in sys- 
tem b-'(z- ' ,  k)pl(z-'), is equal witliin a scaling factor to that in 6-'(z-I, k) 
p z ( 2 - l )  and has opposite sign. Tl ius  these two systems cannot be simulta- 
neously strictly passive. 

We have in effect shown tha t  if one caiinot find an LTl 6(z- ' )  whose ratio 
with all members of P is strictly passive, then i t  is impossible t o  find a linear 
time varying 6 ( z - ' , k )  for which the operator in (25) is strictly passive for 
a l l p  E P .  

3. Continuous Time SPR Construction 

In this section, we shall prove the following main result. 

Theorem 3.1. Let n ; ( s ) ,  i = I , .  , . , 7 *  be R finite sei of Huwi t r  polyno- 
mials wifh equal degree e. Then fhcle exisis an integer A4 and a Hurwitz 
polynomial B(s )  of degree AI + C such ihat f o r  all real w 

rf and only if, for all real w 

niax[arg n,( jw)] - niin[arg n ; ( j w ) ]  < x 

Proof. 

(Only if) Tlle argument is virtually the same as for the discrete-time prob- 
lem, Theorem 2.1. 

(if) Define polynomials p , ( z - ' )  in 2 - l  by 

Then p,(z; ' )  = 0 implies 1-01 < 1 because nl(s) is Hurwitz, and (31) implies 
a similar condition, viz (7) 011 p , ( e J w )  
Hence Theorem 2.1 implies that  there exists a 6(z - I ) ,  polynomial in 2-l 

and such that 6(z i1)  = 0 implies 1-01 < 1, with 

(33) 

Suppose the degree of 6(2- ' )  in z-' is N.  Define a polynomial E ( s )  of degree 
N via 2-l  = (1 - s ) ( l  + s)-l by: 

(34) 

Notice that 

Hence 

By identifying A l  = N - e, we obtain the result of the Theorem. 

Remark. 

The integer M above does not have to be nonnegative. If nonnegativity is 
desired and the procedure bas let1 to N < e, one can proceed as follows. 
Modify b ( 2 - I )  to b ( 2 - I )  + EZ-' where is a very small quantity. Then the 
stability property for 6(.)  and the PRness property (33) remain in force, 
while the degree of the new 6 ( z - ' )  in I-' becomes e.  Then M = 0. 

Again, arguing as in Section 2, the following corollary applies. 

Coro l la ry  3.1. Consider n convex polytope P of e-th degree polyno- 
mials in s. There exisis a nonnegniive integer hf and a polynomial B(s )  of 
degree e + A f  such lhat p ( s ) ( l  +s)"'/B(s) is SPR f o r  a l lp ( s )cP  if and only 
i f P  is Humiiz  ~nuarianl, I.e. f o r  a l l  p ( s ) cP ,  p ( s 0 )  = 0 implies Re so < 0. 

The  results obtained here and elsewhere are summed up in Figure 3.1. 

4. Special Cases 

In this section, we first consider polynomials in s oforder 2, 3 and 4 with the 
prescribed set n , ( s )  being dchccl  from a Kharitonov set. We show directly 
that denominator polynomials orordcr 2,  3 or 4 as appropriate can be found 
t o  secure SPR behaviour. 

Secoiid order polyiloluials.  (.:oilsider the transfer function set 

s? + cs + d 
L ( S )  = I (37) 

b J  + u s  + 6 

where c ,  d arc variable, cc[cl, c?], dc[d , ,  4, CI > 0,  d l  > 0 and a, b are t o  be  
found so that  the ratio is SI'lt. OlJviously, U > 0 , b  > 0 is required. Also, 

Re ~ ( j w )  = 
1 (-w3 + c jw + d)(-w? - u i w  + 6) + (-w' - c jw  + d)(-wz + ajw + b )  
2 (-U? + a jw  + b)( -wz  - a j w  + b )  
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- w4 + ( Q C -  6 - d ) ~ ?  + 6d - 
(-U? + 6 ) 3  + U? 

I t  is trivial to see that if 
u t i  > 6 + dz 

and otherwise a > 0,  b > 0, we obtain Re r ( j w )  > 0 for all w ,  and all 
e,  d. 

Third order polynomia ls  Consider now 

s3 + ds2 + e s  + f 
s3 + as? + 6s + c 

:(s) = 

(39) 
allowed 

with dr[dl,dz],ec[e~,ez] and f c [ f l , f ~ ] ,  with dl > 0 , e l  > 0,f  > 0. A 
sufficient condition for all the numerator polynomials t o  be  Hurwitz is, see 
[lo], that  

A straightforward calculation yields 
& e l  - fi > 0 (41) 

w6 + w 4 ( u d -  6 - e )  +w2(6e - af - cd) + cf 
Ret&) = (42) + ~ ( j w ) ~  + b ( j w )  + cl2 

So to secure positive realness it is suIiicient to choose a ,  b,  c all positive with 

ud-  6 - e > 0 
he - uf - cd > 0 

(43) 
(44) 

for all allowed d , e , f .  (Hurwitzness of the denominator is automatic if the 
numerator is Hurwitz and Rc[z(jw)] > 0, see e.g. [4]). Now (43) will hold 
for all allowed d ,  e ,  f if 

ad1 - 6 - e 2  > 0 

The  allowed region of U ,  6 space is sliowii in Fig. 4.la Also, (44) will hold 
for all d ,  e, f if 

Now (41) implies d1 > fz/el so that for arbitrary c > 0,  the two regions 
depicted in Figures 4 . la  and b must have a common intersection. Any part 
in the common intersection yiclcls U ,  6 values such that ~ ( s )  is SPR for all 
allowed d ,  e, f values. 

Fourth order polynomia ls .  Consider the transfer functions 

(45) 

bel - u fi - cd? > 0 (46) 

(47) 
2'' + e53 + fs2 + gs + h 
2' + os3 + Irs? + cs + d 

z(s) = 

with er[el, e z ] ,  . . . , h r [ h l ,  1 1 2 1 ,  all  nunierators stable. Therefore el  > 0, 
fi  > 0,  91 > 0, h l  > 0 and thc IIurwitz determinant inequalities 

e f - g  > 0 
efg-e'h -9' > o 

(48) 
(49) 

hold for all e , f , g , h  in the rcgioii of interest. It is established in [lo] that  
the following conditions are ncccssary aid  suficient for this: 

Now a straightforward calculation yields 

Fkr ( jw)  = 

We establish that a solution exists by setting up a dual linear programming 
problem - see tlie Appendix. 

5.  Conclusion 

We have solved a long standing problem of adaptive system theory which 
almost certainly has a number of other applications. The  key t o  generating 
a collection of SPR functions from a faniily of polynomials is either tha t  the 
family be a convex set, with all ~:lcnients stable ( a  fact which Kharitonov 
results may assist in checking), or that the elements of the family have a 
restricted spread of phase a t  every frequency. 

We have left open the qucstion i n  tlie continuous time case as to whether 
there are families of polynomials or a I<haritonov set of polynomials (all of 
the same degree e) from which the SPR function can always be  obtained 
through division of each element of the set by a single polynomial of degree 
e.  In ease ! 5 4, we have established an amrmative answer; the  search then 
for a counterexample will bo coiiiplicatcd by the number of parameters 
involved. 
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Appendix Solution of Linear Inequalities 

u e - 6 - f >  0 (55) 
d - e c + f b - g u + h  > 0 (56) 

- f d + y ~ - 6 h  > 0 (57) 

Arguing just  as in [4], (55) through (57) hold for all allowed e , f , g  and h if 
and only if a, 6, c, d are such that sub,iect to. for some sniall positive c .  

ue l -6 - f2  > 0 
d - e z c +  f1b-g2a+hl  > 0 

- f z d + g 1 ~ -  hz6 > 0 
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[ (63) 

If this problem has a solution with a ,  6, c, d ,  it is a solution of (58) through 
(60). If say a = 0, replace a by U -k 6 where 6 is very small ( O ( E ) )  to  secure 
a solution to  (58) through (GO). The above problem has a solution if and 
only if the dual problem has a solution, [ l l] :  

p,/b SPR 
v pie P' 

subject to 

5 [ 1 1 1 1 ] (65) 

A, 1 0  (66) 

In turn, this problem has a solution if and ouly if we can find any A, satis- 
fying (GG) aiid 

p b  SPR 
v p € P  

We examine these constraints in the A z ,  A3 plane. The last two inequalities 
in (67) are 

-e?Az+g1A3 5 1 (68) 
A Z - f Z A 3  5 1 (69) 

Together with the constraints A? 2 O,A3 2 0, the region so defined is 
depicted in Figure A.l. Notice that the stability conditions (48) force 
f;' < ezg;' so that the region in Figure A1 is not bounded. 

Consider now the first two inequalities in ((37) with A1 a parameter. These 
are 

I 

I a 

Figure 4.1 Resmctions on choice of a,b imoosed bv two inequalities 

, slope / 

Figure A1 One restriction on I 2 , 1  values 

I - I+e;' I *  
I 

f , 
Figure A2 Second restriction on I ,,I values 

Figure 3.1 Conditions for the existence of b peuc ing  SPR 
property; P is a convex polytope with comers P . 
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